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410 LECTURES ON QUANTUM MECHANICS

2. Verify explicitly that the wave function (18-68) is totally antisym-
metric.

3. Using Egs. (9-71) and (9-72), calculate explicitly the low-energy

" cross gection for elastic scattering of neutrons by (a) unpolarized
protons; (b) unpolarized neutrons.

4. Constrct the isotopic spin states of two pions. What is the sym-
metry-of the spatial wave function in each case?

Chapter 19
SECOND QUANTIZATION

When dealing with systems of just a few identical particles, it is
easy to construct explicitly symmetric or antisymmetric wave func-
tions. This can prove however to be a rather cumbersome task when
studying systems with enormous numbers of identical particles, such
as the electrons in a metal, or liquid He!. I would like therefore to
describe a very elegant way of accounting for the symmetry of the
states and the operators of systems of many identical particles, and
illustrate its use in a few simple calculations.

CREATION AND ANNIHILATION OPERATORS

In studying the harmonic oscillator we introduced operators a and
al that annihilated and created one quantum of excitation of the oscil-
lator. We can introduce similar operators in identical particle sys-
tems that remove particles from and add particles to the system.
The photon creation and annihilation operators that we studied in
Chapter 13 are examples of such operators. Suppose that we have
a potential well V(r) with single particle energy eigenstates, ¢,(),
@4(r), etc. Consider, for the moment the state of an n boson system
in which all n particles sit in the lowest level, ¢,(r), of the well.

Let us denote this state by [n). Since the particles are bosons n can
be any nonnegative integer. For completeness, let |0) denote the
state with no particles present.

We can now introduce operators a; and aOT defined formally by

an) = Vnn— 1)

afln)=vn+Tm+1), (19-1y
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“ These operators relate states of an n particle system with all par-
ticles in ¢, with those of ann =+ 1 particle system with all particles
in ¢;. a; may be thought of as a particle annihilation operator, —since
acting on a state with n particles in the single particle state, ¢, it
. producesithe state with only n — 1 particles in ¢. Similarly aOT is
a particlb creation operator; it adds a particle to the state ¢g.

The operators a; and a,T have properties identical to the harmonic

SECOND QUANTIZATION
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't put two fermions

and %T obey an anti-

oscillator operators. For example, & and aoT obey the commutation
relation since (19-8)
1 = (10_9)
lag,201] = 1, {19-2) (a3, T+ 2, T 11y = ©+1)11) = 1)
since acting on any state |n
g X ) (30507+a01'a0)I0) = (1+0)[0) = [0y
(agayt — ayTag) In) = (0 +1) = n]im).
Also
It follows immediately from (19-1) that we can write )
)1 a =0, (af=o0
iy = 2L o). (19-3) since (19-9)
\/1_’1-!— ’
l = _—
The state with n particles in the lowest level can be produced by 221) 20y =0
adding n particles, in ¢, to the nvacuum," |0). T
Also.a(;f is the Hermitian conjugate of ag. Note carefully that 2210} = a)Tj1) = 0,
when ay! acts to the left it removes a particle, since from (19-1),
The equation ay? = 0 says that it is
fr impossible to r re tw .
(nfaOT =vn (n-1l; (19-4) thzm the same state. As before, the operator Slme;e Pwofexmions
s . humber of particles in the state @y si “F Dy 0 measures
similarly a, acts as a creation operator to the left, = |1). o since ayTagl0) = 0 and aOTa()}l) _
Summing u
p then, f ; .
(nlay = vn+1 (n+1]. oson creation and anr?il;li(;;lv,-ei single particle level of the well, the
Ll on operators obe i
The operator Ny = a1a; measures the number ot particles in a Aions y the commutation re-
state; aglagin) = aginln — 1) = nln). Lot = 1
Suppose now that the particles are fermions, and that we only ’ (29, a9] = [%T, aoT] =
consider states |n) in which all the particles are in the lowest ile the fermion operators ob (19-10)
level of the well with spin up. The only such states are | 1), the obey the anticommutation relations
state with one particle, and [0), the state with no particles, since ao'i} =1, {30» ag} = {a,* T} ~0
we can't put two fermions in the same state. Againwecan introduc Let » 8 : (19-11)

creation and annihilation operators a,T and a, by the definitions

aloy =0, agl)=10)
ao'f‘l()>:‘l>, aoTll>: 0.

Explicitly, in the [0), |1) basis

S, consider the situation where we n
Upy two levels of the well, say ¢
:.?have Ny particles in the state <po
us denote this state by |n, n ) '
amihilation operators degljneld‘by

ow allow the particles to
and ¢, A many hoson state
and ny particles in the state @
Again we can introduce creatioll'l

g0, n1> = ‘/n_o]no— 1,n1>
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. aOT]no,n1> =Vny+1 [nyg+1,ny)
aqlng, ng) = \/afno,nl— 1)

a{”no,ni} =Vn; +1Ing,ng + 1), (19-12)
a destro&s a particle in the state ¢, aff creates a particle in the
state ¢y, etc. It is trivial to show that from (19-12) that

lag, 2071 =1, [a, 4] =1

and furthermore that the "0" operators commute with the " 1" opera-
tors

lag, 210 =0, [a7, a7 =0

lag,a;f1=0, 13t a]=0,

since for bosons it makes no difference in what order one performs
an operation such as adding a particle to one level and removing one
from the other level.

Again, all the states lno, ny) can be constructed from the "vacuum®
[0, 0 by acting with a,T and a," repeatedly:

Ty 1o
fngymg) = B L) g 0y (19-13)
Vo V!

