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Lorentz Transformation Properties of the Dirac

Field

First, rotations. In ordinary quantum mechanics,
Yol (1)

is a vector under rotations. How does this work?

Under infinitesimal rotations,
Y — (14 i’ S (2)

So
Yo'y — ylo'y + iw¢i[o’, olly (3)
_ (5ik o EUij)¢TUkw
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This is the transformation law for a vector. We seek an
analogous construction with v#.

First we rewrite the transformation law under rotations in a way
that is closer to the form in which we have written infinitesimal
Lorentz transformations. Replace w' by

wjj = E,jkwk (4)

(compare this with rewriting the magnetic field, B, as an
antisymmetric tensor; also useful in considering Lorentz
transformation properties, F;).

Similarly, J; = eiijk for the angular momentum operators
(generators of rotations).
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In terms of such tensors, the ordinary orbital angular
momentum operator is simply

L,'j = —i(X/aj — x,@,) (5)

and similarly for other angular momentum operators. The
angular momentum commutation relations are:

[Jijs Ja] = i(0ixjp — Girdjk — Sjxcdir + 6jpJi) ©

One can check these commutation relations for the L;’s, for
example. One can think of these as the defining relations of the
rotation group. E.g.

evidi (1 + iajLyj + i Syp). (7
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Group Theory of the Lorentz Group

Similarly, we can start with the transformation law for a scalar
under Lorentz transformations:

¢'(x) = o(A"'x) (®)
where A, ~ 1+ wy,,. In other words:
0p(X) = —w"x,0,¢(x) )
So we can define:
LM = i(x"9” — x" ") (10)

as the analog of the generators of orbital rotations; indeed, L7
are just the angular momentum operators. We can evaluate
their commutators, and abstract the basic commutation
relations for the generators of Lorentz transformations:

[JH JPT] — i(gVPIHT — ghP VT — gro JrP 4 gho Jve). (11)
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Representations of the Lorentz Group

We have the analog of orbital angular momentum. For ordinary
rotations, the spin one generator is (G); = —/eji, or in our
antisymmetric index notation:

(G = (0] — 00} (12)

The analog for the Lorentz group, corresponding to the
transformation law for vectors, V#, is

G, = i(o184 — 845%) (13)

You can check that this:

@ gives the correct infinitesimal transformation for a vector,
XH

© obeys the Lorentz group commutation relations.
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Lorentz generators in the spinor representation

Starting with:
{7} = 29" (14)
we construct the matrices, analogous to the spin-1/2 matrices:

i
S = 20" (15)

(for u,v =i, j it is easy to check that these are the spin
matrices).

These are readily seen to obey the Lie algebra of the Lorentz
group.
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Now, however, it is not 1)Ty#1) which transforms as a vector, but

PyHap, where

b =Ty (16)
To check this, we need certain properties of the v* matrices,
easily seen to be true in our representations:

Q () =" () =—
@ From which it follows that: ()t = 494#40.
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Let’s start, in fact, by checking that v is a scalar.

B = 611~ i 721 AR + s 7T (17)
= 1.
Now let’s do the vector:

; T 0
9799 = U1 = 1 1" DI (1 4 e g1 D

(18)
Using the commutation relations:

[V, 8] =Gio~" (19)
the right hand side of egn. 18 becomes
- i -
Yyt — Ewpa(gpo)zlﬁ/w . (20)
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Introducing also the matrix

7 = in0y 14243 (21)

which anti commutes with all of the other +’s, we can construct
the following bilinears in the fermion field which transform as
irreducible tensors:

@ Scalar: ¥y

@ Pseudoscalar: 95

@ Vector: Yyt

@ Pseudo vector: Yy

© Second rank tensor: ¢yot¥ep.

(You will get to familiarize yourselves with these objects for
homework; the "pseudo” character will be discussed shortly.)
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With these results, it is easy to construct a relatiavitsically
invariant lagrangian:

L = ipduy'p — minp = ip Jop — mipp. (22)
Euler-Lagrange equations (varying with respect to 1, ¢
independently:

i@y —mp=0 (23)

the Dirac equation.
We want to interpret now as quantum fields.

