CHAPTER XIV

THE PASSAGE OF FAST PARTICLES
THROUGH MATTER

§113. Xonization losses by fast particles in matter: the non-relativistic case

A rast charged particle, in passing through matter, ionizes the atoms and thereby foses
energy.T In gases, the ionization losses can be regarded as being due to collisions between
the fast particle and individual atoms. In a solid or liquid medivm, however, several atoms
may interact simultaneously with the particle. The effect of this on the energy loss by the
particle can be macroscopically regarded as resulting from the dielectric polarization of
the medium by the charge. Let us first consider this effect for non-relativistic velocities of

. the particle. We shall see that the polarization of the medium then has only z slight effect

on the losses. The derivation of this result is of interest because the method can be
extended to other cases.
Let us first of all ascertain the conditions under which the phenomenon can be

" macroscopically considered. The spectral resolution of the field produced at a distance r

from the path of a particle moving with velocity v consists chiefly of terms whose frequency
is of the order v/r (the reciprocal of the “collision time™), The ionization of an atom can be
effected by field components of frequency @ = w,, where wq is some mean frequency
corresponding to the motion of the majority of the electrons in the atom. The particle
therefore interacts simultaneously with many atoms if v/w, is large compared with the
interatomic distances. In solids and liquids these distances are of the same order of
magnitude as the dimension @ of the atoms themselves. Thus we obtain the condition
v » aw,, L.e. the velocity of the ionizing particle must be large compared with the velocities
of the atomic electrons (or at least of the majority of them).};

Let us now determine the field produced by a charged particle moving through matter.
In the non-relativistic case it is sufficient to consider only the electric field, defined by the
scalar potential ¢. This potential satisfies Poisson’s equation

EAG = —4ned(r —w), (113.1)

in which the permittivity is written as an operator, and the expression ed (r — vt} on the
right-hand side is the density due to a point charge ¢ maving with constant velocity v.§

t Wespeak, asiscustomary, of “ionization losses™, but these are, of course, understoed to include losses due o
the excitation of atoms to discrete energy levels.

§ The corresponding condition for the energy E of the particle is E » M1/m, where M is the mass of the
particle, m that of the clectron, and I some mean ionization energy for the majority of the electrons in the atom,

§ Weassume that the particle moves in a straight line, and thereby neglect scatiering, as isalways permissiblein
problems of this type.

If the charge on the particle is ze, then all the formulae pertaining to energy loss in this and the following
sections should be multiplied by 2%,
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We expand ¢ as a Fourier space integral:

B 3
¢ = % P explik-r) 4k (113.2)

vy

(2mp?
Taking the Laplacian of this equation, we find that the Fourier component of A¢ is

HD&_, = l__nn@_n.
Taking the Fourier component of equation (113.1) gives

Ay = — Aa&:.iﬁvnxﬂ..,.._.w...w&\

i

—4me exp(—itv - k),

Thus m_w..r = (4ne/k?) exp (—iev - k), and ¢y therefore depends on time through a factor
ME {—irv-Kk). The operator £ acting on a function exp(—iwt) multiplies it by &(w).
ence .
4ne

ekv)

by = exp{—itv k).

The Fourier components of the field and of the potential are related by E, eﬁcﬁ )=
—grad [¢; exp (k1)) = =ik¢y exp{ik -r). Thus )

4niek
E, = —ik¢, = — —ity-
. " ke, ek v) exp {—itv-k). (113.3)
The total field strength is obtained by inverting the Fourier transform:
ag
, d*

E= Ey exp(ik 1) G (113.4)

-

The energy loss ﬁ the moving particle is just the work done by the force ¢E exerted on
the wmm:o_a by the mmE which it produces. Taking the value of the field at the point
onncm..aa by z.a particle, namely r = v¢, we obtain in the integrand in (1134} a factor
exp (itv - k) which cancels with the factor exp (—itv-k) in the expression (113.3) for E,.
Hence the force F is ' , ‘

o
'k d3k
k*e(k-v) 2nP
-—®
It is evident Ewﬁ z,:.w direction of the force F is opposite to that of the velocity v; let the
latter be the x-direction. Putting kv = e, g= ,\Mf.u +k,®) and replacing dk,dk, by
2rq dg, we can write the magnitude of F as T

F = ~4xig?

o

p_ie g dg dap
T m e(w) (g% v? + %) {113.5)
w0 -

The choice of qo is discussed below.
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The following remark should be made concerning the integration ém.E respect to w in
formula (113.5). As @ — co- the function e{w) — 1, and the integral is logarithmically
divergent. This happens because we ought to have subtracted ?Eﬁ E.o field E E.a field
which would be preserit if the particle were moving in a vacuum (ie. if £ = 1); this field
cvidently does not affect the energy lost by the particle in matter. .

