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CHAPTER

14

THE THEORY
OF ALPHA
DECAY

14.1 ESCAPE OF AN ALPHA PARTICLE

The most characteristic feature of all radioactive decay processes is the exponential
law they follow: N, the number of atoms which have not decayed, decreases with
time according to

N =Ng,e ¥ (14.1)
In order to see what this law says about any one atom, diflerentiate it to find

dN .

= — N (14.2)

dt

so that the rate of decay each second is proportional to the number present. It
follows that 2 represents the probability that any given nucleus will decay in any
given unit interval of time. This constant probability, independent of the age of
the nucleus, was very hard to understand with the traditional concepts of physics,
and it is only with the insights of quantum mechanics that it seems natural.
This chapter will study the emission of alpha particles from a nucleus. The
situation here is different from that in beta or gamma decay, for example; those
particles do not exist in the nucleus but are formed at the moment of emission.
The material constituting the alpha particle, however, is a part of the nucleus, and
we are going to assume that because of the extraordinary stability of this
configuration (once formed, it takes 20.5 MeV to remove a neutron from an alpha
particle in isolation from other nuclear matter), the neutrons and protons inside
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APPLICATIONS

FIGURE 14-1
Qualitative behavior of the potential acting on an alpha particle inside and outside the nucleus,

a nucleus spend an appreciable fraction of their time all made up as alpha particles
and ready to be emitted. How they escape from the forces binding the nucleus
together was explained by Gamow! and others as an example of the quantum-
mechanical penetration of a potential barrier. That such a barrier exists can be
seen if one looks at it from either side: An alpha particle incident from outside
will be repelled by the coulomb field of the nucleus, and on the other hand it is
clear that a nucleus would disperse altogether under the influence of the coulomb
repulsion of its charges if it were not enclosed by the barrier of some stronger
force. The situation is therefore as shown in Fig. 14.1, where only the outer
extremity of the barrier can be drawn with certainty, since it is due to a coulomb
force (Z is the atomic number of the daughter nucleus). Because it is difficult to
be more detailed, we will assume only that a single alpha particle is always present
in the nucleus, and will calculate its probability of escape.

We are going to evaluate the wave function in the WKB approximation, but
this at once raises a difficulty, since the method as we have developed it starts
from the time-independent Schrodinger equation for a stationary state, whereas
here we are assuming that a bound alpha particle will ultimately leak away and
the wave function is therefore not a periodic function of the time. We can, however,
treat the problem approximately by making use of the fact that if the barrier is

nearly impenetrable, the wave function inside will be nearly that of the correspond-
ing stationary state. The situation is essentially three-dimensional, but by consider-
ing only spherically symmetrical wave functions, corresponding to the emission
of alpha particles with angular momentum equal to zero, we can do the computa-
tion in one dimension. Assume that y is a function of r:= (x2 + y2 + z2)1/ only,
and introduce for convenience a new variable u(r), defined by y(r) = u(r)/r. Then

_ldzu

Vi =~
v rdr?

! For Gamow's approach, which differs from the one used here, see Fermi (1950), chap. 3.

so that

If r 1s

In
somewl
{0 move
interact
place. 1

1

We hay
wave in

FIGURE
Sinplificd



THE THEORY OF ALPHA DECAY 447

so that Schrodinger’s equation becomes

d*u N 2m (E — VYJu =0
dr®  h’ =
if y is finite at the origin, then

u(0) =0 (14.3)

In order to avoid the worst computation difficulties, we shall assume a
somewhat simplified model due to Bethe, in which the alpha particle is assumed
(o move in a constant potential, which 1s the smoothed-out effect of all its nuclear
interactions, until it reaches the edge of the nucleus, where an abrupt rise takes
place. In the three regions of Fig. 14.2, the WKB approximation gives

1e nucleus.

u, = Asin Kr 0<r<R (14.4)

ha particles , , uy = Cx ' exp Q# J K dr> + Dic” Y exp <[ K dr) R <r<b (14.5)
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valid for the slowly varying coulomb potential. The second turning point j g
given by

2Z¢"?
b= 5 (14.7)

