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Consider, first, boosts along the x axis. These should preserve:

c2t2 − x2. (1)

Take units with c = 1, and call xo = ct ; this is similar to the
conservation of vector lengths by ordinary rotations, except for
the funny minus sign. So we write the transformation in the
form:

x = cosh(ω)x ′ + sinh(ω)xo′ (2)

xo = sinh(ω)x ′ + cosh(ω)xo′.

We can determine ω by considering the motion of the origin of
the primed system, viewed in the unprimed coordinates.
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Exercise (a.): Show that tanh(ω) = v (units with c = 1), and
derive the standard formulas for the Lorentz transformation.
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This analogy with rotations suggests generalizing the notion of
a vector (something which transforms in a definite way under
rotations) to a four-vector (an object which transforms in a
definite way under Lorentz transformations). Calling

xµ = (t , ~x) = (xo, ~x) (3)

we have the rule:
xo = γ(vx ′ + xo′). (4)

x = γ(x ′ + vxo′).
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It is not hard to generalize these rules to boosts by a velocity ~v
in an arbitrary direction:

xo = γ(~v · x ′ + xo′). (5)

~x = v̂γ(v̂ · x ′ + vxo′) + (~x ′ − v̂~x ′ · v̂).

Here v̂ = ~v/v .
Exercise (b): Check this.
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The vectors xµ, and any vectors which transform in the same
way, are called contravariant vectors. It is convenient to define
covariant vectors,

xµ = (xo,−~x). (6)

Note that xµxµ = t2 − ~x2. This is the quantity preserved by
Lorentz transformations. We can write the transformations in a
matrix form:

xµ = Λµ
νxν′. (7)
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Exercise (c): Work out the components of Λ for this
particular transformation.
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xµyµ is invariant. A particularly important four vector is the
differential, dxµ. This transforms like any other four vector; it is, after
all, the difference of two four vectors.

From the differential, we can construct an invariant

dxµdxµ = dτ2 (8)

= +dt2 − d~x2

In a particle’s rest frame, dτ is just the time which elapses. So dτ is
called the “proper time." While it refers to a special frame, it is a
Lorentz-invariant notion.

A useful way to write the proper time in a general frame is:

dτ2 = dt2(1−
(

d~x
dt

)2

) (9)

or dτ = γ−1dt . We see again the time dilation effect.

The notation ds2 is often used for dτ2.
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Lagrangian and Hamiltonian in Special Relativity
We can try to write a lagrangian for a free particle. In order that
the equations of motion for the particle take the same form in
any frame, we can try to find a lagrangian which is Lorentz
Invariant. We have seen that dτ is Lorentz invariant. So we try,
as action, the integral over dτ , multiplied by a constant, which
we call −mc2.

S = −m
∫

dτ = −m
∫

dt
√

1− v2 (10)

=

∫
dt L

L = −m

√
1− (

d~x
dt

)2 (11)

Note that for small velocities,

L = −m +
1
2

mẋ2
i (12)
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Using the Hamiltonian construction, the momenta are:

pi =
∂L
∂ẋ i =

mẋ i
√

1− v2
(13)

The Hamiltonian is:
H = pi ẋ i − L (14)

=
mv2 + m(1− v2)√

1− v2

=
m√

1− v2

So we have derived E = γmc2 just following the rules of
ordinary mechanics.
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We are really supposed to express the Hamiltonian in terms of
the momenta. This is easy to do here, and gives the important
relation:

H2 = E2 = m2 + p2. (15)
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Four-Velocity and Four-Momentum
We can construct another four-vector by dividing dxµ by dτ .
The result is the four-velocity:

uµ =
dxµ

dτ
(16)

with components:
uo = γ; ui = γv i . (17)

The components of uµ are not all independent;

uµuµ = (uo)2 − ~u2 = γ2(1− v2) = 1. (18)