If this subtraction were effected, 1/¢ in the integrand of (113.5) would become 1 /e - 1,
and the integral would converge. The same result can be obtained by taking the integration
from —-Qto + Qand then letting O tend to infinity. Since the function ¢ {w)iseven, the real
part of theintegrand isan odd function of the frequency, and gives zero. The integral of the
imaginary part of the integrand converges. . .

In what follows we shall sometimes find it convenient to use the notation

Velw) = nw) =1+ iy", (113.6)
with 1’ (w) and #"(w) respectively even and odd functions, and 7= —¢&"/le[t <0
Formula (113.5) can be rewritten in the explicitly real form :

© do
2 901" ()| 137
I'ﬂnn,—.v—, (@20 + 0% dg deo. , ( )
o0 .

The energy loss per unit path length is the work done by the force over that distance, .EEor
is just F; it is called the stopping power of the substance with Sm_.u.oﬂ to the particle.

According to the general rules of quantum mechanics, the Fourier component of the
field whose wave vector is k transmits to the §-electron released in ionization a momentum
fik. For sufficiently large ¢ (3 w,/r) we have k2 = g% +@?/v? & % so that the momentum
transferred is approximately fig. A given value of q corresponds to collisions .«S.E impact
parameter ~ 1/q. Hence the condition for the macroscopic treatment to be validis 1/g 3 a.
Accordingly, we take as the upper limit of integration a value qosuchthatwm,/v < g, < 1/a.
The quantity F(ge) is the energy loss of a fast particle with transfer of momentum not
exceeding fig, to the atomic electron.

Integrating with respect to g in (113.7), we obtain

N @<

v

2 | ol @inog &2
. ¢ "
This formula cannot be further transformed in a general manner, but it can be writtenina
more convenient form as follows. We first calculate the integral

Flgo) = doo. (1138)

© Jeor@de=—4i | (@ede.
0 -

To do so, we notice that, if the integration is taken in the complex w-plane ajonga contour
consisting of the real axis and a very large semicircle o in the upper half-plane, the integral is
zero, since the integrand has no poles in the upper half-plane. For large values of o, the
function &(w) is given by formula (78.1):

- 4me*N

mmncuﬂm. I.Eq

. , (1139)
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The .mnﬂ.nm_.mmon. along the large semicircle o can be carried out by using this formula,
the result ist ~ w .

.L.—, wh” () des .Iﬁ.l.
)

We define a imean frequency of the motion of the atomic electrons by

2ziNe? [d
B & 2 Netm, (113
m @ -
4 _

| o’ (w) log e dewo
login = rrlf

o
{ on” () doo
0
) o
s " .
Hmnnzmu%s_: {w)|log w deo. (113.
5
Then formula (113.8) can be written
Flgo) = (dnNe*/mv?) log (go /). (113.

The following remark should be made here. It might seem from the form of {1137
(113.11) that the main contribution to the ionization losses (113,12} comes frc
frequencies at which there is considerable absorption. This is not s0; these formulae m
contain a considerable contribution from ranges in which &” is smalt, The reason is that
such ranges the function &{tw) 2 &'{w) may pass through zero. It is seen from formu
(113.5) that the zeros of g(e} are poles of the integrand. In reality, of course, &”(w)is n
exdctly zero, and so the zeros of (w) are not on the real axis but just befow it. Hence, wh
the expression used for ¢ () is real and passes through zero, the contour must be indents
upwards at the pole of the integrand, and so a contribution to the integral occurs, F
example, if the function &(e) is given by (84.5), the contribution to the energy loss (113.1.
from the poles + e, (where &(w,) = O)is easily seen, by direct caleulation from (113.7), 1
be (4nNe*mv?a?) log (gov/m, ). ) :

