
Physics 218. Advanced Quantum Field Theory. Professor Dine

Winter, 2009. Homework Set 5. Due Wed, March 4.

Problem numbers refer to your textbook.

1. As a model for the Z0 boson, consider a massive vector with a coupling to a massless spinor,

LI = gZµψ̄γµ(1 − γ5)ψ. (1)

Calculate the lifetime of Z at lowest order in perturbation theory.

Solution: This problem has the basic features of the real calculation, as we will see. To get
the full answer, one needs simply to be careful about the couplings of the Z to the various fields
in terms of the hypercharges of the underlying theory. To evaluate, one needs to introduce
polarization vectors for the Z, and square and sum over final state spins and average over the
(three) initial polarizations. In the sum over polarizations, most of you wrote:

∑
ǫµǫν = −gµν . (2)

This is correct, but it worth giving it some thought. If one goes to the rest frame of the
vector, there are three polarizations, so Pij = δij . We can write this in a covariant form as

Pµν = −gµν +
kµkν

M2

Z

) (3)

where we have used the on-shell condition for kµ. Now one can use current conservation,
again, to drop the second term. It is easy to see, using the kinematic arguments below, that
if included it does not contribute.

In any case,
1

3

∑
|M|2 = −gµνTr(6pγµ(1 − γ5) 6p

′γν(1 − γ5)) (4)

= −gµνTr(6pγµ 6p′γν(1 − γ5))

Now note that, because of momentum conservation, there are only two independent momenta.
So there is no way to make an invariant out of ǫµνρσ, so we can drop the γ5 term.

The rest of the evaluation is simple, when you note that squaring the energy-momentum
conservation relation relates all invariants to M2

Z :

p+ p′ = q; 2p · p′ = M2

Z ; q · p = −
1

2
M2

Z

All that is left to do is to include the two body phase space.

2. For the model of the previous problem, suppose that the field, ψ, carries electric charge.
Discuss the corrections to the Z lifetime to order e2. Don’t actually compute them, but
discuss the types of divergences which occur at order e2. Interpret the ultraviolet divergences
and explain what resolves the various infrared divergences. Is the lifetime finite in the next
order?



Solution: The relevant diagrams are shown below.

The vertex and self energy are ultraviolet divergent. As we have seen elsewhere, these diver-
gences cancel. If they did not, we would interpret them as renormalizing the Zψψ coupling.
The fact that they do is related to current conservation at the vertex, as we will hopefully
discuss next quarter. The vertex diagram is infrared divergent. Exactly as in our other dis-
cussions, this divergence cancels against the divergence in the real emission. One is left over
with a ”double logarithmic” correction which, as you can see in the lectures of Michael Peskin
on the course website, are quite substantial.

3. Pions as Goldstone bosons in the strong interactions. As a model for the pions, define a field,
M , which is a two by two matrix. Take the symmetry to be SU(2)L × SU(2)R, where

M → ULMUR (5)

where UL and UR are (distinct) SU(2) matrices. Show that the lagrangian:

L = Tr ∂µM
†∂µM +

µ2

2
Tr M †M −

λ

4
Tr (M †M)2 (6)

is invariant under the symmetry.

Solution: (A correction to the kinetic term from the original version of the set has been in-
cluded above.) The invariance of the lagrangian follows immediately from the cyclic property
of the trace.

Show that at the minimum of the potential, M has the form

M = σ0 (7)

(i.e. it is proportional to the unit matrix). Argue that an SU(2) subgroup of the original
symmetry group is preserved; this can be identified with ordinary isospin. Writing

M = σ0 + δσ + ~π(x) · ~σ (8)



show that the ~π fields are massless, and that they form a triplet of isospin.

Solution: M is a constant in the vacuum. If it is proportional to the unit matrix, it preserves
the subgroup of transformations with UL = U †

R. These transformations form an SU(2)
subgroup of the original symmetry. Under these, the fields πa transform as a vector. To see
this, study infinitesmal transformations, UL = 1 + iαa σa

2
. Then

δM = iαb[σb/2, σcπc] = −ǫabcσ
aαbπc (9)

or
δπa = −ǫabcα

bπc (10)

which is the transformation law of a vector in SU(2). This transformation law guarantees
that the point where M is proportional to the unit matrix is a stationary point; if we Taylor
series expand the potential about that point, the symmetry requires that there are no linear
terms in πa, so ∂V

∂πa
= 0. To verify explicitly that, as required by Goldstone’s theorem, the πa

fields are massless, first plug the vacuum solution into the potential, and find the minimum:

σ2

0
=
µ2

λ
. (11)

Then plug in the full form of M :’
M = σ0 + πaσa (12)

and expand to order πa2. The coefficient of πa2 = −2µ2 + 2µ2 = 0.

One can see, by the way, that M can be made proportional to the unit matrix in a variety
of ways. In particular, one can diagonalize M by a symmetry transformation, so M =
σ0(a + ibσ3). where a2 + b2 = 1. Then, taking, say UR = 1, UL = cos θ + iσ3 sin θ, with
tan θ = −b/a, brings the matrix to the desired form.


