1. Consider a supersymmetric version of the $SU(5)$ grand unified theory. Take Σ to be a chiral superfield in the adjoint representation, and take the superpotential to be

$$W(\Sigma) = m \text{Tr} \Sigma^2 + \frac{\lambda}{3} \text{Tr} \Sigma^3.$$

(1)

Verify that there are (up to gauge transformations) three stationary points:

$$\Sigma = 0; \quad \Sigma = \frac{m}{\lambda} \text{diag}(1, 1, 1, 1, -4); \quad \Sigma = \frac{m}{\lambda} \text{diag}(2, 2, 2, -3, -3)$$

(2)

What is the gauge symmetry in each of these vacua?

2. Consider a $U(1)$ gauge theory, with a neutral field, X, and two charged fields, ϕ^\pm.

a. Show that the D terms vanish if $\phi^+ = \phi^- = v$ in the vacuum, i.e. that there is a one complex parameter set of vacuum states.

b. For fixed v, compute the spectrum. Basically you should find a massive gauge field, a massive Dirac fermion, arising from the Yukawa couplings between the gaugino and the fermionic components of ϕ^+ and ϕ^- ($g\sqrt{2}\lambda(\phi^+\psi^+ - \phi^-\psi^-)$), and one more massive scalar. This scalar arises from expanding D about the vacuum; you should find

$$D \propto v \Phi$$

where Φ is a (real) scalar field; the square of this is a mass term for Φ.