In order to find the energy loss F (4,) with transfer of momentum not exceedir
some value fg, > hqg,, ‘we must “join” formula (113.12) to that given by the quantw
theory of collisions, corresponding to energy loss by collisions with single atoms, Th
can be done by using the fact that the ranges of applicability of the two formulae overla
As we know from the theory of collisions, the encrgy loss with transfer of momentem in

] of hdg i
range of hdq is dF = ﬁazm&\..‘:eﬁa.m\a. , (1£3.1:

and this formula is applicable (in the non-relativistic case) for any value of 4 3 wy/v whic,
is compatible with the laws of conservation of momentum and energy, provided that th

energy transferred is small compared with the initia] energy of the fast particle.t Th

T This is the same as (82.12); as it should be;:since,

1 -See QM, §149, The “effective retardation™
density of atoms. )

Formula (113.13) applies to collisions with free electrons. I
(g3 wo/v), however, extends. to values of ¢ for which the ai
condition for this is g » @y /vy, where v, is the order of magn|

8s [@| =0, |a] =+ | and N’ = —g”
used there differs from F by a factor N, = N/Z, the numbe

s range of applicability as hitherto determine
tomic electrons cannot be reparded as free. Th
itude of the velocity of the majority of the atomi

electrons; the energy #2q*/2m of the S-electron is then large compared with atomic encrgies.
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energy loss with alt values of g between g, and g, is accordingly (4zNe*/mv*}log (4,/40).
When this quantity is added to formula (113.12), g, is replaced cm g4y, 50 that

F(g,) = {4nNe*{mv*)log (/). . {113.14)

If a momentum fg, large compared with the atomic momenta is given to an atomic
electron, its energy is E, = hi%q,2/2m. Thus we can write’

F(E,) = (2nNe*/mv?) log (2mvo? E, /R @%), - (113.15)
Formulae (113.14) and {113.15) give the energy loss of a fast particle by ionization with-a

transfer of ‘energy not exceeding a value E, that is small compared with the original energy
of the particle, It must be emphasized that with this condition the formulae are equally

valid for fast electrons and fast heavy particles. Formula (113.15) differs from the formula .

derived from a microscopic discussion, neglecting interactions between atoms (QM,
(149.14)) only by the definition of the “ionization energy” I, which is here represented by
hép, The mean (with respect to the electrons)ionization energy of an atoin is usually almost
independent of its interaction with other atoms, being determined mainly by the electrons
of the inner shells, which are almost unaffected by that interaction. Moreover, this quantity
appears here only in a logarithm, and so the exact definition of it has even less effect on the
magnitude of the energy loss, . ,

In a collision between a heavy particle and an electron, even the maximum transferable
momentum fgy,,, is small compared with the momentum M of the particle. The changein
the energy of the heavy particle is therefore v - hg; equating this to the energy of the electron
gives 12 q*/2m = hy v < figo, whence figp,, = 2mp,and E ., '= 2mv*; Substituting for E,
in (113.15), we obtain as the total ionization energy loss by the fast particle :

4xNe*  2mp?
F o omg log S, (113.16)
mv

This differs from the wsual expression (M, (150.10)) only in-the definition of the
ionization energy hd. , )

We can see how fi@ defined by (113.11) becomes, in a rarefied medium, the meéan
ionization energy of a single atom given by QM, (149.11). To do so, we note'that in a
rarefied gas, which for simplicity we suppose to consist of uniform atoms, the permittivity
is € =1+4nNo(w), where N, is the number of atoms per unit volume, a(w) the
polarizability of one atom; here |e—-1/< 1. The imaginary part of n = 1/e is {x"|
= 4nN o' (w). The polarizability of the atom is given by QED, (85.13); separating the
imaginary part by means of QED (75.19), we have when w > 0

_ ’ "WﬂnZnM _&o=_pmﬁm_1_|.mo|.w~ev-

where E, and E, are the energies of the mmoE.a state .wza excited states of the atom.
Substitution of this expression in (113.11) and carrying out the integration, with N = N, Z,
gives the definition in QM, (149.11). : ,
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§114. Ionization losses by fast wwu:n_ﬁ,? matter: the relativistic case

At velocities comparable with that of mmur the effect of the ﬁo_m...u.umzoa._ of the mediu

on :ﬂﬁcwvim power with respect to a fast particie may become very important even
gases.

