Physics 217. Quantum Field Theory. Professor Dine

Non-Relativistic Limit of the Dirac Equation

1 Lowest non-trivial order in v?/c*: The Pauli Lagrangian

We will proceed in a very straightforward way. First, it will be helpful to have an explicit repre-
sentation of the Dirac matrices, or more specifically of Dirac’s matrices, somewhat different than

the one in your text:
1 0 0 &
0 _ o

The Dirac equation takes the form:
(1 p—m)y =0, (2)
where

D, =0, +eiA, (3)

Here we will ignore the dynamics of A, treating it as a fixed classical background.
It is helpful to multiply the Dirac equation by 7° & = 79 and 8 = 7°. Defining matrices

1 0 . (0 ¢
=0 ) «=(5 ) W
Then the equation takes the form:

0 .
(i— — eA%)ep = id - Dip. (5)
ot
Now we want to define a wave function for a single electron in this background field. By analogy
to the single particle wave function for a free quantum field of definite momentum:

¥ = (0/g|k) (6)

we define here:
U(z) = (0[y[¥) (7)

This object satisfies the Dirac equation as written above. Historically, this is the object which
Dirac first studied.
We will write the Dirac wave function in terms of two two-component objects, ¢ and y, but
these are no longer helicity components:
(9) (¥
X

We will be interested in positive energy solutions, in which case ¢ are the large components, x the
small components in the non-relativistic limit.

Another simplification arises from assuming that all fields are time-independent. For the solu-
tion of the Dirac equation in the presence of a static nucleus, this is adequate. More generally, we
will allow for static magnetic fields described in terms of time-independent vector potentials.



1.1 Equation for ¢

There are two issues we need to face in this analysis. First, we need to eliminate x in favor of ¢
in the Dirac equation. Second, we need to determine the identification of ¢ with the Schrodinger
wave function. The latter is important to get the relativistic corrections straight (in particular, the
coefficient of the p* term, see the text by Baym, for example). Here we will focus on the magnetic
moment (& - B) and spin orbit (& - L) couplings.

In our basis, note that the equations for ¢ and y are:

(1° — eA® —m)p — G- (F— eA)x =0 (9)
and
((p° — eA® +m)x —&- (51— eA)¢p = 0. (10)

We can solve for x in terms of ¢. We will first work to first order in fields. However, for the
hydrogen atom problem, powers of A° are of order powers of p?, so there we will set A = 0 and
work systematically order by order both in p? and A°. In the present approximation we write:

1 . ﬁ
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Now substitute back in the equation for ¢:
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To the order we will work, we can just set p® = m, except in the term p® — m + eAy. Using the
identity o;0; = 0;; + i€;x0%, we can rewrite this expression as:

(p°+eA’—m)p+
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(It will be convenient to leave the last term in this form). Now the term ie;;x(p' A7 + A'p?), would

PO +m

vanish, except that p; and A; don’t commute, and we obtain, from this term, eijkaiAj ok = B .z
The term involving A° can be rewritten as:
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Now, for a central field, E= —%%—‘:fﬁ

1.2 The Full Non-Relativistic Expression

Putting all of this together, the full equation is:
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Using Poisson’s equation, the V2 term can be replaced with a Delta function term, known as the
Darwin term.

But note we have obtained the famous g = 2 of the Dirac electron (this will be corrected by
quantum effects), and the spin orbit term, including the Thomas precession.