The operator agfa; is the operator for the number of particles in the
state ¢; and a{fa; measures the number of particles in the state ¢y.
Then

N = aytay+aTa | (19-14)
is the total number operator:
Nlnl, ny) = (ng+1n,) Ing, ng) . (19-15)

For fermions occupying the two levels ¢, and ¢; (again with their
spins up, say) there are four possible states [no, ng:

[0,0), [0,1), 11,0), [1,1).

We first introduce the creation and annihilation operators a1T and ay
defined by the operations

a;710,0) = 10,1y,  a;T[1,0y=1]1,1)

al10,1y = a; T, 1) =0 (19-16)
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a710,0) = a41,0) = 0
agl0,1) = 10,0),  al1,1y=[1,0). (19-17)

These operators create or destroy particles with the single particle
wave function ¢;. We also define the action of the creation and anni-
hilation operators a; and aOT on the states with no particles in the
state ¢ by

afl0,0)= 11,00, zTl1,00=0

al1,0)=10,0),  20,0)=0. (19-18)

Now we must take some care in defining how a, and aOT act on the
states [0, 1) and |1, 1) which already have a particle in ¢;. The rea-
son is that we want to build into the operator language the concept
that if we interchange two fermions in a state, the state changes sign.
How do we use the a's and al's to interchange the two particles in the
state [1, 1)? First we remove one from the state ¢;, using a:

1,1) = 11,0) = 1, 1),

then transfer the remaining particle from ¢, to ¢ by applying a, fol-
lowed by aff:

[1,0)—~10,1)= a;Tasl1,0),

and then put the leftover particle back into ¢; by using aOT. This gives
a state

agTayTagay1,1) = a5 Tl 0, 1)

which we want to have opposite sign from the original state. Thus we
must require

3 710,1y=~1]1,1), (19-19)

in order that we get properly antisymmetrized states.
To complete the definition of a; and aoT we write

aTI1,1y = 0 = a0, 1) (19-20)
and
al1,1y = —10,1). (19-21)

This latter equation, which is necessary for a, to be the Hermitian
conjugate of aﬂT, simply says that a; undoes the operation of aoT.
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It is trivial to show from the definitions (19-16)- (19-21) that the (1) (aH™ (g H™ 1926
c’reation and annihilation operators obey the anticommutation rela- Ing,ng,my, ...0="*" o) v i [ (19-26)
tions
a %T}; . where |0) is short for [0, 0, 0,...), the vacuum.
T 5 The photon annihilation and creation operators that we introduced
{ay,a T} z 1 in studying the interaction of radiation with matter are just like the
oo little a's except for trivial numerical factors,

{ay, 2} = {ag, a4} = 0 For fermions

1 n n
e e e e L Ing, g, g, 2= o e (3 ) 2T (2 T o) (19-27)
1&g/, aiy —{agi,agip — 0, \15-22)
and the operators obey anticommutation relations

and furthermore the "0" operators anticommute with the " 1" opera-
tors: {ai, ajT} = bjj

{ag, a0} = {a, T, 4T =0 {aj, aj} = 0 = {a;7, 3T} (19-28)
In either case, the number of particles in the single particle state

{2y, 21T} = {a,T, as} = 0. (19-23)
i is measured by aiTa-, and

These anticommutation relations are a consequence of the antisym-
metry of fermion states under the interchange of two particles. The
states can all be constructed from the ground state by operating with

aOT and ai:

N=Y ajfa (19-29)
1

measures the total number of particles. For both fermions and
bosons

Ing, ny) = (24 H)™(a,H™]0, 0). (19-24)
ng, ny) = (a4 (a9 ) [3iTai’ ajTaj] = 0. (19-30)

Note that the aoT acts first. There are no factorials in (19-24) since
nl= 1forn= 0or 1.

It is completely straightforward to generalize the above to the
situation where we allow the particles to occupy the complete set of
states of the well, and to have all spin orientations. We specify the

As an example, let the complete set of states be plane waves in a
box, using periodic boundary conditions. Then the normalized wave
functions are of the form

possible states by stating how many particles n; there are in a given _ P T (19-31)
level of the well (and with a given spin orientation, if the particles qop(r) i
have spin). The states then look like Ino, ny, Ny, ...). We have a
creation and an annihilation operator, a;! and a;, for each different The p's are restricted to values
single particle state.
For bosons the aj and aiT obey the commutation relations Px = 217znx ) n,=0,+1, 2, ..., (19-32)
X
(a5 ajT] = 6jj etc. The creation operators ST adds a particle with momentum p
and spin orientation s to the box, while aps removes a particle with
[aj, a;] = 0 = (a;T, a 7). (19-25) momentum p and spin orientation s from the box.

The amplitude at the point ' for finding the particle added by a

We write the state |ng, ny,...) in terms of the aT's as apsT is just eiP'T'A'V. Now the operator
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’ —ip-r a3
psTr) = EL\/—VT_ ags (19-33)

adds a particle to the system in a superposition of momentt')m s‘tates
with amplitade e P YAV, therefore the amplitude at the point r for
finding the particle added by f#sT(r) is a coherent sum of a@plltudes
elP I/ /V with coefficients e"P'T/V/V. This net amplitude is thus

yellP Y T o, (19-34)
p W A

[This equation is nothing but the usual statement of Fourier series

f(r) :-1V E eip - fdgl'” e~ ip* r" f(r™
p

applied to the function f(r') = 6(r —r').] In other words, th?r Opel:i;or
¢ST(r) adds all the amplitude at point rg we can say that ¢ ¢l(r) adds
a particle at point * (with spin orientation s).

