
Physics 222. Quantum Field Theory 3. Professor Dine

Spring, 2011. Homework Set 1. Solutions.

1. Fadeev-Popov Ghosts

a. Derive the transformation law for the gauge field Aaµ, under an infinitesimal gauge trans-
formation ωa, and show that it can be elegantly expressed in terms of the covariant derivative
of ωa, thought of as a scalar field.

Solution: Let’s start from scratch. Working with matrix-valued fields, and take the trans-
formation law of the gauge field to be:

Aµ → UAµU
† − i∂µUU †. (1)

Then, for a field ψ → Uψ,

Dµψ = (∂µ − iAµ)ψ → U(∂µψ − iAµψ) (2)

+ ∂µUψ − ∂µUψ.

Consider the infinitesimal transformation,

U = 1 + iωaT a (3)

Then expanding the transformation law for Aµ to first order in ω, and writing Aµ = AaµT
a,

etc.,
δAµ = i[ωbT b, AcµT

c]− i× i∂µωaT a (4)

= 0fabcωbAcµT
a + ∂µω

aT a.

In other words
δAaµ = ∂µω

a − fabcωbAcµ. (5)

Compare this with (remember that the generators in the adjoint representation are T abc =
−ifabc)

(Dµω)a = ∂µω
a − (−i)(−if bacAbµ)ωc (6)

− = ∂µω
a + fabcAbµω

c.

b. Implement the Fadeev-Popov procedure; derive the ghost lagrangian (you don’t have to
write hundreds of pages for this; just give a brief summary.

2. Feynman rules: derive the three gauge boson coupling and the ghost propagator and inter-
action terms.

Solution: The basic elements of the Fadeev-Popov procedure are pretty simple. One needs
to study the integral over gauge transformations of

δ(∂µ(Aµa + δAµa) (7)



where Aµa already satisfies the gauge condition (as always with δ functions, it is only necessary
to work near the point where the δ function condition is satisfied). So, using our expression
above for the gauge variation, δA, we have

δ(∂2ωa + fabcAµb∂µω
a). (8)

So we need

det(∂2 + fabcAµb∂µ) =
∫

dc dc† exp

(
i

∫
d4xc†(∂2 + fabcAbµ∂µ)c

)
. (9)

[Here, as in much of these notes, I am scaling A so that 1/g2 appears in front of the gauge
boson kinetic term, and there are no factors of g in the couplings; one can rescale to obtain
this more standard form.]

3. Higgs phenomenon: consider an O(3) (equivalent to SU(2)) gauge theory with Higgs fields
in the adjoint representation. If we call the fields ~φ, take

V (~φ) = −1
2
µ2|~φ|2 +

λ

4
|~φ|4. (10)

Determine the pattern of symmetry breaking, and the mass of the gauge bosons (there is an
unbroken gauge symmetry). Determine the charges of the gauge bosons under the remaining
symmetry.

Solutions: By a gauge transformation, we can bring φa to the form

φa =
v√
2
δa3. (11)

v2 satisfies
v2

2
=
µ2

λ
. (12)

We can work out the gauge boson masses by going to unitary gauge. They then arise from

(Dµφ)a2 = εabcAbµφ
cεadeAdµφ

3 (13)

= (δbdδce − δbeδcd)AbµAdµφcφe

= AbµA
µbφcφc −AbµAµcφbφc

=
v2

2
(Aµ1A1

µ +Aµ2A2
µ).

Noting that the kinetic terms for the gauge bosons behave as

1
2g2

(∂µAiν)2 (14)

we see that the gauge bosons A1
µ, A

2
µ have mass g2v2, while A3

µ is massless.

The masslessness of A3
µ arises because φ is invariant under rotations about the 3 axis (in the

isospin space). So this symmetry is unbroken. Correspondingly, the generator T 3 is unbroken.
In Georgi and Glashow’s original implementation of this model, this generator was identified
with electric charge. The fields

W±µ =
1√
2

(A1
µ ± iA2

µ) (15)



together form a complex field. They are charged under the U(1). You can check this, or think
by analogy to spherical harmonics, where

Y1±1 ∝ (x± iy) (16)

transform by a phase under rotations about the z axis. (To check it explicitly, you will first
want to consider infinitesimal transformations).

Note that
(A1

µT
1 +A2

µT
2) =

√
2(W+

µ T
− +W−µ T

+) (17)

with
T± =

1
2

(T 1 ± iT 2) (18)

are the usual raising and lowering operators (matrices) which enter in the theory of angular
momentum.