This is a consequence of the definition of uµ.
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The four velocity is closely related to another four-vector, the
energy-momentum four-vector,

pµ = muµ. (19)

The components are:

po = mγ; pi = mv iγ. (20)

At low velocities, pi is the ordinary three-momentum. po is E ,
the relativistic energy.
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The constraint on uµ is closely related to the
energy-momentum relation:

(po)2 − ~p2 = m2. (21)

We see that this is a relativistically invariant relation.
One very valuable fact to note: γ is the energy divided by the
mass of the particle. This is almost always the easiest way to
find the γ factor for the motion of a particle. If you absolutely
need to know the velocity for some reason, you can then solve
for v in terms of γ. (E.g. SLAC; high energy gamma rays).
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One can compute γ quickly by remembering that γ = E
m .

Interesting examples are provided by the LHC (E = 7 TeV, so
γ ≈ 7000; SLAC: E = 50 GeV, so γ = 105; also cosmic rays
(think about muon lifetime):
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More Four-Vectors
Another very useful four-vector is the gradient. We write this as:

∂µ =
∂

∂xµ
. (22)

This transforms under Lorentz transformations as a covariant
vector (indices downstairs). One way to see this is to note that

∂µxµ = 4 (23)

i.e. it is a number, which is Lorentz invariant. But otherwise,
you can use the chain rule to check.
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With this observation,

2 = ∂µ∂
µ = ∂2

0 − ~∇2 (24)

is Lorentz invariant!
Note, also, that the energy-momentum in quantum mechanics
is a four vector:

pµ = i~∂µ. (25)

(Check that this form, with the i instead of −i , is correct).

Physics 217 2013, Quantum Field Theory Special Relativity



Still another useful four vector is the current, jµ. It’s
components are (again with c = 1; you might want to check
how to put in the factors of c explicitly):

jo = ρ;~j = ~J. (26)

I won’t prove it now, but let’s think about it. If we have a charge
at rest, then under a boost, we have a charge density and a
current. The charge density is increased by a γ factor as a
result of the Lorentz contraction. The current is the charge
density times the velocity. As one further piece of evidence, this
makes the equation of current conservation,

∂µjµ = 0 (27)

a Lorentz-invariant equation, i.e. true in any frame. [In another
exercise, you will prove that the current of a point particle
is a four vector]
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The Vector Potential as a Four-Vector
If we define a four-vector Aµ by

Ao = V ; ~A = ~A (28)

then the Lorentz gauge condition is:

∂µAµ =
∂V
∂t

+ ~∇ · ~A = 0. (29)

In other words, it is a Lorentz-invariant condition. Moreover, in
this gauge, the equations for the potentials can be written in a
manifestly Lorentz-covariant form:

2Aµ = jµ. (30)
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Mechanics again
So far, we wrote the lagrangian for a free particle. We can try
and guess a lagrangian for a particle in an electromagnetic field
from. We might expect that the lagrangian should involve V . It
should also be Lorentz covariant. So we try:

S = −m
∫

dτ −
∫

dxµAµ. (31)

At low velocities, the last term is −
∫

dtφ. In general, we can
write this as:

S =

∫
dt(−mγ − qφ+ q~A · ~v). (32)
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Our goal is to show that this lagrangian gives the Lorentz force
law. We need to work carefully with the Euler-Lagrange
equations. First, we work out:

∂L
∂ẋi

= γmvi + qAi . (33)

To write the equations of motion, we need to take the total
derivative with respect to time. Ai has, in general, both explicit
time dependence and time dependence coming from its
dependence on xj(t):

d
dt

(
∂L
∂ẋi

)
=

dτ
dt

m
d
dτ

ui + qȦi + qvj∂jAi . (34)
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In the Euler-Lagrange equations, we also need:

∂L
∂xi

= −q∂iφ+ q(∂iAj)vj . (35)

Putting this all together:

mu̇i = −q(Ȧi + ∂iφ)− qvj(∂jAi − ∂iAj) (36)

= q~E + q~v × ~B.