Similarly, the operator

eip-r

W

a (19-35)

P = 2 ps’
P
which is the Hermitian adjoint of LLST(r), removes a particle from the
point r. The ¥'s and ¢Trs are called field operators.
The commutation relations of the ¢'s and yT's are easy to com-

pute from those of the aps's and apST's. Since apgaprs! ¥ ap‘S‘?pstO
(the upper sign refers to bosons and the lower to fermions) we I1n

Ps(@Pgr(r) F g (THPg(r) = 0, (19-36)

and similarly

vt T rog Taenp T = 0. (19-37)

For bosons, adding a particle at r is an operation that‘commutes
with adding a particle at r'; for fermions these operations commute

except for a change of sign of the state. Finally

. e
elp Te—ip'-T

\ . foat
bs@pgr Tz TxNpg(r) = D = (aps@prs' ¥ dp's aps)
pp'
ip:re—ip' -2’ ,
=3 312——‘3\—,—9—— bppOss’ = 5= T)0ss",

1

pp
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so that
bs@is T F ve Trvg(r) = 60— 1)64g. (19-38)

Adding particles commutes (or anticommutes) with removing parti-
cles, unless one happens to do the adding and removing at the same
point. Then, for example, if there are no particles at r, ¢ST(r)¢s (r)
gives zero = one can't remove a particle if there are none — while
dg(r) g T(r) won't be zero since the z[sT(r) adds a particle for the dg(r)
to remove.

m ot
LIe sStdale

Lt
T Al AL STA) 1939,

(let's suppress the spin indices for simplicity) is the state of n parti-
cles with one at r,, one at ry, etc. These states form a very conveni-
ent basis for systems of many identical particles since as a conse-
quence of the commutation relations of the zﬁ's, (19-39) has the prop-
er symmetry under interchanges of the ri. For example, for fermions
’I‘Q,I'],I‘;;, ceey rn> == h‘i, o, Ts, .. R rn>

since

¥ e Ty = —yTepetm).

Furthermore

sT@)lry, ..., r) = Vo+liry, ..., 0y, 1) (19-40)
so that adding a particle by using a creation operator automatically
produces a correctly symmetrized state. This property is really the

great advantage of the creation and annihilation operators.
If we acton{ry, ..., ry) with ¢(r) we get

1
By, ..., ) = = @t -9t o)

1
= -t =Tyt ey - 9T lo).

If we continue to commute the ¥(r) with the zﬁ's to its right until it
reaches the |0), (and ¢|0) = 0) we find
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D)lr r) = — (6= Ty, .., Py
15 =+« Ipn \/?l. n s y 41
+6(r—rp—yg)lry, ..., Ppop, 1) (19-41)

e EDT 5@ - v, ..., )]

Thus removing aparticle atr canworkonly ifr = ry,orry = rp_y, . . .,
or r = ry. What remains is the correctly symmetrized combination
of n — 1 particle states. .

It is very important to notice that ¥ adds a particle only when it
acts to the right. Acting to the left it removes a particle, and ¥ act-
ing to the left adds a particle. For example, the state (ry, ..., r,/,
which is the row vector conjugate to the state ]ri. .. rn), is

(ry...tpl = @) - 9T @ l0)1TART = COliry -+ -9 (e i

since (¢Tx)]T= ¢ (r). Thus one builds up the state 1€ TRE rnl by
acting to the left on (0| with ¢'s. Note also that the order of the §'s
in {r;...rpl is reversed from that of the #T's in Irg, ... Ty
By similar repeated commutations one can calculate the normali-
zation condition on the |ry, ..., ) basis states:
(ry', oo, oy, ool )
(19-42)
Snn' N
= 20D ¢ 1P Po(ry - 16— o) -+ Slry— T
n! 5
where the sum is over all permutations of the coordinatesr{,...,r."

and (+ l)P = 1 for bosons and equals the sign of the permutation for
fermijons. n' must equal n since states with different numbers of
particles are orthogonal.

Let us now construct the n particle state {®) in which the particles

have a wave function ¢(ry, ..., r). This state is simply the coherent
sum of localized states [ry, ..., 1) with relative phases ¢(ry, ..., r)).
Thus

[@) = [dry...d% o(ry, ..., vp)lry, ..., Tp). (19-43)
The state | ®)is correctly symmetrized, even if the wave function
@(ry, ..., ry) used to construct |®)isn't symmetrized. In fact, we
may ask for the amplitude for observing particles at ry', ..., r,'if

they are in the state {®). This amplitude is
(ry', ...,y @)

_ 3 e 3l
= [dr1- o0 SRIt STRNPINNE MYLG SRS U5 ST Sl
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and from (19-42) we then find
' ey = > 2P
(ry', o' =5 2 DP Pory, ..., ). (19-44)
n! 5

Thus the "true" wave function of the state, {rf,..., 1y ®). is always
properly symmetrized. If ¢ is already properly symmetrized, then
all n! terms on the right side of (19-44) are equal and

(r', 1) = oy, L, ).

The state |®) is normalized to one if (ry, .. .) is symmetrized
and is itself normalized to one. To see this we write

(®]d) = fd3r1"'d3rn @*(ry, ov., Ty

'

><<I‘1, ey rn[fd3r1"--d3rn'fr1', ...,rn'><p(r1', vy I‘n)

:fd3r1 s d3rnd3r1' s d3rn' @*(ry, ..., Tp)

« @, L, Ty % % EDPPoy—1y) - 8(ry— 1)
=/d3r1 e drpler, L, rg P =1 (19-45)
Since (ry, ..., rnl<b> is always the amplitude for observing parti-
cles at ry, ..., 1, we can always write | &), (Eq. 19-43), as
18) = [&ry - dPrplry, oo, rp) (o, Ll vyl (19-46)

In other words, the operator

1, = fd3r1 .. -d3rnlr1, ey rn><r1, ey I‘nf (19-47)

is the unit operator when operating on properly symmetrized n
particle states. If |®) is an n particle state then

1,:1®) = 6ppr @) (19-48)

Thus

1= 3 1,=[o)0l+ % 1, (19-49)
n=y0 n=1
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s the unit operator when acting on properly symmetrized states of
any number of particles.

