
Physics 218. Quantum Field Theory. Professor Dine

Canonical Quantization of the Electromagnetic Field

1 A Tension

In a gauge theory like electromagnetism, there is a tension between two basic principles: Lorentz
invariance and unitarity (unitarity is the statement that in quantum mechanics, time evolution is
described by a unitary operator, as a result of which probability is conserved). If we choose Lorentz
gauge:

∂µAµ = 0 (1)

and follow our usual quantization procedure, we will be lead to write:

Aµ(x) =

∫

d3p

(2π)3
√

2Ep
(aµ(p)eip·x + a† µe−ip·x) [aµ(p), aν †(p)] = gµν(2π)3δ(~p − ~p′). (2)

The problem is with the ao commutator. The states ao†|0 > have negative norm (check!). Doesn’t
sound good for quantum mechanics. It turns out that the states with negative norm are never
produced in scattering processes, but proving this is a bit involved. An alternative approach gives
up manifest Lorentz invariance. One chooses the Coulomb (or “transverse” or “radiation”) gauge:

~∇ · ~A = 0 (3)

Note that in writing this condition, we are making a choice of Lorentz frame. The expansion of the
gauge field is now:

Ai(x) =

∫

d3p

(2π)3
√

2Ep

(a(p, λ)ǫi(p, λ)eip·x + a†(p, λ)ǫi ∗(p, λ)e−ip·x). (4)

From the gauge condition,

~p · ~ǫ(p, λ) = 0. (5)

The commutation relations of the a’s are just what you might expect:

[a(p, λ), a†(p′, λ′)] = δλ,λ′(2π)3δ(~p − ~p′). (6)

From these expressions we can work out the propagator. In this computation, analogous to
what we saw in the Dirac case, one encounters:

∑

λ

ǫi(p, λ)ǫ∗j(p, λ) = Pij(p) = (δij −
pipj

~p2
). (7)

Then (Exercise: check):

T < Ai(x)Aj(y) >=

∫

d4p

(2π)4
eip·x iPij(~p)

−p2 + iǫ
(8)



It is also natural to define a propagator for the scalar potential, remembering that propagators are
just Green’s functions. In momentum space, this is just

< AoAo >= i
1

~p2
. (9)

Not surprisingly, these propagators don’t look very Lorentz invariant. But we can fix this by
noting that the full propagator can be written (in momentum space, using the ”west coast metric”):

Dµν = −
gµν

p2 + iǫ
−

pµpν

~p2(p2 + iǫ)
+

ηµpν + ηνpµ

(p2 + iǫ)
(10)

where η = (po

~p2 , 0, 0, 0) is a fixed four vector. Exercise: Check this. Don’t worry about the

iǫ’s.
Now in electrodynamics, we have seen that Aµ couples to jµ, a conserved current. So pµ always

multiplies jµ(p), and thus these terms vanish by current conservation. We will actually see how this
works in scattering amplitudes later. As a result, we can use the covariant propagator. Note that
this is the propagator one might have written in Lorentz gauge by analogy with the propagator for
a scalar field.

The fact that in the end one can write manifestly Lorentz invariant Feynman rules means that
the non-Lorentz invariant gauge choice doesn’t matter in the end. It is possible to prove that, in
Coulomb gauge, there are a nice set of operators which generate Lorentz invariance. But this is
rather involved and, for the moment, not particularly instructive. In the path integral approach,
one can take care of these problems, at least as far as developing perturbation theory is concerned,
quite efficiently; this is particularly important for non-abelian gauge fields, which we will encounter
in 218.