This is the relativistic generalization of the Lorentz force law:

mu̇i = γq[~E + ~v × ~B]. (37)
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More on the Matrices Λ
Now that we are a bit more used to four vector notation, let’s
return to Λ. Write:

xµ = Λµ
νxν′; yµ = y ′

ρΛ̃ρ
µ. (38)

So in order that yµxµ be invariant, we need:

Λ̃ρ
µΛµ

ν = δρν . (39)

It also follows from their definitions that

Λ̃µ
ν = gµρgνσΛσ

ρ (40)

So
gµρgνσΛσ

ρΛν
ρ = δµρ. (41)
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This is the case for our simple Lorentz transformation along the
z axis:

Λ =


γ γv 0 0
γv γ 0 0
0 0 1 0
0 0 0 1

 (42)

Λ̃ =


γ −γv 0 0
−γv γ 0 0

0 0 1 0
0 0 0 1

 (43)

(note here that to make the matrices easy to write, I have taken
the four vector xµ to be: 

xo

x1

x2

x3

 . (44)

It is true for the more general transformation we have written
above.
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In terms of Λ, it is easy to understand the covariance of
equations. For example,

∂2Aµ = jµ (45)

is covariant, since both sides transform in the same fashion
under Lorentz transformations.
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Infinitesimal Lorentz Transformations

Writing
Λµ

ν = δµν + ωµ
ν (46)

equation 39 becomes

ωµ
νδ

ρ
µ + δµρω

ρ
µ = 0. (47)

So
ωρ

ν + ω ρ
ν = 0 (48)

or
ωρν + ωνρ = 0 (49)

i.e. ωρν is antisymmetric.
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Exercise (d): Determine the components of ω for an
infinitesimal Lorentz boost along the z axis.
Exercise (e): Show that d4x is invariant under arbitrary Lorentz
transformations.
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Covariant Equations, Covariant Tensors

Aµ = Bµ (50)

Since both sides of this equation transform in the same way
under Lorentz transformations, this equation is true in any
frame. Similarly,

Tµνρ = J µνρ. (51)
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Following Einstein, we rewrite Maxwell’s equations in a
covariant form. The scalar and vector potentials can be
grouped as a four vector,

Aµ = (φ, ~A) (52)

Then introduce the field strength (sometimes called Faraday)
tensor:

Fµν = ∂µAν − ∂νAµ. (53)
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Foi = Ei ; Fij = −εijkBk . (54)

These transform as:

Fµν = Λµ
ρΛν

σF ρσ′. (55)

There is not much to do but multiply these out. You find the
transformation laws for the ~E and ~B fields in your text.
What about the Lorentz force law? This should involve u̇µ,
which is a four-vector which would generalize the acceleration.
It should be linear in the fields ~E and ~B, i.e. linear in Fµν . A
guess, for a particle of charge e, is:

mu̇µ = e uνFµν . (56)
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Exercise f: Check that the components of this equation yield
the Lorentz force law.
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Other Interactions: Strong, Weak Interactions Look Similar

Strong interactions: F a
µν , a = 1, . . .8. Equations for the fields:

∂νFµνa = Jµa. (57)

Currents: color of the quarks.
Weak interactions: same thing! (a = 1 . . . 3). Currents: weak
charge. But includes an extra piece, due to the Higgs field,
which leads to a mass:

m2Ai2
µ .
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More Exercises:
Exercise (g): Show that Foi = Ei , Fij = εijkBk .
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Exercise (h): Verify that Maxwell’s equations take the form:

∂µFµν = jν .

Explain why this result shows that Maxwell’s equations are
Lorentz covariant.
Exercise (i): The charge and current density, together form a
four vector, jµ = (ρ,~j). Write the equation for current
conservation in a covariant form.
Exercise (j):For a particle of mass m, what is p2 = pµpµ?
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