SECOND Q;‘UANTIZED OPERATORS

Let us how learn how to write operators for physical observables
in this formalism. As a first example, let us show that
pr) = T (19-50)
is the operator for the density of particles at r. To see this we
write the matrix element (&'p(r)] ®) of p(r) between two n particle
states in terms of the wave functions of the states:

(@' p)|e) = (& T le) = (& pTr 1y )
=@ @1, |e)

since ¢ acting on an n particle state leaves ann — 1 particle state.
Then using (19-46) and (19-40) we have

(@ lom)]@) = [ dry- - drp (@ W@ e 0 (rp e Tneslp ) 12)

=n[dr - cdPrp_g (@'ry, oo, Tnog, T (T, - rn_l,r’@.

Because the wave functions (ry, .. ., rnlti>> and{ry, ..., ryl®") are sym-
metrized (or antisymmetrized), this equation is equivalent to

(&' p(r)|®)
. ( (19-51)
= ]dgrl .. .d‘;rn<q)v[r1. . .rn> z 6(1‘_ rl)<r1 P .rn!¢>,
i

which is nothing but the matrix element of the operator E o(r —rj), our

old form for the density operator, between the wave1 functions
(ri...ry|®) and(ry...ry/®). Thus the operator i) ¢(r) has the
same matrix elements as the usual density operator and therefore
it is the representation of the density operator in terms of the field
operators.

We can think of ﬂ (r)y (r) as examining the density of particles at
r by trying to remove a partlcle from r and then putting it back. If
the particles have spin, then ¢s (r)¥g(r) is the operator for the den-
sity of particles at r with spin orientation s. The total density is
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(r) = > vsTr)yg(m),
. (19-52)

and the operator for the total number of particles in the system is

N = [d p(r). (19-53)

Just as a check, let us substitute for the Y's in terms of the a's.
Then (19-53) becomes

TS : _—
dpg 2 ap's (19-54)

- ip'—p)-r
=3 Y afeays o S2EE
s pp'

However the r integral vanishes unless p = p', when it is equal to
one. Thus (19-54) becomes

:?T,
e aps 4ps (19-55)

which is our previous result.

The operator for the kinetic energy of the particles is most easily
written down directly in terms of the ap and apT operators. To
measure the kinetic energy of a system we count the number of par-

ticles of momentum p, multiply it by p2/2m the kinetic energy of a
particle of momentum p, and then sum over ail p. But Ta_ is the

operator for the number of particles of momentum p, and therefore
the kinetic energy operator is

g
- Z 5m 4ps ps (19-56)

To express T in terms of the field operators we first invert (19-33)
and (19-35), finding

s = e &

¢ST(r)

cipe
s = d'r S (0. (19-57)

The first equation says that to add a particle with momentum p one
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adds a particle at different points r with relative amplitude elP'Y/ V.
"Substituting (19-57) into (19-53) gives

1 1 < : in . —ip-1'
T:% _‘; l ‘/dSI‘ dgr‘ (Velp I') . (V'e ip-Tr )wsj‘(r)d)s(rv),
+ P,S
where we have written pelPT o —iyelpT Integrating by parts and

doing the’sum over p then yields
T=— [d3r v Tir) - 7). (19-58)

Notice how this expression for the kinetic energy operator for a
many-particle  system looks, in form, exactly like the expression
(1/2m) [dr Vo*r) - Ve(r) we would write down for the expectation
value of the kinetic energy for a single particle in terms of its
wave function, ¢(r). Similarly the density operator z,LT(r)zp(r) looks
like the usual wave function expression for the probability density
¢©*r)¢(r) for finding a single particle with wave function ¢ at point
r. This formal similarity is the reason the creation and annihilation
operator formalism is called second quantization; one-particle wave
functions appear to have become operators which create and annihi-
late particles, while single particle expectation values appear to
have become operators for physical quantities. This is only an ap-
pearance though; we don't now have a super doubly quantized quantum
mechanics — only a new language for the old quantum mechanics.

We can use this similarity to write down other operators. For
example, the particle current density operator is

1 |
1@ = 5= i@ Ve - vyt e -y (19-59)

this is the same form as the probability current density for a single
particle we studied a long time ago. Also for spin 1/2 particles, the
operator for the density of spin at point r is

1 -
8(r) =5 > ZL‘ST(!')USS'@’JS'(I') (19-60)

where ¢ = (o, Oy, 0,) are the three Pauli spin matrices.

To develop some feeling for this new formalism, let us examine
some properties of a gas of noninteracting spin 1/2 fermions in their
ground state. The ground state |®,) is characterized by all the mo-
mentum states being filled up to some momentum p¢, the Fermi mo-
mentum. Then

e ————EEEA
q
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9

L Ipl=p
Pt = (olagy ap Iy) - ‘ " (19-61)
( 0, fpfipf

?}?d nﬁf = Dpy. The Fermi momentum is determined by the condition
at the total number of particles is given by

N= Z nps:2 E 1.
S,p .'pfspf

Converting the sum to an integral gives

(19-62)

b
3 3
N=2Vf dp _Pf .
SIS

Thus

3T°N
=2TN _ o,
Pt v 37°n, (19-63)

where n is the average particle density.