To join the wave functions at the nuclear radius, we have from the continuity
of u

Asin KR = (C + D)[k(R)] 2 (14.8)
and from that of u',
AK cos KR = (= C + D)[i(R)]"2 (14.9)

where in evaluating the derivative on the right we have included the rapid
dependence of u on r through the exponential and neglected its relatively slow
dependence through the amplitude. To match wave functions atr = h, write

N r

Uy = Ce ik " 2exp | — ( K dr) + De"n ™12 exp K dr (14.10)

Jbh Jb

where
b

K(r) dr . (14.11)

R

and comparison with (4.52b) and (14.6) then shows that
C=9%"4 D=19¢ 74 Gi== ofnit (14.12)

We shall see later that o is at least of the order of 10, so that D is much
smaller than C, as one would expect from (14.5). The alpha particle escapes only
after a very long time, and its wave function is therefore essentially that of a particle
In a stationary state, which would have D cqual to zero (Fig, 14.3),

FIGURE 14.3
Wave function for the simplified version. The amplitude of the outer wave is greatly exaggerated.
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ling point b i The probability per second of decay is denoted by 4 and is equal to

3 7 2
=l (14.13)
m
(14.7)
Problem 14.1. Derive the last formula.
the continuity
By (14.12); we have
(14.8) ) =dn —fie””[az (14.14)
m
and from (14.9), neglecting D,
(14.9)
e 2 o 14.15
ded the rapid L =4n nj?(Rj |[Al%e” 29 cos? KR (14.15)

relatively slow . -
= b, write This formula can be simplified if we assume that the alpha particle within
the nucleus is in the lowest quantum state. The nuclear barrier then reduces the

wave function almost to zero at the edge of the nucleus, and we have

1;-) (14.10)

2
KR ~n dnjd? = = (14.16)

R

(14.11) Problem 14.2. Justify (14.10).

Thus finally, in this approximation,
2n’h
14.12 =" -2
(1412 -3 I?1R3K(R)£

1at D is much
e escapes only
at of a particle

In order to gain some physical insight into this formula we can rewrite it
(using KR = 7) as
hK K
A=2 2o
mR k(R)
The quantity AK /m is the velocity vy, of the alpha particle within the nucleus, and
K/k(R) is in the general neighborhood of unity. Thus, roughly,
PSR (14.17)
R
which can be given a simple interpretation: The alpha particle oscillates around
in the nucleus, hitting the nuclear barrier about Uin/R times per second. At each
impact, there is a probability e~ 27 of penetrating the barrier, so that the probability
of penetration per second is approximately that given by 1. Because the €xXpo-
nential varies so rapidly, the ¢~ 2° contains most of the result and approximations
in the factor in front of it are unimportant.

! exaggerated Problem 14.3. Show that e 27 is in fac( the probability of penetrating the barrier.
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Problem 14.6. Extend the calculation by including the next terms of the €Xpansiong )
in (14.20). How does this affect the estimate for R? In deriving (14.17) it was assumed -
that k(R) = K. Recalculate (14.21) using the correct value for «(R). ‘

Problem 14.7. Assuming that nuclei of the same mass number have equal radii, fing

-the formula which compares log 1,,, for a pair of such nuclei as a function of their
different Z's and E’s. **°Ra emits a 4.78-MeV alpha with a half-life of 1622 y. What
is the half-lifc of the 6.33-MeV alpha from 22°Th? (The experimental value is 30.9
min.)

Problem [4.8. An alpha-active nucleus usually emits alphas of several different
energies. Show that, other things being equal, the ratio of the intensities at two
different energics E and [, is given by exp [~ 3.84Z(E[ ' — E; Y3)], and compare
this formula with experimental values found in the literature.

Although the approximations which we have made preclude any claim to
exactness, it is clear that they give insight that is better than qualitative. Historic-
ally this theory was the first successful application of quantum mechanics to a
nuclear problem, and it had special importance as a successful calculation of a
process that according to classical physics could not possibly happen. Many
modern devices, such as those involving the Josephson effects (Chap. 6), depend
on the tunneling of electrons through an oxide film.
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