
Physics 217. Quantum Field Theory I. Professor Michael Dine

Fall, 2013. Syllabus

Contact Information: ISB 323. Phone: 9-3033 Email (best): dine@scipp.ucsc.edu

Office hours: Wednesday 2:00-4:00 (subject to change) or by appointment.

Course website: go to department website and click on Dine, or just google Michael Dine.

Homework and solutions and handouts will be posted here.

Course Description:

Course Description: This course is intended to provide an introduction to quantum field theory.
The stress will be on developing the Feynman diagram method, and applying it to compute cross
sections for a variety of physical processes, principally in Quantum Electrodynamics, and, given
the recent Higgs discovery, some aspects of Higgs physics as well. We will also learn methods to
handle the ultraviolet and infrared divergences which arise in perturbation theory.

Note on the texts: The principle text for the course will be Peskin and Schroeder, “Introduction
to Quantum Field Theory.” This text is, in my view, probably the best field theory text which
presently exists. Peskin’s treatment is modern, self-contained, and provides a deep understanding
of the essential physics. When one finishes this book, one is close to the research forefront.

I will supplement the book with handouts from other texts and articles from the current liter-
ature, as well as things I will prepare myself.

Books on Reserve: I have put a number of books on reserve, and strongly recommend you look at
them. Steven Weinberg’s three volume text is encyclopedic, with many deep insights. I chose not to
use this text because it is somewhat more difficult to read, and the treatment is a bit idiosyncratic.
But for these reasons, I strongly recommend that you look at it. The treatment of many topics is
exceptionally good. Weinberg is particularly interested in the significance of quantum field theory
and the “grand principles” which underlie it. The introduction, which is mainly a historical review
of the subject, is more scholarly than the sorts of anecdotes I will tell. Also on reserve is the text
from the Landau and Lifschitz series. This has a good treatment of many topics in QED which
you will have a hard time finding elsewhere (e.g. bound states, aspects of the infrared problem,
etc.). Ramond’s book, a Quantum Field Theory Primer, is easy to read and very accessible. It
stresses the path integral method, which we will cover next quarter. The book by Itzykson and
Zuber is not an easy read, but is comprehensive. It has good treatments of many particular topics,
including very explicit two loop computations in QED, the goldstone phenomenon, and others. I
have used the text by Mandl and Shaw in the past for this course, and it is quite readable. The
two volume text by Bjorken and Drell was for many years the standard text in the field. It is now
dated in many respects, but still has useful treatments of many problems. The first volume follows
Feynman’s original treatment of the subject, and goes through some useful computations. I will
put other books on reserve from time to time as seems appropriate. I will frequently supplement
the text with handouts from other texts as well as with my own notes. I have also put the text by
Lowell Brown on reserve, which has good coverage of a number of topics which do not appear in
other books, and a book by Tony Zee.



Homework, exams,etc: There will be approximately six problem sets plus a take home final.
The homeworks will be rather demanding. The subject matter is not really that difficult, but it is
essential to review class notes and to keep up in the reading and the homework.
Scheduling Issues: I will miss several classes for work-related travel and we will need to resched-
ule.

Tentative Schedule; Will Revise as we Schedule special sessions.

Warmup: Read PS, chapter 1 and 2.

Sept. 26, Oct. 1,3. Introduction. Quantization of the free Klein-Gordan and electromagnetic
fields from a simple-minded perspective. Review of special relativity in four vector notation. In-
troduction to the Dirac equation. [I understand that you did not touch on the Dirac equation
in quantum mechanics, and that many of you have not encountered it.] Second Quantization for
Non-Relativistic Systems.
Oct. 8,10, More systematic development of the free Klein-Gordon field. This is the simplest type of
field theory, and provides an opportunity to introduce a number of basic concepts. We will consider
the classical Lagrangian and Hamiltonian descriptions of this field, and possible symmetries. Then
we will turn to its quantization, imposing canonical commutation relation relations on the fields,
decomposing the field into its normal modes (harmonic oscillators), constructing the Hilbert space,
and considering issues such as Lorentz invariance. We will also introduce an object which is
fundamental in the Feynman approach to perturbation theory: the propagator. This will give us a
chance to discuss the question of causaility. (PS, chapter 2.)
Oct. 15,17. The free Dirac field. Review of the four-component Dirac equation and its Lorentz
transformation properties. Solution of the equation. Introduction of two-component, Weyl spinors.
Spin sums. Quantization of the free field; fermion creation and annihilation operators. Structure
of the Hilbert space. Construction of the propagator for the Dirac field. The discrete symmetries
P,C, and T. (PS, chapt. 3.)
Oct. 22,24. Quantization of the Electromagnetic field. Coulomb gauge treatment. Lorentz co-
variance. Derivation of a Lorentz covariant propagator using gauge invariance. (MS chapter 5
(handout.)
Oct. 29,31. Feynman-Dyson perturbation theory. In this discussion, we will use the operator
method, in a manner quite analogous to the usual treatment of time-dependent perturbation theory
in quantum mechanics. The main new feature is a rearrangement of the terms in the expansion
exploiting the time-ordering of operators which appears in that treatment. This leads to Lorentz
invariant expressions. We will first consider (interacting) scalar field theory. We will develop the
expansion of the time-development operator in the interaction picture in powers of the perturbation,
and prove “Wick’s theorem,” the basic tool for developing the diagram expansion. We will exhibit
the cancellation of the disconnected graphs. Extension of the methods to fermions, photons. (PS,
chapter 4.)
Nov. 5,7 Elementary Processes in QED. We will compute the cross sections for a number of
processes.

1. e+e− → µ+µ− – develop trace technology. Analyze helicity structure.

2. e−µ scattering and crossing.

3. Compton scattering.

4. Scattering in an external field.

(PS, chapter 5.)
Nov. 12, 14. Radiative corrections: infrared problems. Radiative corrections exhibit infrared
divergences associated with very low momentum processes and ultraviolet divergences associated



with high momentum processes. The low energy divergences represent real, computable physical
effects. Here we will consider bremstrahlung. as an example of infrared difficulties (PS chapter 6.)
Nov. 19,21. Radiative corrections: ultraviolet problems.

1. Electron self energy: in QED, we can try to compute the corrections in perturbation theory
to the electron mass. We will see that these are divergent and introduce the notion of
regularization, the process of giving a definition to divergent, ill-defined quantities.

2. We will consider particular types of regulator. The most obvious one is a simple cutoff on
momentum integrals, but we will see that this has difficulties. We will consider two other
regulators: Pauli-Villars and dimensional regularization. Of these, the first is perhaps the
nicest conceptually, but the second is far easier to use in practice.

3. In order to “learn our way around,” we will compute something physical: the anomalous
magnetic moment of the electron. (PS 6,7.5.)

Nov. 26,. More radiative corrections. We will consider systematically the various divergences
which arise at order α in perturbation theory. We will study the photon self-energy and the vertex
correction, as well as the electron self-energy. We will interpret the results of our computations
in terms of the “renormalization” of the electron charge and mass. We will also study further the
problem of infrared divergences and their cancelation. (PS, chapter 6.)
Dec. 3,5. Some formal developments. Basic notions of renormalization theory, illustrated with
scalar field theory and QED. The LSZ approach to computing the S matrix. (PS, chapter 6).