Next let us consider (P)) = Z(d,|y.t i
: = ol ¥ () s @)|®,) in th -
Pressing the ¥'s in terms of a's v&e findS sl Cgas. Bx

. —ip‘r ip'*r
(pm) =% e\e@ lat 2
spp’ v 0 pSapS’ v

T
(®olaps ap:s1@;) = Opp'ps>

(19-64)
whereupon
(p(r)) = Vi 2 hpg =
2 (19-65)
the density in the gas is uniform — a not too surprising result
A usefyl quantity to know, as we shall see, is -
Gs(r—1) = (& lys Tmpvs (e [6,) | (19-66)

the amplitude for removing aparticleatr' with Spin s from the ground
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/\v/\ - 11""1"
Fig. 19-1

. . VNN teracting soin Y fermions.
The one-particle density matrix G for noninteracting spin ¥z fermio

state and then returning to the ground state by replacing a particlg .
with spin s at point r. Writing the ¥'s in terms of the a's, and using

(19-64) we find

1 —ip-(r—1' (19-67)
Gglr-1') =7 D emip-(r r)nps.
p
Converting the sum to an integral we have
pf
dsp —in - — !
_p = el p-(r—r1r')
Gglr—1") 0/ (er)Se
Mo ' (19-68)
L —iplr—r' 19-68
:ﬁ/pzdp,[d“e ip K
0 -1

_sn

n sin X— X €CoS X
2

x3 ’

where x = pf[r —1r'| and we have used (19-63). This z}mplitude' is
shown as a function of |r —r'| in Fig. 19-1. le.zarly,Ator T =1, Gg
equals the density n/2, of particles with spin orientation s. For

small [r—1']

s

Gglr—1') =

[1_ (_pf_’fl_;i)z] (19-69)

Gg is called the one-particle density matrix.
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PAIR CORRELATION FUNCTIONS

In a gas of fermions there is a certain tendency for particles of
the same spin to avoid each other. This is a simple consequence of
the exclusion principle: two particles of the same spin can't be at the
same point in space, and therefore, the amplitude for their being
close together must be relatively small. Let us calculate the rela-
tive probability of finding a particle at r' if we know that there is one
at r. One way to formulate this problem is to remove (mathemati-
cally) a particle (with spin 8) at r frem the system, leaving belind
N — 1 particles in the state | & (T, s)) = ¥5(r)l®,), and then ask for the
density distribution of particles (with spin s') in this new state. This
density is

(®'(r,s) ’d)svT(rv)zps. (@)]e'(r,s)) = <¢OI¢ST(r)¢S' T(r')zpsv () (r) [8,)

= (2) o tx- 1. (oo

Another equivalent way of asking the same question is first to remove
a particle from r using yg(r) and then one from p' using Ycr(r'); the
relative amplitude for ending up in some N —2 particle state [<I>i") is
(<I>i"l Pgr(r") Yg (1)l ®,). If we sum over a complete set of N — 2 particle
states, we find that the total probability for removing the two parti-
cles is

2’(¢i",¢8' (r')z,bs(r) ,@0)‘2 = <q>0,z/)ST(r)¢S'T(rv) z'¢1"> <@inl¢s'(ry)¢s (r)’¢0>
i i
= (®oles Trug T g (g |@,) .

This is just the same result as (19-70).
To evaluate 8ggt (r — '), we expand the ¥'s in (19-67) in terms of
the a's; this gives

2 ) )
(%) Bss'(r—r') =§12‘ 2 e lp=p) T eilg-q) ey
pp'aq’
(19-71)
x<q)0,ags aésv aquv ap'S,¢0> .

Now the expectation value vanishes unless the particles we put back
have the same momentum and Spin as the particles we remove. Thus
if s = gt p' must equal p. @' must equal q, and
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“Bss) SiI}ce forq = p the.apS anticommutes with a ST and ags, While for
4= p, the expectation value vanishes. Plugging (19-74) into (19-71)
1 we find
(n\)2 ( ) ip-q)-(r-1)
Ky r-r')y="5 2 Az — . -
5) 8ss ) V2 s [1-¢ ]npans
+ -1
2 (19-75)
= '2 112
Fig. 19-2 ‘(2) ~{Gslr—1)F,
The nair correlation funetion, for parallel spin. for noninteracting spin ¥ fermions.

where Gg is given by (19-67) and (19-68). Thus

Bes(r—1") = 1—% (sin x - x cos x)?, (19-76)
(éo!ags aés' ags' aps|®o) = <<b°’ags dps ags' qs'0) = Ppsns - 19-72)
(1o-72 where x = Pt r —r'|. The function 8ss(r —1') is graphedinFig, 19-2.
We see that there is a substantial reduction in the probability for
finding two fermions of the same spin at distances ¢ pf_i. The ex-
clusion principle causes large correlations in the motion of particles
of the same spin. It is almost as if fermions of the same spin re-
pelled each other at short distances. This effective "repulsion”
arises just from the exchange symmetry of the wave function — not
from any real forces between the particles. At large separation,
gss approaches one, the same value as for opposite spins.

The function gggr (r — r') is called the pair correlation function.
If we use (19-75), (19-73), and (19-65), we can write our result for
this function as

Then (19-71) becomes

2 1 -
('22) gggr(r—1") :\7 l Npghgs! = NgNg:
‘ pq

or

gggtr —r') =1, fors = s'. (19-73)

This says that the relative probability for finding particles at r and
r' with different spin is independent of the distance [r — r'|; this is
the same as the result for a classical noninteracting gas. The ex-
clusion principle doesn't effect particles of opposite spin.