. .._.o derive the appropriate formulae, we use a method analogous to that used in §113, b
It 1s now necessary to begin from the complete Maxwell's equations. When extraneor

nrmn.m.am E.nn_.nmniSE_<oEEnnnnm_.ﬁ._na,mna_nx:.mmnqcmnnﬂgaﬁ.r density j.., the:
equations aref ' , N -

div H'= 0, curlE= — - ——
. & P - (114,
o 1 9E 4n ,
div EE I..N.—w.cnf, curl H= i + - Jex- (114.
In the present case the extrancous charge and current distribution are given by
Pox = €3 (r—vt), = evé(r—vi). " (114.:
We E:.on.:._nn scalar and vector potentials, with the usial definitions: '
o S V-2 S X
H = curl A, ==
. o plr grad ¢, (1144
so that equations (114.1) are satisfied identically. The additional condition
108 L
divA+-—C =
O pr (114,5

is imposed on the potentials A and &; thisisa generalization of the usual Lorentz condition

in En. theory of radiation, Then, substituting (114.4) in {114.2), we obtain the followiny
equations for the potentiais: :

i 3%A 4z .
D.»lnlu.%n Iﬁmﬂmc.l,_&_
. ¢ 29 (1146
mﬁmyﬁlnd %v",}aﬁmm?lﬁu. .

We nxvﬁa A and ¢ as Fourier space integrals. Taking the Fouri
cquations (114.8) e 2 ng the Fourier components of
; & 8%A,  dmev .
k >_n+nﬂ F) HIa:axElaq.E_

) mmu
m Axm ﬁr+ . mnﬂwrv = 4me exp (— itv - k),

¥ This effect was pointed out by E. Fermi (1940), wh
whose atoms are-regarded as harmonic oscillators,
1 We put p{w) = 1, since matter does not exhibi
wonization losses. ’

0 performed the caleulation for the particular case of a gas
The wnmnm& an_.a.m:n: given here is due to L. Landau,
magnetic _....322_2 at the frequencies important as regards
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Hence we see that Ay and ¢ depend on time through a factor exp ( — itv -k). We again put
@ =k-v =k, and obtain . . o
dme v

- —iewr
¢ ki —-wle(w)c? ¢

>r"

-kt ) .

_ 4ne 1
b= a ku|.€uh~n&\nn & o : "

The Fourier component of the electric field is
E, = ivA/c— ik, : _ (114.8)

From these formulae the force F = ¢E acting on the v.w_..noa is found in the same way as
in §113.% Using the same notation, we now have , : . S

.o (1 ey , B
; . m.mu w do A.eluul.mv E_Mn_m_ae B ..
F ._A : — (1149)

T 1 ¢ )
v o v (-5

As ¢ — oo this formula tends, of course, to (113.5), .

Let us first carry cut the integration with respect to frequency. In order to effect an
integration in the complex w-plane, we first ascertain the poles of the integrand in the
upper half-plane. The function e(w) has no singularity and no zero in this half-plane, and so
the required poles can only be the zeros of the expression -

& 1
o ?-&AN.

We shall show that, for any value of the positive real quantity ¢, this expression vanishes
* for only one value of w. .

" To prove this,f we use a theorem in the theory of functions of a complex variable: the

integral

1 [dffe) do
Ini ] do flo)—a’
p .

* taken along a closed contour C, is equal to the difference between the numbers of zeros and
poles of f (w)— a in the region bounded by C. Let
gew) 1
S{w) = o? mﬂnlﬂv_
a = g¢* be a positive real number, and € be a contour consisting of the real axis and
a very large semicircle (Fig. 61). The function f{w) has no pole in the upper half-plane

T The magnetic force ey X H/c is seen by symmétry to be zero, and in any caseds perpendicular to the velogity of
the particle and so does no work on it. - - ) ,
1 The fellowing argument is analegous to the proof (SP 1, §123) that & (w) has no zero in the upper haif-plane.

o - .. (114.10)
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c .
@

F1G. 61

‘oronthe real axist; the integral (114, 10) therefore gi
1 H . gives the number of zeros of the functi
S{w)~ain the upper half-plane, To caleulate its value, we write it as neen

1[4
i J7~a : (114.11)
p4
the integration being taken alon; !

