Lorentz Invariance and Lorentz Group: A Brief Overview

These are things it is important you should know. You can find more background, for example, in Jackson.

Four vectors:

$$x^{\mu} = (x^{o}, \vec{x}) = (t, \vec{x}) \qquad x_{\mu} = (x^{o}, -\vec{x})$$
$$x_{\mu} = g_{\mu\nu} x^{\nu}$$
$$x^{\mu} x_{\mu} = x^{o \ 2} - \vec{x}^{2} = x^{\mu} g_{\mu\nu} x^{\nu}$$

where the metric tensor, $g_{\mu\nu}$ is

$$g_{\mu\nu} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

 x^{μ} , with the index upstairs, is called a contravariant vector; $x_{\mu} = g_{\mu}\nu x^{\nu}$ is called covariant. Note that $g_{\mu\nu}$ is its own inverse. Indices are lowered with $g_{\mu\nu}$ and raised with $g^{\mu\nu}$ which is the inverse of $g_{\mu\nu}$ (and, as a matrix, is the same as $g_{\mu\nu}$. If one raises one index on $g_{\mu\nu}$, one gets

$$g^{\nu}_{\mu} = g^{\nu\rho}g_{\mu\rho} = \delta^{\nu}_{\mu}.$$

Note we are using the Einstein summation convention, which says that repeated indices are summed.

Lorentz transformations

$$x^{\mu} ' = \Lambda^{\mu}{}_{\nu} x^{\nu} \qquad x'_{\mu} = \Lambda_{\mu}{}^{\nu} x_{\nu}.$$

(Indices on Λ are raised and lowered with the metric tensor). In general, a four vector is any quantity which transforms like x^{μ} under Lorentz transformations. Examples include the four velocity, the four momentum, the vector potential and the current density of electrodynamics.

Scalars are invariant. $x \cdot y$ is one example. Others are $p^2 = p \cdot p$, $A_{\mu}j^{\mu}$, where A is the vector potential four vector (more below) and j is the electromagnetic current.

Under Lorentz transformations, the dot product of two four vectors, $x \cdot y = x^{\mu}y_{\mu}$ is preserved. In terms of Λ , this means:

$$x^{\mu} \,' y'_{\mu} = \Lambda^{\mu} \,_{\nu} x^{\nu} \Lambda_{\mu} \,^{\rho} y_{\rho}$$

 \mathbf{SO}

$$\Lambda^{\mu}{}_{\nu}\Lambda_{\mu}{}^{\rho}=\Lambda_{\mu}{}^{\rho}\Lambda^{\mu}{}_{\nu}=g_{\nu}{}^{\rho}=\delta_{\nu}{}^{\rho}$$

Infinitesmal form of the Lorentz Transformation

$$\Lambda^{\mu}{}_{\nu} = \delta^{\mu}{}_{\nu} + \omega^{\mu}{}_{\nu}$$

 \mathbf{SO}

$$\omega^{\mu}{}_{\nu}\delta_{\mu}{}^{\rho} + \delta^{\mu}{}_{\nu}\omega_{\mu}{}^{\rho} = 0,$$

i.e.

$$\omega^{\rho}_{\nu} + \omega_{\nu}^{\rho} = 0.$$

So, lowering indices,

$$\omega_{\rho\nu} + \omega_{\nu\rho} = 0$$

i.e. $\omega_{\rho\nu}$ is antisymmetric.

Exercises:

a. For a Lorentz transformation along the z axis, determine the components of Λ . Note that you can write this nicely by taking:

$$t' = \cosh(\omega)t + \sinh(\omega)z$$
 $z' = \sinh(\omega)t - \cosh(\omega)z.$

- b. Determine the components of ω for an infinites mal Lorentz boost along the z axis.
- c. The differential of the proper time is $d\tau = dx \cdot dx$. Verify that $d\tau$ is a scalar. Show that $\frac{dx^{\mu}}{d\tau}$ is a four vector.

Covariant Equations, Covariant Tensors

Consider an equation involving two four vectors:

$$A^{\mu} = B^{\mu}$$

Since both sides of this equation transform in the same way under Lorentz transformations, this equation is true in any frame. Similarly, for more complicated tensors,

$$T^{\mu\nu\rho} = \mathcal{J}^{\mu\nu\rho}.$$

The derivative is a four vector with indices which are "downstairs" (covariant, as opposed to "contravariant" indices). To see this, it is simplest to note that

$$\frac{\partial}{\partial x^{\mu}}x^{\mu} = 4$$

is Lorentz invariant. It is customary to simplify notation and write

$$\partial_{\mu} = \frac{\partial}{\partial x^{\mu}}$$

so the equation above, for example, reads

$$\partial_{\mu}x^{\mu} = 4$$

The components of the partial derivative are:

$$\partial_{\mu} = (\partial_o, \nabla)$$

Examples of Covariant equations:

1. Equation of motion for a free particle:

$$\frac{d^2x^{\mu}}{d\tau^2} = 0$$

2. Wave equation for a scalar field:

$$\partial^{\mu}\partial_{\mu}\phi + m^{2}\phi = 0$$
 or $\partial^{2}\phi + m^{2}\phi = 0$.

3. Lorentz gauge equation for the four-vector potential:

$$\partial^2 A^\mu = j^\mu$$

We will see more examples shortly.

Exercises:

d. The charge and current density, together form a four vector, $j^{\mu} = (\rho, j)$. Write the equation for current conservation in a covariant form.

It is helpful also to consider relativistic kinematics in the four-vector notation. The components of the momentum are

$$p_{\mu} = (E, \vec{p}).$$

 $p^2 = p_{\mu}p^{\mu} = E^2 - \vec{p}^2 = m^2.$

More generally, the dot product of any two four momenta is Lorentz invariant. In a scattering experiment, four example, if the two incoming particles have four momenta p_1 and p_2 , one can construct the invariant

$$s = (p_1 + p_2)^2.$$

This is the total center of mass energy, since in the center of mass frame, $\vec{p}_1 + \vec{p}_2 = \vec{0}$. It is easily evaluated in any frame.

Exercises

- e. Evaluate s in the lab frame for an electron-proton collision.
- f. Suppose the electron-proton collision is elastic, the initial electron momentum is $\vec{p_1}$ and the final momentum $\vec{p_3}$. Calling $t = (p_1 p_3)^2$ (where p_1 and p_3 are the corresponding four-vectors), evaluate t. What is the connection of t to the momentum transfer?

Following Einstein, we can rewrite Maxwell's equations in a covariant form. The scalar and vector potentials can be grouped as a four vector,

$$A^{\mu} = (\phi, \vec{A})$$

Then introduce the field strength (sometimes called Faraday) tensor:

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}.$$

Exercises:

- g. Show that $F_{oi} = E_i$, $F_{ij} = \epsilon_{ijk}B_k$.
- h. $F_{\mu\nu}$, being a tensor, transforms like the product $x_{\mu}x_{\nu}$ under Lorentz transformations. Work out the transformation of \vec{E} and \vec{B} under Lorentz transformations along the z axis using this fact.
- i. Verify that Maxwell's equations take the form:

$$\partial_{\mu}F^{\mu\nu} = j^{\nu}.$$

Explain why this result shows that Maxwell's equations are Lorentz covariant.