If the spins are the same, s = s', then there are two possibilities:
p=pP.q=qorp=4q',q=p'. [p' = q' then the expectation value

vanishes since apysz = 0.] Thus

(@olvsTmvg Ty g ey g ey
= <¢’0(¢ST(Y)¢s(r) @) (@, |Z/JSVT(I")Z,DSV (r)|®,) (19-77)
—(@olegT@gs () 120) (By g g Tx)wg(r) [8,) .

[This factorization of the pair correlation function depends only on
the wave function of the N-particle system being a Slater determi-
nant of single particle orbitals; for example, it is therefore valid for
a system of noninteracting fermions in any potential well.]

Let us now evaluate the pair correlation function for a system of
_ (5pp"5qq' _ 5pq'5qp‘)<@0,ags aps aés aqslq’0> 1 noninteracting spinless bosons in the state

<‘I’0’ags aés ag's aprsl®o) = 5pp“5QC1'<q’0fa£s azls ags aps|®0)

#6pqoqp' ¢ Polaps ads aps ags o)

= (Opp'Ogq ~ Opq'Oqp' ) pslgs - (19-74) )= Inpnp . (19-78)

The density in this state is
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<@l Epm (@) =5 ny=n. (19-79)
p

The calculation of the pair correlation function begins with

‘ Eq. (19—71), whose form is equally valid for bosons. The expecta-
tion value (CI’(apTa Taqu' 1| ®) is nonvanishing only if p = p', ¢ = q'
or p=q',q=p'. These are not distinct cases though if p= q. Thus
we have

= (11— il
(q»fap‘r aqT aq ap [®) = (1= 8p0) (6pp Sqqr (% lay aqT agapl®)
=(1- ‘Spq) (6pp16qu +6pq'6qp')npnq+6pq6pp'5qq'np(np_ ). (19-80)

Putting this into (19-71) we find

(@l TapEvmle)
- ip-(r— 12 - (19-81)
=nfe| LY npe P o -3 3 mplng ).
P p

This result differs from the fermion result in two respects: the
sign of the second term is positive (a consequence of the exchange
symmetry of boson wave functions), and the presence of the last
term, which arises because one can have many bosons in the same
state.

For example, if all the particles are in only one state p,, then
(19-81) becomes

1 —
2+n?~ {W N(N+1)J - DT (19-82)

n"+n V2

This says simply that the relative amplitude for removing the first
particle is N/V, while the amplitude for removing the second is
(N—1)/V, since there are only N — 1 particles left after removing
the first.
Consider next the case that Np is a smoothly varying distribution.
To be definite let us take
2
@ (p - po) /2, (19-83)

n, = ce
which essentially represents a beam of particles of momentum cen-
tered, with a Gaussian spread, about py. If we take the limit of
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g(r)

4

2

Fig. 19-3

The pair correlation function for noninteracting spin zero bosons.

large volume, keeping n fixed, then the last term in (19-81) is of the
order 1/V smaller than the first two terms, and we can drop it.
Converting the sums to integrals, (19-81) becomes

(@hTogtepevmle) = ner- )

5 (19-84)

2 —n2<1+e_<r— r')2/oz>

_ " d%p —ip-(r—1")
n°+ j—npe

2m)3

The e-(r-—r')z/(y term is the effect of exchange. We see that it in-
creases the probability for two bosons to be found at small separa-
tions. In fact, the probability for finding two bosons right on top of
each other, r = r', is twice the value for finding two at a large

Ir - r'f, as in Fig. 19-3,

THE HANBURY-BROWN AND TWISS EXPERIMENT

The Hanbury-Brown and Twiss experiment 1 provides a simple

way of observing this tendency of bosons to clump together. Ba-
sically, the experiment measures the probability of observing two
photons simultaneously at different points in a beam of incoherent
light (which as we've seen, can be described in terms of the occu-
pation numbers of the photon states). The actual measuring ap-
paratus uses a half silvered mirror, Fig. 19-4, to split the beam
into two identical beams; this avoids the problem of one detector

Wature 177,27 (1956); 178, 1447 (1956).
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Fig, 19-4

The half-silvered mirror and counters in the Hanbury-Brown and

Twiss experiment.

casting a shadow on the other. The amplitude for a photon to be
transmitted, or reflected by the mirror, is 1472, Hanbury-Brown
and Twiss measured the light intensities Iy(t) observed in detector

L at time t, and Iy(t + T) observed in detector 2 at a later time t + 71,
and averaged the product of the intensities over t, keeping 7 fixed.
This is equivalent to determining the relative probability of observ-
ing two photons at two points separated by a distance cT in the beam,
where c is the speed of light. The observed average correlated in-
tensities I;(t)I;(t+ 7), as a function of 7, turned out to have just the
form we derived for g(r), in Fig. 19-3, with 1 = o,

This experiment looks like a fine verification of the laws of quan-
tum mechanics for identical bosons. On the contrary, it can be un-
derstood completely in terms of classical electromagnetism. What
the experiment teaches us is that the boson nature of the photon is
already contained in the Superposition principle obeyed by classical
electromagnetic fields. To see this, let us suppose, as in Fig. 19-5,
that in the source of the beam there are just two emitters, A and B.
Assume that A emits coherent light with amplitude o and wave num-

Ty

T

I‘i’

rz'

Fig. 19-5
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ber k, B emits coherent light with amplitude 8 and wave number k',
that the relative phase of these two sources is random, and that the
light from each has the same polarization. The light from A falling

on detector 1 has amplitude welkT1 where ry is the distance to detec—
1l ! 1

tor 1 from A; the light from B on 1 has amplitude Belk 1 where r

is the distance from B to 1. Thus the total amplitude falling on 1,

according to the superposition principle, is

ikry +Beik'r1'

a; = e (19-85)
(times some polarization vector) while the intensity is

(1t 1
L= laf+]gf +2 Re axg! K1 —krp) (19-86)