. £ a contour C’ i the plane of the compl i
.ﬁ&uc_._ maps the contour n from the w-plane, For w = 0, /= 0.For vom_.mﬁwh_ﬂ MNHM WW..M
“H_Eﬂ w 0, and for negative Ew._ @, imf <0, At infinity f— ~@? [{1/v%} —(1/c%)1, and
uﬂn ore f goes _..oE.a m.a:.wn o.=o~o when w goes round the large semicircle, Hence ,hd see
MEMH the path of Eﬁm_.m.:.on < in the f~plane is of the kind shown schematically in Fig, 61.
b nwwn w _mrﬂnmm muw vw&:ﬁ_ as in Fig, 61, in going round C' the argument of the complex

change i i i i
ey ges by 2, and the integral (114.11) is equal to unity. This completes the
Furthermore, it is easy to see that this single root i

urthe s itis t of the equation f (w) — g2 = 01
the imaginary w-axis: for purely imaginary @ the functi i o ks
all values from 0 to o, including num. i noconf o) Hkee(o) i seal and takes

Let us now return to the integral with respect to w in (114.9):

. 1 1
imw-uvie

Ilfulf.,.l.
2 af £ 1
=i (5-3)

¥ For metals £(w} has a pele at @ = 0, but % always tends to zero with o,

u:ammnnnm?nnroﬁ. . ingy
. . m:EoElennwmbumv»ao i it
2, ie. the function f (@) + @] has two zeros mm Enu..cuwnw wwp___.._.mvﬂu:.wa g0 thattheintegral (1141 Disequalto
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This can be written as the difference between the integral along the contour € and that integral is
along thelarge semicircle. Thelatter is | d w/e = ix, and the former is 2ni times the residue E: ]
of the integrand at its only pole. Let (g) be the function defined by the equation - % [n(ier")~1]e" dav".
28 1 2 (114.12) ¢
C\lz-—z/=7 The values of the function #{w) on the imaginary axis can be expressed in terms of
: ‘imaginary part on the real axis -
Then, since the residue of an expression f(z)/¢(z} at a pole z = z; is f (zo)/d'(2y), the o)1 = 2T o) N
integral along C is . . : . : n i Ere
1 1 1 1 0 -
L e e NFE F (cf. {82.15)). Hence the integral is (if we neglect x in comparison with ugqy)
e® ¢ = 2mi . ¢
2mi d uhm hVH' T lﬂﬁu\nme . MSEav. _:.Au_ 4 g HB 1 2.2
= —— | == : xly" (x) o' dew'* dx . Vi qoy
S de | \Z W _ m% Tron =5 | *ln E:omanw%&.
.. ) e [ ' [
ing these expressions and substituting in (114.9), we have. :
Coltecting P We substitute this result in (1 14.14), and for simplicity put
1 1
% | o pibe g log Q = flog (0*+ &7, (114.1:
F=¢ +1} 9% g where the bar denotes an averaging with weight w@in"(w)l, as in (113.11), Then
gdg/dw 3 g
] . 4 4 v
: _4nNe vdyy 2nNeg e 2
or, replacing the integration with respect to g in the first term by one with respect to o, ; Flao) = ma? 108~ mer t3;7 y? & (d1a.te
wlgg) Two cases must be considered in the further examination of this formula. Let us firs
Foe? 1 = iw @ de+4 % g, suppose that the medivm is a diclectric, and that the velocity of the particle satisfies th
v'elw) ¢ , condition . PR -
©0) ; bT <t e, (114.17
, ©0 g . ~ Where g, = (0} is the electrostatic value of the permittivity, On the imaginary axis th
. - ml.,, — 1 |wdw+ie gy’ function z{w) decreases monotonically from ¢, > 1 for w =0 to 1 for & = ico, Th
v - &(w) ’ expression on the left-hand side of equation (114.12) therefore increases monotonicallr
@ from{to co,and for g = 0 (114,12) givesw == 0. Thus we must putf = 0in (114.16); then
i 1 Wu (2 (go) —o* (0) ). {114.13) becomes the mean atomic frequency @ (113.11), and
L ET
. . ; 4nNe* v,y ° .
Large values of g correspond to large absolute values w of the root of equation (114.12). Flgy) = ke lo ﬂc —oz | (114.18
i he expression (113.9) for e(w), we find : .
Using therefore the exp (1139) 4 Ne2 For v < c this formula becomes (113.12), as it should.
0 (o) = — 1?77 mou+1mi..mi \ The value of g, is such that 4o < l/a, where a is the order of magnitude of the
: me , interatomic distances (in solids and liquids equal to the dimension of the atoms). In order
= —v*/c*]. Substitution in (114.13) gives toextend the formula to higher values of the transferred momentum and energy, it must be
where we have put y = 1/ x\ {1 ~v*/e*] Su “joined” to the formulae of the ordinary theory of collisions, as in §113, but the joining
, vy JmNet & ’ must now be carried out in two stages, First, using formula (1 13.13), we enter the range of g
F=f FI~ en_8r|~|m — ?{(0); (114.14) . corresponding to energy transfers large compared with atomic energies but not yet
v? &{w) me vy . telativistic. Formula (114.18) is unchanged in form, but may now involve the d-electron
o(0)