Physics 217 2013, Quantum Field Theory The Dirac Field



The canonical momentum is curious:

oY
With this we can construct the Hamiltonian; it is reminiscent of
Dirac’s original expression:

! (24)

H— / @XM = / Bxp (X) (=97 - ¥ + Bm)p(x).  (25)

We will take a step which we will see is necessary for a
sensible interpretation of the theory: we require

{(X, 1), (X', 1)} = id(X — X'). (26)

In order to develop a momentum space expansion of the
fermion fields, as we did for scalars, we first, we need more
control of the solutions of the free field equations in momentum
space (for the scalar, these were trivial).
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Momentum Space Spinors

In your text, various relations for spinors, including
orthogonality relations and spin sums, are worked out by
looking at explicit solutions. We can short circuit these
calculations in a variety of ways. Here is one:

Two things slightly different than your text:

@ Dirac matrices: It will be helpful to have an explicit
representation of the Dirac matrices, or more specifically of
Dirac’s matrices, somewhat different than the one in your

text: i o 0 2
0 _ - o
K _<o —1> 7_(—5 o> @7
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Quick calculation of spin sums, Normalizations,

etc.

We first consider the positive energy apinors, p° = \/p2 + m2.
If x is a constant spinor,

u(p) = N(p + m)x

solves the Dirac equation. Now take x to be a solution of the
Dirac equation with p = 0. We can work, for this discussion, in
any basis, so let’'s choose our original basis, where the p = 0
spinors are particularly simple, and take the two
linearly-independent spinors to be

o O =+ O

’
0l

X1 = 0 1 X2 =
0

Physics 217 2013, Quantum Field Theory The Dirac Field



Let’s first get the normalizations straight. We will require:

u(p)u(p) =2m

(note this is Lorentz invariant). With our solution the left hand
side is
N2XT (BT + m)yo(B+ m)x
= N2xTy°y°(B" + m)y° (B + m)x
= N?x"°(B + m)(B+ m)x
= N2x"2m(p + m)x

From the explicit form of the Dirac matrices and the x’s,
x' px = E. So
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With this we can do the spin sums. First note that for the x’s, looking
at their explicit form:

Zxx _(o 0) 5(1+7°).

So now

> ulp, s)u(p,s) =Y _ u(p, s)u'(p, s)°

S S

= NP5+ m)(1 1)+ M)y

= SNEB+ m)(1 #9797 (8 + )
= SN(B+ m)(1 +2°)(B + m)

— INP2(m + pf)(p+ m)
= (p+ m).

(in the next to last step, just multiply out the terms).
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Finally, we can compute the inner products:

u'(p, s)u(p, 8') = N2xH(p" + m)(p + m)x

= N2xT°(p + m)y°(p + m)x
= N2x"°(p? — m? +2p°(p + m)y°x
= 2E5$,S/
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Exercise:

Work out the corresponding relations for the negative energy
spinors, v(p, s), including the spin sums, normalization, and
orthogonality relations.

> Ua(p,8)Us(p, S) = (B+M)ag Y Va(P, S)Vs(P, S) = (B—M)as

ul(p, 8)Ua(p, §') = 2Epbss = VL (P, S)Va(p, S)

Uo(p; S)Ua(p; ') = 2Miss = Vo(p, S)Va(p, ')
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Anticommutation Relations and the Exclusion Principle

Now we want to write momentum space expansions of the
spinor fields, analogous to those for scalar fields. Suppose we
have operators a, a' which obey the anticommutation relations:

{a,a'} =1;{a,a} =0;{a’,a'} =0
Then construct the “number operator”
N=a'a
and the state |0) by the condition
al0y=20
(ais a destruction operator). Then

Na'|0) = a'aa'|0).
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Anticommutation Relations and the Exclusion Principle

Using the anticommutation relations to move a to the right,
= —a'a'al0) + a'|0).

In other words
Na'|0) = |0)

so a' creates a one particle state. But since (a")? = 0 (from the
anticommutation relations) there is no two particle state.
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Anticommutation Relations and the Exclusion Principle

So anticommutation relations of this kind build in the exclusion
principle; only the zero and one-particle states are allowed.
Consider, first, finite volume, as we did for the scalar field. The
field operator W(X, t) should satisfy the Dirac equation. So we
write

= 1 —ip-x 4 pt p-x\
o= 323 \/E(a(p,S)ua(p,S)e +b/(p. $)va(p. 5)€P*)

(28)
1 . .
(1;: aT ’ (1; , —/p-x+b 7 ;fé ’ ip-xy
¥ ES:Z,;\/E< (p.5)ul(p. s)e (p. $)Vi(p, 5)6P™)
(29)
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Anticommutation Relations and the Exclusion Principle

Taking
{a(ﬁa S)a aT (:5,7 S,)} = 633/5575’

satisfies the (anti) commutation relations above.
For the Hamiltonian we obtain (as we will see in a moment),

H = ZE )(@'(p. s)a(p. s) + b'(p, s)b(p, 5)) + oo

only because we assumed anti commutation relations. So we
see that we can have states with zero or one electron and zero
or one positron for each momentum and spin.
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Anticommutation Relations and the Exclusion Principle

