
Physics 216. Quantum Mechanics. Professor Dine

Spring, 2004. Homework Set 4. Due Tues., May 18.

Radiation Theory (Also a Handout!)

Make sure you read Shankar, p. 499-520.

Let’s remember the form of the lagrangian for the electromagnetic field. In a covariant form
(see Jackson) the action is:
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Exercise (1.):Verify the last two equalities, and check that for vanishing charges and currents, in
the gauge ~∇ · ~A = 0 that this gives the wave equation for ~A (you may set Ao = φ = 0). Determine
the canonical momentum, and show that the Hamiltonian is
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We want to show that this is a collection of harmonic oscillators. Consider the system in a
cubic box of volume V . We can Fourier-analyze the vector potential:

A =
∑
~k

1√
V

ei~k·~x ~A(~k, t) (3)

Substituting back in the lagrangian:
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Exercise (2). Verify this equation. Show that ~A(−~k) = ~A(~k)∗. Use this, and write ~A = ~A1 + i ~A2,
to reexpress the lagrangian as:
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Interpret this as a lagrangian for harmonic oscillators. In this form, are there restrictions on the
sum over ~k?

Exercise (3). What are the restrictions on the Ai(~k)’s? (remember the gauge condition). To
implement this restriction, write

Ai(~k) =
∑
λ

εi(k, λ)Qi(k, λ) (6)



with a suitable restriction on ~ε. For this part of the discussion, you may want to restrict ε to be
real.
Exercise (4): Now make the usual correspondence between harmonic oscillator coordinates and
momenta and raising and lowering (creation and annihilation) operators. Starting with the form
of the Hamiltonian in terms of such operators, show that the Hamiltonian for the electromagnetic
field can be written in the form:

H =
∑
~k,λ

ωk(a
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2
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Here there is no restriction on ~k (explain).

A more useful way to do this is to immediately expand ~A in terms of creation and annihilation
operators. We can think of ~A as a Heisenberg operator, and write the expansion in the form

~A(~x, t) =
∑
k

1√
V 2ωk

[ε(~k, λ)a(~k, λ)e−iωt+i~k·~x + ε∗(~k, λ)a†(~k, λ)eiωt−i~k·~x] (8)

We can plug this into our expression for the Hamiltonian, yielding, again:
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2
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We can interpret this by saying that the eigenvalues of the number operators, a†(~k, λ)a(~k, λ) are
the occupation numbers of the state (the number of photons of momentum ~k in the state). The
energy of the ground state is unobservable (except in the presence of gravity); it is known as the
zero point energy, and represents the fact that in quantum mechanics one can’t simply have a state
with ~A = ~E = 0.

Exercise 5: Do the same thing for the momentum of the electromagnetic field:

~P =

∫
d3x~E × ~B (10)

(Hint: it is important to use: ε(~k, λ) · ε(~k, λ′) = δλ,λ′). Also, at some stage, you may need to use∑~k = 0.)
Exercise 6: Show that, for the photoelectric effect, the cross section for a single photon to ionize
an atom is the same as that we found in the semiclassical approximation. You do not need to redo

the calculation we did there; just show that the formulas are the same.

Exercise 7: (This problem concerns molecular physics.) A model potential often used for
the internuclear potential of diatomic molecules is the Morse potential:

U(R) = Uo(e
−2(R−Ro)/a − 2e−(R−Ro)/a) (11)

Discuss plausible values for the parameters Ro and a. Describe the rotational and vibrational
spectra in terms of these parameters.
Exercise 8: Justify the use of the adiabatic approximation in molecular physics by estimating the
distance travelled by the nuclei of a molecule during a period of the electronic motion.