— # energy A% q,%/2m, Calling this E,, we have
_ in the integral, only the leading term ivg,y need be retained in w (g,).

| i ; 4 25 o2
The integration in (114.14) is over purely imaginary values of w. We use the real <mnm_u_n - 2aNe 2mPEp?  p?
w” = @f, with the lower limit £ = w.(0)/i, and-again put 1/e = # (113.6). The required

F{E) = | o8 Wer A {114.19)

i ECHN
i
]
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We can now go on to the relativistic values of E, by using a formula of relativistic oo_mmmow
theory, according to which the stopping power with energy transfer between E' an

E +dE'is (27 Ne*/mot)dE'[E' C{114.20)

if E' is small compared with the maximum transfer E, ,,, compatible s&: the laws of
conservation of momentum and energy for a collision between :ﬁ.mmmﬂ ummﬁ.mum concerned
and a free electron.t Since the integration of (114.20) gives a term in log F', it is clear that
formula (114.19) is unchanged in form, and it is therefore valid for all E, € E Lmax
In the retardation of a fast heavy particle (with mass M ® m and energy £ which,
though refativistic, is such that E <€ M2 ¢?/m), the maximum energy transfer to an electron
18 B} ax = 2 mp*y? and is still small in comparison with E (see QED, Am.u.uu:. For such
nm:mw_nm the differential expression for the energy lost to free electrons is
2aNe* /1 1 ,
©, ——|=—-—==dE
Comt \E' 2me®y? .
for all E'; see QED, (82.24). The encrgy loss additional to {114.19), with energy transfer
from E, to E| ., (with E, € E; 5,,) is then i

2n Ne* Eimax _ Eypax ) _ 2nNet

mo? _Om .mm Nu.:nu. u_u Ecp .m..u [4

2.2 2
Jog 2MY “Zh aan

Adding this to (114.19), so, find the total stopping power with respect to the heavy particle:

. 2,2 2
".fﬂz“&& _Wm 2mp ¥ .lcl ) A_.._.#Nww

F my Ad ¢

Formula {114.22) differs from that of the usual theory only in that the “ionization energy”
is Ad; cf. QED, (82.26).
Let us now turn to the second case, namely that where

0 > o/e,, (114.23)

which, in particolar, always holds for metals, where ¢(0) = co. The -expression
o* {e/c?— 1/v?) on the left-hand side of equation (114.12). then rmm two zeros on the
imaginary w-axis, one at @ = ¢ and the other at w = i£, where & is defined by

& (i8) = e/, (114.24)

In the range from O to i the expression w? (e/c? — 1/v%)is negative, and for |w| > & it takes
alt positive values from 0 to o0 As g — 0, therefore, the root of equation (114.12) in this case
tends to &, which is the value to be substituted in (114.15) and (114.16). i .

Two limiting cases may be considered. If ¢ is small compared with the atomic frequencies
t, then the last term in (114.16) may be neglected, and Q = @. \_..__.:.E we EE.E to formula
(114.18). The opposite limiting case, where & » w,, is of particular interest. Since, for large
¢, the function e(i¢} tends to 1, it is evident from (114.24) that this case correspends to ultra-
relativistic velocities of the particle. Using formula (113.9) for e{w), we can write from
cquation (H14.24) &2 = 4g Ne? v? y*/mc* = dnNe?y? /m.

