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Aspects of the Dirac Field

1 Anticommutation Relations and the Exclusion Principle

Suppose we have operators a, a† which obey the anticommutation relations:

{a, a†} = 1; {a, a} = 0; {a†, a†} = 0

Then construct the “number operator”
N = a†a

and the state |0〉 by the condition
a|0〉 = 0

(a is a destruction operator). Then

Na†|0〉 = a†aa†|0〉.

Using the anticommutation relations to move a to the right,

= −a†a†a|0〉 + a†|0〉.

In other words
Na†|0〉 = |0〉

so a† creates a one particle state. But since (a†)2 = 0 (from the anticommutation relations) there
is no two particle state.

So anticommutation relations of this kind build in the exclusion principle; only the zero and
one-particle states are allowed. For the Dirac Hamiltonian in momentum space, taking the volume
to be finite:

H =
∑

~p,s

(a†(p, s)a(p, s) + b†(p, s)b(p, s)) + ∞.

So we see that we can have states with zero or one electron and zero or one positron for each
momentum and spin.

2 Quick calculation of spin sums, Normalizations, etc.

In your text, various relations for spinors, including orthogonality relations and spin sums, are
worked out by looking at explicit solutions. We can short circuit these calculations in a variety of
ways. Here is one:

Two things slightly different than your text:

1. Dirac matrices: It will be helpful to have an explicit representation of the Dirac matrices, or
more specifically of Dirac’s matrices, somewhat different than the one in your text:

γ0 =

(

1 0
0 −1

)

~γ =

(

0 ~σ
−~σ 0

)

(1)



2. Sign conventions: I’ll use the west coast metric in this handout; compared to Srednicki,
6p→ − 6p

If χ is a constant spinor,
u(p) = N(6p +m)χ

solves the Dirac equation. Now take χ to be a solution of the Dirac equation with ~p = 0. We can
work, for this discussion, in any basis, so let’s choose our original basis, where the ~p = 0 spinors
are particularly simple, and take the two linearly-independent spinors to be

χ1 =









1
0
0
0









;χ2 =









0
1
0
0









Let’s first get the normalizations straight. We will require:

ū(p)u(p) = 2m.

With our solution the left hand side is

N2χ†(6p† +m)γo(6p+m)χ

= N2χ†γoγo(6p† +m)γo(/p +m)u(p)

= N2χ†γo(6p+m)(6p +m)χ

= N2χ†2m(6p +m)χ

From the explicit form of the Dirac matrices and the χ’s, χ† 6pχ = E. So

N2 =
1

(E +m)
.

With this we can do the spin sums. First note that for the χ’s, looking at their explicit form:

∑

s

χχ† =

(

1 0
0 0

)

=
1

2
(1 + γo).

So now
∑

s

u(p, s)ū(p, s) =
∑

s

u(p, s)u†(p, s)γo

=
1

2
N2(6p+m)(1 + γo)(6p† +m)γo

=
1

2
N2(6p+m)(1 + γo)γoγo(6p† +m)γo

=
1

2
N2(6p+m)(1 + γo)(6p+m)γo

=
1

2
N2[(6p +m)(6p − (6p−m) + 2po](/p +m)γo

=
1

2
N22(m+ po)(6p+m)

= (6p+m).

Finally, we can compute the inner products:

u†(p, s)u(p, s′) = N2χ†(6p† +m)(6p +m)χ



= N2χ†γo(6p+m)γo(6p+m)χ

= N2χ†γo(p2 −m2 + 2po(6p +m)γoχ

= 2Eδs,s′

Exercise:

Work out the corresponding relations for the negative energy spinors, v(p, s), including the spin
sums, normalization, and orthogonality relations.

∑

s

uα(p, s)ūβ(p, s) = (6p+m)αβ

∑

s

vα(p, s)v̄β(p, s) = (6p −m)αβ

u†α(p, s)uα(p, s′) = 2Epδss′ = v†α(p, s)vα(p, s′)

ūα(p, s)uα(p, s′) = 2mδss′ = v̄α(p, s)vα(p, s′)

The Discrete Symmetries P and C

Parity: The Dirac lagrangian is unchanged if we make the replacement:

ψ(~x, t) → γoψ(−~x, t) (2)

Let’s see what effect this has on the creation and annihilation operators, a, b, etc.

ψp(~x, t) = γoψ(−~x, t) =

∫

d3p

(2π)3
√

Ep

(a(~p, s)γou(~p, s)e−ipoxo−i~p·~x+b†(~p, s)γov(~p, s)eip
oxo+i~p·~x). (3)

We can easily determine what γo does to u and v using our explicit expressions (ignoring the
normalization factor, which is unimportant for this discussion):

γo(6p+m)χ = (poγo + ~p · ~γ +m)γoχ = u(−~p, s)γov(~p, s) = v(−~p, s) (4)

So making the change of variables ~p→ −~p in our expression for ψp, gives

ψp(~x, t) = γoψ(−~x, t) =

∫

d3p

(2π)3
√

Ep

(a(−~p, s)u(~p, s)e−i·x + b†(~p, s)v(−~p, s)eip·x) (5)

Charge Conjugation: Now we can do the same thing for C. Here:

ψc(x) = γ2ψ∗(x) =

∫

d3p

(2π)3
√

Ep

(a†(~p, s)γ2u∗(~p, s)eip·x + b(~p, s)γ2v∗(~p, s)e−ip·x). (6)

Now we consider the action of γ2 on u∗, v∗:

γ2u∗ = γ2(6p∗ +m)χ∗ = γ2(poγo − p1γ1 + p2γ2 − p3γ3 +m)χ = (− 6p +m)γ2χ. (7)

Here we have not been ashamed to use the explicit properties of the γ matrices; γ1 and γ3 are real,
while γ2 is imaginary; the first two anticommute with γ2 while the third commutes. Now we use
the explicit form of γ2 to see that it takes the positive energy χ to the negative energy χ, with the
opposite spin. So, indeed, we have that

ac(p, s) = b(p,−s) bc(p, s) = a(p,−s) (8)

i.e. it reverses particles and antiparticles and flips the spin.


