
Physics 222. Quantum Field Theory. Professor Dine

Two Component Spinors

1 Writing a Relativistic Equation for Massless Fermions

If we were living in 1930, and wanted to write a relativistic wave equation for massless fermions,
we might proceed as follows. Write:

σµ∂µχ = 0. (1)

We want χ to satisfy the Klein-Gordan equation. This will be the case if we can find a set of
matrices, σ̄µ, which satisfy

σ̄µσν + σ̄νσµ = 2gµν . (2)

Unlike the massive case, we can satisfy this requirement with 2× 2 matrices:

σµ = (1, ~σ); σ̄µ = (1,−~σ). (3)

In momentum space, this equation is remarkably simple:

(E − ~p · ~σ)χ = 0. (4)

For positive energies, this says that the spin is aligned along the momentum. For negative energy
spinors, the spin is aligned opposite to the momentum.

Exercise: Write the mode expansion for χ(x), and identify suitable creation and destruction
operators.

To connect to four component spinors, it is convenient to adopt the following basis for the γ
matrices:

γµ =
(

0 σµ

σ̄µ 0

)
(5)

In this basis,

γ5 = iγoγ1γ2γ3 =
(

1 0
0 −1

)
, (6)

so the projectors

P± =
1
2

(1± γ5) (7)

are given by:

P+ =
(

1 0
0 0

)
P− =

(
0 0
0 1

)
. (8)

We will adopt some notation, following the text by Wess and Bagger:

ψ =
(
χα
φ∗α̇

)
. (9)

Correspondingly, we label the indices on the matrices σµ and σ̄µ as

σµ = σµαα̇ σ̄µ = σ̄µββ̇. (10)



This allows us to match upstairs and downstairs indices, and will prove quite useful. We define
complex conjugation to change dotted to undotted indices. So, for example,

φ∗α̇ = (φα)∗. (11)

Then we define the anti-symmetric matrices εαβ and εαβ by:

ε12 = 1 = −ε21 εαβ = −εαβ. (12)

The matrices with dotted indices are defined identically. Note that, with upstairs indices, ε = iσ2,
εαβε

βγ = δγα. We can use these matrices to raise and lower indices on spinors. Define φα = εαβφ
β,

and similarly for dotted indices. So
φα = εαβ(φ∗β̇)∗. (13)

Finally, we will define complex conjugation of a product of spinors to invert the order of factors,
so, for example, (χαφβ)∗ = φ∗

β̇
χ∗α̇.

With this in hand, the reader should check that the action for our original four component
spinor is:

S =
∫
d4xL =

∫
d4x

(
iχα̇σ̄

µα̇α∂µχα + iφασµαα̇∂µφ
∗α̇
)

(14)

=
∫
d4xL =

∫
d4x

(
iχασµαα̇∂µχ

∗α̇ + iφασµαα̇∂µφ
∗α̇
)
.

At the level of Lorentz-invariant lagrangians or equations of motion, there is only one irreducible
representation of the Lorentz algebra for massless fermions.

It is instructive to describe quantum electrodynamics with a massive electron in two-component
language. Write

ψ =
(
e
ē∗

)
. (15)

In the lagrangian, we need to replace ∂µ with the covariant derivative, Dµ. e contains annihilation
operators for the left-handed electron, and creation operators for the corresponding anti-particle.
ē contains annihilation operators for a particle with the opposite helicity and charge of e, and ē∗,
and creation operators for the corresponding antiparticle.

The mass term, mψ̄ψ, becomes:

mψ̄ψ = meαēα +me∗α̇ē
∗α̇. (16)

Again, note that both terms preserve electric charge. Note also that the equations of motion now
couple e and ē.

It is helpful to introduce one last piece of notation. Call

ψχ = ψαχα = −ψαχα = χαψα = χψ. (17)

Similarly,
ψ∗χ∗ = ψ∗α̇χ

∗α̇ = −ψ∗α̇χ∗α̇χ∗α̇ψ∗α̇ = χ∗ψ∗. (18)

Finally, note that with these definitions,

(χψ)∗ = χ∗ψ∗. (19)

Exercise: Starting with the action for the four component electron, with a mass term, work verify
the lagrangian in two component notation for the massive electron. Make sure to work out the
covariant derivatives.