T See QED, (81.15) and (82.24). The stopping power F is obtained on multiplying these expressions for the
cross-section by the energy loss mA and by N,
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As the velocity of the particle iricreases, the condition & » wyis ultimately fulfilled in any
medium, i.e. whatever the electron: density N (even in a gas). The velocity required is,
however, the preater, the smaller N, ie. the more rarefied the medium.

From (114.15) we then have simply = €. Putting also v = ¢, we find that the last two
terms in (114.16) <ancel, leaving :

Flgo) = 2uNe*/mc?) log {mc? gy f4n Ne?).

Extending this formula, in the same manner as above, to farge values of the momentum and
energy transfer; we find the following expression for the energy loss of an ultra-relativistic
particle with an energy transfer not exceeding E; (< J oA ’

F(E)) = (2n Ne*/mc?) log (m2cE f2r Net B2, {114.25)

This result is considerably different from that obtained in the ordinary theory, which
neglects the polarization of the medium. According to that theory (see QED, §82), in the
ultra-relativistic range the stopping power F(E,) continues io increase (though only
logarithmically) with the energy of the particle:f
2n Zma_ 2me*y  E,

Ehu 0g I

The polarization of the medium results in a screening of the charge, and the increase in the
losses is thereby finally stopped; it tends to the constant value (independent of y) given by
formula (114.23), )

For heavy particles a formula can also be derived for the total stopping power with any
energy transfer upto Ey 4, (if the latter is small compared with the energy of the particle
itself}. Again using the expression (114.21), in which we can now put » = ¢, we find

F(E))= -2

4 3 4.2
F o 2ENe _om._,a|nieM
wNe? k

me?

We see that the total stopping power continues to increase with the velocity of the particle,
owing to close collisions with a large energy transfer, for which the polarization of the
medinm has no screening effect. This increase, however, is rather slower than that given by
the theory when the polarization is neglected. According to that theory,

47 Ne* 2me?y?
F= 5— | log L

me I

see QED, (82.28). The coefficient of the log y term here is twice that in (114.26).
It may also be noted that the presence of the electron density N in the argument of the

et (114.26)

-1}

“logarithm in formuiae (114.25) and (114.26) results in the following property of energy

losses of ultra-relativistic particles; when such a particle passes through layers of different
substances containing the same number of electrons per unit surface area, the losses are
smaller in media with larger N.

t This formula is obtained by adding QED (82.20) and (82.25), with E, for mAq,, in the latter, For a small
energy transfer E,, the formulae apply 1o both fast electrons and fast heavy particles,
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406 The Passage of Fast Particles Through Matter
§115. Cherenkov radiation

A charged particle moving in a transparent medium emits, in certain circumstances, an
unusual Wﬁa@om radiation, first observed by P. A, Cherenkov and S. L <_w<_wo.m %M
theoretically interpreted by I. E. Tamm and 1. M. Frank Sow.:. .Hﬁ must be emp! asize e
this radiation is entirely uorelated to the _unn_dmmﬁm._r_cb.m which is almost w_s.wwm emitte m..
a rapidly moving electron. The latter radiation is emitted E the moving .o_nn:.o.u _me
when it collides with atoms. The Cherenkov effect, wos_wf.ab Eﬁ.v?om. B.&mson Q.E.:o by
the medium under the action of the field of the vm.u:omo moving in it. The a_.wﬂ_Enson
between the two types of radiation appears with particular clarity E:a.:. n..:a partic % rﬂm %
very large mass; the bremsstrahlung disappears, but the Oraﬂnm.wof_ radiation is una ected.

"The wave number and frequency of an n_nnﬂo_dmmaa:n wave wqﬁnmmmﬂnar._ﬂ a
transparent medium are refated by k = nw/c, wheren = ,feis z.a. refractive anx,ﬁw _oﬁ r_m
real. We again suppose the medium isotropic and non-magnetic. Sw w.&&. mmnb_ﬂ at :um
frequency of the Fourier component of the field of a particle moving uniformly wn %
x-direction in a medium is related to the x-component of Em wave vector 3” @ = kp.
this component is a freely propagated wave, these two relations must be consistent. Since

i must have
k> kit mo_."osm that we »> o/ (@) . s

Thus radiation of frequency w occurs if the velocity of the particle exceeds the phase
i i i d.t .
velocity of waves of that frequency in the medium concerne . o
Let M. be the angle between the direction of motion of the particle and the direction of
emission. We have k, = k cos 8 = (nw/c) cos 8 and, since k, = w/v, we m:._a that

cos B = ¢/nv. (115.2)

Thus a definite value of the angle § corresponds to Hm&mmoﬁ om. a given frequency. That is,
the radiation of each frequency is emitted forwards, and is a_.u:_._uﬁmm over the mE,.mmn.o ow 2
cone with vertical angle 28, where 8 is given by (1 G..B. The distributions of the radiation in
angle and in frequency are thus related in a definite manner. .