Momentum Space Expansion of the Dirac Field,

Infinite volume

Infinite volume:

Z/(z )3\/§E )Ua(,D, S)eiiplx (30)
i P
+b'(p, 5)va(p, 5)€P%).
3 .
) e Gl T L)
s n P

+b(p, )V} (p. §)eP*).
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Now consider the Hamiltonian:
H= /d3X1Z <—if?- v+ m) . (32)
Plug in the expansions of the fields, and use:
(¥-B+mu=p"Pu (=7-p+myv=-p"°  (33)

and
UT(pa S)U(p, S,) = VT(pa S)V(p, Sl) = 2:0063,8’ (34)
to find:

3
He [ (s S Eo[d(p. 90t 5) ~blp.)pi(p.5)] (39
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Anticommutation Relations and the Exclusion Principle

Now if we quantize as for the scalar field with commutators, we
obtain a negative contribution from the negative energy states,
and the energy is unbounded below. If we quantize with anti
commutators, we have:

/ ZWSZEP[ alp. )+bT(PaS)b(P,S)—1].

(36)
So we now have a sensible expression in terms of number
operators, with an infinite contribution which we can think of as
representing the energy of the Dirac sea.
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Anticommutation Relations and the Exclusion Principle

The Dirac Propagator

Just as Dirac fields obey anti commutation relations, the
time-ordered product for fermions is designed with an extra
minus sign, for example:

T((x1)¥(x2)) = 0(x7 — X3 (x1)v(xe) — (x5 — X)) (x2)(x1).
The basic fermion propagator is:

Sr(xi — x2) = T(O[¥(x)¥(y)[0). (38)

Physics 217 2013, Quantum Field Theory

The Dirac Field



Anticommutation Relations and the Exclusion Principle

Let's take a particular time ordering, x? > xJ,

3 A3
Se= Y [t TPEE _ebtiup (e ¢,
(2m)8\/E(P)E(P)
(39)
The x integral gives 6(p — p’); then we have, from the sum over
spins, p+ m. Indeed, up to the factor of p + m, this is what we
had for the same time ordering for the scalar propagator.

For the other time ordering, we obtain, again, the same result
as for the scalar, except with a factor — p + m, from the spin
sum. Changing p — —p gives

p+m

Sk(p) = 2Rt (40)
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Anticommutation Relations and the Exclusion Principle

The Discrete Symmetries P and C

Parity: The Dirac lagrangian is unchanged if we make the
replacement:

(X, 1) = (=X, 1) (41)
Let’'s see what effect this has on the creation and annihilation

operators, a, b, etc.
Up(X 1) =7°U(=X, 1) (42)

d3p — o — in°x°—iB-xX - - in0y0 | iR T
= | ———(a(B, s)Y°u(p, s)e P X ~PX L pT(B, s)y°v(B, s)eP X t1PX),
| Gy B B (B. 9)2° (B 5)e"" ")
We can easily determine what v° does to u and v using our explicit
expressions (ignoring the normalization factor, which is unimportant

for this discussion):

Yo(B+ m)x = (p°Y° + P -7+ m)y°x (43)
= U(_IB7 S)
7°v(p,s) = —v(—Pp, s) (44)
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Anticommutation Relations and the Exclusion Principle

So making the change of variables p — —p in our expression
for +p, gives
Up(X, 1) = 7°P(=X, 1) (45)

= / (d?’p(a(_:a’ S)U(ﬁ, S)e_ip.X + bT(_ﬁ> S) V(ﬁv S)eip.x)
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Anticommutation Relations and the Exclusion Principle

Charge Conjugation: Now we can do the same thing for C.
Here:

e(x) = %" (x) (46)
-/ O (&l (B 572 (B )P (B, sy v (B s)e P
()P VE ’ | / |
Now we consider the action of 42 on u*, v*:

VPut =2 m)x = 2207 —p'y PP P —p e m)x (47)

= (= p+mn’x.
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Anticommutation Relations and the Exclusion Principle

Here we have not been ashamed to use the explicit properties
of the v matrices; 7' and ~2 are real, while 42 is imaginary; the
first two anticommute with 42 while the third commutes. Now
we use the explicit form of 42 to see that it takes the positive
energy x to the negative energy x, with the opposite spin. So,
indeed, we have that

ac(p,s) = b(p,—s) bc(p,s) = a(p,—s) (48)
i.e. it reverses particles and antiparticles and flips the spin.

Exercise: Determine the action of P and C on particle and
antiparitcle states of definite momentum.
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