Spring, 2011. Homework Set 1. Solutions.

1. Fadeev-Popov Ghosts

a. Derive the transformation law for the gauge field A^a_{μ} , under an infinitesimal gauge transformation ω^a , and show that it can be elegantly expressed in terms of the covariant derivative of ω^a , thought of as a scalar field.

Solution: Let's start from scratch. Working with matrix-valued fields, and take the transformation law of the gauge field to be:

$$A_{\mu} \to U A_{\mu} U^{\dagger} - i \partial_{\mu} U U^{\dagger}. \tag{1}$$

Then, for a field $\psi \to U\psi$,

$$D_{\mu}\psi = (\partial_{\mu} - iA_{\mu})\psi \to U(\partial_{\mu}\psi - iA_{\mu}\psi)$$

$$+ \partial_{\mu}U\psi - \partial_{\mu}U\psi.$$
(2)

Consider the infinitesimal transformation,

$$U = 1 + i\omega^a T^a \tag{3}$$

Then expanding the transformation law for A_{μ} to first order in ω , and writing $A_{\mu} = A^{a}_{\mu}T^{a}$, etc.,

$$\delta A_{\mu} = i[\omega^{b}T^{b}, A^{c}_{\mu}T^{c}] - i \times i\partial_{\mu}\omega^{a}T^{a}$$

$$= 0f^{abc}\omega^{b}A^{c}_{\mu}T^{a} + \partial_{\mu}\omega^{a}T^{a}.$$

$$\tag{4}$$

In other words

$$\delta A^a_\mu = \partial_\mu \omega^a - f^{abc} \omega^b A^c_\mu. \tag{5}$$

Compare this with (remember that the generators in the adjoint representation are $T^a_{bc} = -if^{abc}$)

$$(D_{\mu}\omega)^{a} = \partial_{\mu}\omega^{a} - (-i)(-if^{bac}A^{b}_{\mu})\omega^{c}$$

$$- = \partial_{\mu}\omega^{a} + f^{abc}A^{b}_{\mu}\omega^{c}.$$
(6)

b. Implement the Fadeev-Popov procedure; derive the ghost lagrangian (you don't have to write hundreds of pages for this; just give a brief summary.

2. Feynman rules: derive the three gauge boson coupling and the ghost propagator and interaction terms.

Solution: The basic elements of the Fadeev-Popov procedure are pretty simple. One needs to study the integral over gauge transformations of

$$\delta(\partial_{\mu}(A^{\mu a} + \delta A^{\mu a}) \tag{7}$$

where $A^{\mu a}$ already satisfies the gauge condition (as always with δ functions, it is only necessary to work near the point where the δ function condition is satisfied). So, using our expression above for the gauge variation, δA , we have

$$\delta(\partial^2 \omega^a + f^{abc} A^{\mu b} \partial_\mu \omega^a). \tag{8}$$

So we need

$$\det(\partial^2 + f^{abc}A^{\mu b}\partial_{\mu}) = \int dc \, dc^{\dagger} \, exp\left(i\int d^4x c^{\dagger}(\partial^2 + f^{abc}A^b_{\mu}\partial_{\mu})c\right). \tag{9}$$

[Here, as in much of these notes, I am scaling A so that $1/g^2$ appears in front of the gauge boson kinetic term, and there are no factors of g in the couplings; one can rescale to obtain this more standard form.]

3. Higgs phenomenon: consider an O(3) (equivalent to SU(2)) gauge theory with Higgs fields in the adjoint representation. If we call the fields $\vec{\phi}$, take

$$V(\vec{\phi}) = -\frac{1}{2}\mu^2 |\vec{\phi}|^2 + \frac{\lambda}{4} |\vec{\phi}|^4.$$
(10)

Determine the pattern of symmetry breaking, and the mass of the gauge bosons (there is an unbroken gauge symmetry). Determine the charges of the gauge bosons under the remaining symmetry.

Solutions: By a gauge transformation, we can bring ϕ^a to the form

$$\phi^a = \frac{v}{\sqrt{2}} \delta^{a3}.\tag{11}$$

 v^2 satisfies

$$\frac{v^2}{2} = \frac{\mu^2}{\lambda}.\tag{12}$$

We can work out the gauge boson masses by going to unitary gauge. They then arise from

$$(D_{\mu}\phi)^{a2} = \epsilon^{abc}A^{b}_{\mu}\phi^{c}\epsilon^{ade}A^{d}_{\mu}\phi^{3}$$

$$= (\delta^{bd}\delta^{ce} - \delta^{be}\delta^{cd})A^{b}_{\mu}A^{d}_{\mu}\phi^{c}\phi^{e}$$

$$= A^{b}_{\mu}A^{\mu b}\phi^{c}\phi^{c} - A^{b}_{\mu}A^{\mu c}\phi^{b}\phi^{c}$$

$$= \frac{v^{2}}{2}(A^{\mu 1}A^{1}_{\mu} + A^{\mu 2}A^{2}_{\mu}).$$

$$(13)$$

Noting that the kinetic terms for the gauge bosons behave as

$$\frac{1}{2g^2} (\partial_\mu A^i_\nu)^2 \tag{14}$$

we see that the gauge bosons A^1_{μ}, A^2_{μ} have mass $g^2 v^2$, while A^3_{μ} is massless.

The masslessness of A^3_{μ} arises because ϕ is invariant under rotations about the 3 axis (in the isospin space). So this symmetry is unbroken. Correspondingly, the generator T^3 is unbroken. In Georgi and Glashow's original implementation of this model, this generator was identified with electric charge. The fields

$$W^{\pm}_{\mu} = \frac{1}{\sqrt{2}} (A^{1}_{\mu} \pm i A^{2}_{\mu}) \tag{15}$$

together form a complex field. They are charged under the U(1). You can check this, or think by analogy to spherical harmonics, where

$$Y_{1\pm 1} \propto (x \pm iy) \tag{16}$$

transform by a phase under rotations about the z axis. (To check it explicitly, you will first want to consider infinitesimal transformations).

Note that

$$(A^{1}_{\mu}T^{1} + A^{2}_{\mu}T^{2}) = \sqrt{2}(W^{+}_{\mu}T^{-} + W^{-}_{\mu}T^{+})$$
(17)

with

$$T^{\pm} = \frac{1}{2}(T^1 \pm iT^2) \tag{18}$$

are the usual raising and lowering operators (matrices) which enter in the theory of angular momentum.