The emission of electromagnetic waves, if it occurs, involves a loss of energy by the

moving particle. This loss forms part, though a small part, o.w the total losses Rm.a:ﬁ&. in
n:PS,rmEmamm:mEsummmmoﬂEoEamn_Eﬁ.&u.:nE_wmmnmnﬁn"n:.:Hou_umcon
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losses” is not quite accurate. We shall now find the aoqamvmu&um part of the total losses,
and thus determine the intensity of the Cherenkov E&&Eﬂ. )
According to (114.9), the energy loss in the frequency interval de is

4 ie? L1 gdg
dF = - O LG TR a_af8_1
9" —w R

where the summation is over terms with w = +]w|. We introduce as a new variable

g 1
mﬂ%lep l|lpv.

e? v

T The problem of radiatien from an ¢lectron moving uniformly in a vacuum at a velocity v > ¢ was discussed
by A. Sommerfeld (1904) before the theory of relativity became known.

§115 , Cherenkov radiation 4
Then
ie? 1 1 de
F=-do—Yaol5-— )%

d QE 2 o c? et I3
In muﬁ.mam:.:m along the real £-axis we must pass round the singular point & = 0 (for whic
9* +k,* = k*)in some manner; which is determined by the fact that, although we suppo:
e(w) real (the medinm being transparent), it actually has a small imaginary part, which
positive for @ >0 and negative for w < 0. Accordingly, ¢ has a smali negative or positiy
imaginary part, and the path of integration ought to pass below or above the real ax
respectively: This means that, when the path of integration is displaced to the real axis, w
must pass below or above the singular point respectively, This gives a contribution to dJ

and the real parts cancel in the sum. Indenting the path of integration with infinitesim:
semicircles, we find :

Lo [de/e = w{ fdg/E—{de/e} = 2ino.
Thus the final formula is v "

2 nm

.m
which gives the intensity of the radiation in a frequency interval de, According to (115,2)
this radiation is emitted in an angle interval,

c dn
%!_SN &smmﬁwae. (1154

The total intensity of the radiation is obtained by integrating (115.3) over all frequencies
for which the medium is transparent.

‘It is easy to determine the polarization of the Cherenkov radiation. As we see from
(114.7) the vector potential of the radiation field is paralle] to the velocity v. The magnetic
field H, = ik x A, is therefore perpendicular to the plane containing v and the ray

direction k. The electric field (in the “wave region”) is perpendicular to the magnetic field,
and therefore lies in that plane. . ,.

PROBLEM

Find the cone of Cherenkov radiation wave vectors for & particle moving uniformiy in a uniaxial non-magnetic
crystal: (a) along the optical axis, (b} at tight angles to the optical axis (V. L. Ginzburg, 1940).

SOLUTION. {2} When achargemovesina uniaxial erystal, the Cherenkov radiation is in general on two cones
carresponding to the ordinary and extraordinary waves. In motion along the optical axis, however, the ordinary
i itted, even though a condition such as {115.1) may be satisfied: this wave always has linear
Ppolarization with the vector E perpendicular to the principal cross-section (that is, the plane through the optical
axis—which we take as the z-axis—and the direction of any given k), and the emission of such a wave in the case
concerned is evidently impossible, since the work €E v =0 and the particle does not lose energy. The
extraordinary radiation cone is found by substituting in (98.5) the value of # from (115.2), which is valid evea if the
medium is not isctropic; in the present case, theangle 8 between k and vis the sameas the angle between k and the
optical axis. The result is
an’8 = (z,/e;) (v%, fc? — 1),
and we must have p > n\z\ £, This is a circular cone on which the intensit
generators (as is in any case obvious fro
fan & = (g, /z;) tan 4,

y distribution is uniform over the
m symmetry). The vertical angle 28 of the ray vector cone is related tofby