If we average over the relative phase of o and B8 (equivalent to av-
eraging over t in the Hanbury-Brown and Twiss experiment) we find

I = Jaf?+ g2, (19-87)

Similarly the amplitude falling on the second counter is

ikr ik'ry!
2+Be 2

a=ae (19-88)

(times a polarization vector) where r, is the distance from A to 2
and ry' is the distance from B to 2. Thus

L=lalf+[glt+2 Re axg o (€' T2 ~ k1) (19-89)

and averaged,

L= lal+[gf, (19-90)

The product of the averaged intensities, 1,1, is independent of the
distance between detectors 1 and 2. However, the product of the in-
tensities is

L, = Jaga,|? = [azeik(r1+rz)+ﬁzeik' (ry' +1y')

(19-91)
+oz,8(elkr1 elk'rz' +elk' ry' elkI‘z) 2,

multiplying this out and averaging over the relative phase of o and
£ (which eliminates the terms proportional to aBlal?, aplgl?, etc.)
we find
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' i i1t ! 111 tog 2
E - IQ/!4+ [B’4+ ’alzfﬁ!zfelkrlelk Ty + elk Iy elkr2,

(19-92)
=Ll +2la P8P cos [k (v — 1) = k(rg - 19)].
- For a well collimated beam, ry— ry ® ry =1y so that (19-93) be-
comes -
TIZ-: f]fz +2 [OZ ,2’[3!2 CoS [(k' - k) (1"1— 1‘2)]. (19_93)

Thus we find a term in the correlated intensities that depends on the
relative separation of the two detectors; this term is maximum when
the two detectors are at the same point. Now finally we should av-
erage the result (19-93) over all the different k and k' present in the
beam. Then we find, for a Gaussian distribution, exactly the form
(19-84). The photon bunching effect is thus a consequence of the
superposition principle for light applied to noisy sources,?

From a quantum mechanical point of view we can interpret the
three terms on the right side (19-91) as follows. The «® term is the
amplitude for the two observed photons hoth to have come from A
this leads to the !al4 term in (19-92). The A% term is the amplitude
for them both to have come from B; this produces the [8]4 term in
(19-92). The «f term is the amplitude for one of the photons to have
come from A and the other from B. There are two ways for this to
occur ~ the photon from A can strike 1 while the photon from B
strikes 2, or vice versa. These two ways are indistinguishable, and
it is just the interference betwecen them that leads to the cos term
in (19-92),

Try to imagine the results of the Hanbury-Brown and Twiss ex-
periment if it were performed with a beam of electrons.

THE HAMILTONIAN

There is still one very important operator we have not yet learned
how to write in second quantized language — the Hamiltonian. If the
particles interact by means of a two-body potential v(r — r') then the
interaction energy operator is

(19-94)

7 = % N /"d3r ar vir- r')¢ST(r)¢'SvT(r')disv(r')ws(r)-
ss'

‘l‘)']‘his 15 discussed further by E. Purcell in Nature 178, 1 L4 (1956).
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Note carefully the order of the operators. The order is the same as
that used in (19-70) to determine the pair distribution function. It is
left as an exercise to verity (19-94) by writing out a matrix element
(<I>'I'V[<I>> of (19-94) in terms of the wave functions of the states. We
can interpret the potential energy operator (19-94) as first trying to
remove particles from r and r'; if it is successful it counts a vir — r')
and then replaces the particles, replacing the last removed particle
first. It then sums over all pairs of points r and r', whence the fac-
tor V,.

The second quantized Hamiltonian for particles of mass m acting
pairwise is, using (19-58), thus

= S [dr = vg T -
H g/d T 5= Vs (1) - Vyg(r)
(19-95)
+2i S [ d'rr v st @ Ty g g m.

ss'

Let us evaluate the ground state energy of a gas of spin 1/2 ferm-
ions, treating the interaction v as a perturbation. To lowest order
the energy is simply the kinetic energy,
pf

&p

9 2
3
E(O):Zzp—:g :EZP‘fN'

ps
The average kinetic energy per particle is 3/5 of the Fermi energy.

The first-order change E (M in the energy is simply the expectation
value of ¥ in the unperturbed ground state. Thus

1 -
EW =~ / &Fr &' vie— 1) l, (BolvsT g Teug (g4 2,

ss!
(19-97)

D N n\?
= 2/d r d°r' V(r—r')sz;'(?) gggr{r—1'),

where goor (r — ') is the pair correlation function. Using (19-73),
and (19-75), we find

E® =-21—/d3r r' vie- i - § Ggr— )2
s

The n? term gives Nnv,/2, where vy = Jaér v(r); it represents the

average interaction of a uniform density of particles with itself,

leaving out all correlation effects. This energy is called the direct,

or Hartree, energy. The second term, called the exchange energy,

(19-98)

-
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1 - N
Eex=—7 &' dr vir-1) S Gyr- 1V, (19-99)
S

is the correction to the direct energy due to exchange. It accounts

- for the fact that particles of the same spin tend to stay apart; for
this reason the effects of the short-ranged part of v(r — r') are over-
counted inithe direct energy and the exchange energy subtracts out
this overcounting, as well as the self-interactions included in the
direct term, From (19-68) we find that the exchange energy is given
by
Eex _ 9—n}{‘d3r (sin pgr — pgT cos pfr)2 .

() (19-100
v(r). (19-100

N 4 (pfr) 8

Thus to first order, the ground state energy per particle is

2
3 Pr nv, Eex
PO STl | R R oY -
Ey =% 5 Lt (19-101)

As an example, we consider a gas of electrons of average density
n interacting through a Coulomb interaction
o2
vir—r') = 7. (19~102)
v~z

The conduction electrons in a metal form such a gas. In any physi-
cal situation, one never has an isolated gas, but rather, there are
always enough positive charges present to make the overall system
electrically neutral. To a first approximation, in a metal or plasma,
one can replace the positive ions by a uniform background of posi-
tive charge of density +ne. The electrostatic self-energy of this
background, (V,)f @®r &' (e*n?/[r — ' l), plus the average electro-
static interaction between the positive background and the electrons,
—[ &% d%' '¥|r —r'|), exactly cancels the Hartree energy of the
electrons. [This cancellation is not accidental, the electrostatic en-
ergy of an overall neutral system can only be proportional to the
volume, in the limit of a large system — not to a higher power of

the volume.] Thus the net interaction energy of the electron gas, to
first order, is just the exchange energy:

o0
E 97ne’ dx ‘ 2
ex . 3
N T 2 / = (SN X~ X cos x)*= - p° . (19-103)

P 3

How valid is the perturbation expansion we have hegun? What is
small? The only dimensionless parameter (called rg) that one can
construct for the electron gas in its ground state is the ratio of the

(5
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average interparticle spacing, d, to the Bohr radius, a, = h?/me?.
Defining d by (47d®/3)n = 1, so that

_ (9 /4)Y3
d= e (19-104)
we have
_d or\ ¥? [me?
re=—=( — ). (19-105)
TN/ \ TRy

Expressed in terms of Ty, the energy per particle, (19-96) plus
(19-103), is

. (2:21 _0.916 e
T s 5o ) (19-106)

The first term is the kinetic energy and the second the exchange en-
ergy; e*/2a, is the Rydberg. (19-106) must be an upper bound to the
energy by the Rayleigh-Ritz variation principle, since it is the ex-
pectation value of H in the unperturbed ground state. This estimate
is valid for small rg, or dense gases.

In actual metals, 1.8 < rg £5.5. For rg =2.3, (19-106) is nega-
tive indicating, since it is an upper bound, that the system binds to-
gether. The exclusion principle plays an important role in this bind-
ing, keeping apart parallel spin particles, and thereby lowering their
electrostatic energy. Actually the energy should be still lower than
{19-106) due to the fact that even electrons of opposite spin tend to
stay apart, because of the repulsive Coulomb interactions. The exact

. . . 3
expansion of the energy in rg begins as

2
(S
- <2 21 _0.916 0 co0 1n rs_o,094+...> 5 (19-107)

rg - rg N
The difference between (19-107) and (19-106) is called the correla-
tion energy. The In rg means that the energy is not a simple analy-
tic function of rg. One can see, from the relative size of the terms
in (19-107), that this expansion of E in terms of rg is not valid for
metallic densities.

It is often useful to write the interaction energy operator in terms
of the ay operators. Writing the ¢'sinterms of the ap we find

3M. Gell-Mann and K. Brueckner. Phys. Rev. 106, 364 (1957).
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1 N p
Tegw 2 2"p'—p‘spﬂz,p'+q’*‘;'sag'S'%JS’aps (19-108)

pPp'qq’ ss'

where vy = Jd&3 e_lk'rv(r). One can think of the interaction opera-
tor written this way as a sum over scattering processes of the form
shown in Fig. 19-6. The momentum p+q of the scattering particles
is conserved and the amplitude for the scattering is Vp'-p-

Finally, let us consider briefly the second quantized operators in
the Heisenberg representation. Recall that in this representation the
equation of motion of any operator X(t) not dependent explicitly on
time is

X(t)

[ 9X(M) _ (19-109)
=37 = X, Hb)].

When H doesn't depend explicitly on time, (19-109) is equivalent to

iHt _ —iHt
X(t) = e Xe T
The commutation relations (19-36), (19-37), and (19-38) remain valid
as long as all the operators are at the same time. Then by simple
evaluation of commutators, one can verify that ws(rt) obeys the equa-
tion of motion, for H given by (19-95):

(19-110)

AU AR by [@r v e tepgt) .
ot 2m s’

(19-111)
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This equation has the same structure as the Schrédinger equation,
only the ¥'s are operators. The term in square brackets is roughly
the operator for the potential energy felt by a particle at r due to
the other particles. This term is an operator, and not a simple nu-
merical function because a particle in a many particle system con-
stantly affects the potential it feels from the other particles. As a
consequence, Eq. (19-111) is far more difficult to solve than a single
particle Schridinger equation, and one can usually only solve it ap-
proximately,

PROBLEMS

1. Construct explicit 4 X 4 matrices to represent the fermion cre-
ation and annihilation operators a), a,!, a;, and aiT for two levels.
Check the anticommutation relations.

2. (2) Calculate, to first order in the interparticle interaction, the
energy of an N + 1 particle system of spin 1/2 fermions with one
particle of momentum p outside an N-particle Fermi sea (quasi-
particle state). Repeat for the state of N— 1 particles with a
particle of momentum p removed from an N-particle Fermi sea
{hole state). Measure the energies from the N-particle ground
state energy.

(b) Evaluate the quasi-particle and hole energies for a Coulomb
interaction (remember the uniform positive background),

. Suppose that the wave function of an N-fermion system is a Slater
determinant of orthonormal functions ©i. Using the second quan-
tized formalism show that the pair correlation function of the
state factors as for plane waves, Eq. (19-77). [The operators
aj = [ &% i *(r)Ylr) play a useful role.]

. Two electrons are in plane wave states in a box. Calculate to
first order in the Coulomb interaction the energy ditference of
parallel and antiparalie] Spin alignments [exchange interaction].

[



