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Introduction: Some Simple Dimensional Analysis

Consider a theory with only massless fields, or at energy and
momentum scales so large that all masses may be neglected.
In this case, one might think that one could determine the
structure of any amplitude purely by dimensional analysis. For
example, at high energies in QED, one might guess that the
amplitude for elastic electron-electron scattering would take the
form:

A(q) =
f (e2)

q2 (1)

where f (e2) is some dimensionless function of the
dimensionless variable e2, which one might compute order by
order in perturbation theory, or in some other way.
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But we know that this isn’t quite right, once one takes into
account the ultraviolet divergences in the theory. In
perturbation theory, amplitudes depend also on logarithms of
q/µ2, where µ is a renormalization scale.
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Derivation of the renormalization group equations (scalar field
theory; generalization to other theories is easy):
Start with the form of the effective action at scale µ:

Leff = Z−1φ(∂2 −m2)φ− λ

4!
φ4 +

δ

µ2φ
6 + . . . .

The renormalized field, φ̃ is defined by a rescaling:

φ =
√

Z φ̃.

Now define the renormalized Green’s function:

〈φ(x1) . . . φ(xn)〉 = Z n/2〈φ̃(x1) . . . φ̃(xn)〉

= Z n/2G(x1, . . . , xn).
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The left-hand side of this equation is independent of µ; to see
this, remember that this is the Green’s function, not the effective
action. So we can write a differential equation for G by taking
the total derivative with respect to t = ln(µ) of both sides:

Z n/2(
∂

∂t
+ β(λ)

∂

∂λ
+

n
2Z

∂Z
∂t

)G

(
∂

∂t
+ β(λ)

∂

∂λ
+

n
2
γ)G = 0

where the “anomalous dimension,"

γ =
∂ ln Z
∂t

.
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This equation is known as the Callan-Szymanzik equation. We
can obtain what is known as the “renormalization group"
equation by dimensional analysis. Suppose we are interested
in a Green’s function in momentum space, G(p1, . . .pn).
Suppose also that all of the (Euclidean) momentum invariants
are comparable, i.e.

p2
i = x2

i M2; pi · pj = xijM2; xi , xij = O(1).

We can determine how G depends on M. Define

t = ln(µ2/M2).

Here we are using the fact that by dimensional analysis, all M
dependence is related to µ-dependence. It is convenient, if G
has naive dimension −d , to take

G = M−d f (t , xi , xij).
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Then f satisfies (why?)

(
∂

∂t
+ β(λ)

∂

∂λ
+

n
2
γ)f = 0

The solution can be found by the fluid mechanics analogy, or
simply by making a good guess. Define the running coupling
constant

λ̄(t) :
∂λ̄(t)
∂t

= β(λ̄(t)).

Then

f (t , λ,M) = f (λ̄(t))e−
∫ λ̄

λo
n
2

γ(λ′)
β(λ′) dλ′

.

Plugging in, one can see that this satisfies the original equation.
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One can consider, instead, the renormalization group equation
for terms in the effective action. Returning to the effective
action for φ, after the rescaling,

Leff =
1
2
φ(∂2 −m2)φ− Z 4/2 λ

4!
φ4 + Z 6/2 δ

µ2φ
6 + . . . .

The Z factors are just what are required to renormalize the
couplings, i.e. the terms in the effective action can be written in
terms of the renormalized couplings, plus explicit cutoff and µ
dependence in the original one-particle irreducible diagram (the
µ-dependence can be thought of as arising from the
counterterm).
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Let’s apply this to the renormalization of a fermion mass in a
non-abelian gauge theory. This is a term in the effective action.
At one loop, the mass renormalization is:

δm =
6CF g2

16π2 m ln(Λ/µ).

So the mass satisfies a renormalization group equation:

(
∂

∂t
+ β(g)

∂

∂g
+ γm)m = 0,

with γm = 6g2CF
16π2 . We know how to solve this equation:

m = moe−
∫ ḡ

go
n
2

γ(g′)
β(g′) dg′

= mo(
g(M)

go
)3 N2−1

Nbo .
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Wilsonian Description: Integrating Out
For simplicity we write the equations for φ4 theory. We consider
here a sharp momentum cutoff, integrating out physics between
the scales µ and bµ, b < 1. We break up the field, φ, into a low
momentum (“background", in the sense of the background field
method) and high momentum part:

φ = Φ + φ

Then, for φ4 theory, the action, up to terms quadratic in φ,
becomes:

L =
1
2

Φ(−∂2)Φ +
λ

4!
Φ4 +

1
2
φ(−∂2 +

λ

2
Φ2)φ.

So at one loop, the result of the φ integral is:∫
[dφ]exp(−

∫
d4xφ(−∂2 +

λ

4
Φ2)φ)

= det(−∂2 +
λ

4
Φ2)−1/2

where it is understood that the determinant is over
bµ < |k | < µ.
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To obtain the Φ4 term, expand the determinant:

Γ =
1
2

Tr ln(−∂2) + ln(1− ∂−2λ

2
Φ2).

The quadratic term gives the mass renormalization. The quartic
term is:

λ2

32
Φ4
∫ µ

bµ

d4k
(2π)4

1
k4

= 3
1
4!

λ2

16π2 ln(b).

(Note, by the way, how easy this calculation is in the
background field method). One can also compute higher order
terms in the effective action, by just expanding out the
logarithm. Because of the integration limits, these will come
with powers of 1

bµ .
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At this order, the effective action has the structure:

Γ =

∫
d4x(

1
2
∂Φ2−1

2
m2Φ2− 1

4!
(λ(1− 3

32π2 ) ln(b))Φ4+
1
µ2 Φ6+. . . )

It comes with cutoff bµ. We can change this to a theory with a
fixed cutoff by introducing k = k ′b, x = x ′

b . In terms of these,
the cutoff is µ, and the lagrangian has extra factors of b:

Γ =

∫
d4x ′(

b−2

2
∂Φ2 − b−4

2
m2Φ2

−b−4

4!
(λ(1− 3

32π2 ) ln(b))Φ4 + b−4 1
µ2 Φ6 + . . . )
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Rescaling φ→ bφ, gives:

Γ =

∫
d4x ′(

1
2
∂Φ2−b−2

2
m2Φ2−(λ(1− 3

32π2 ) ln(b))Φ4+b2 1
µ2 Φ6+. . . )

Note that as b → 0, the mass term becomes more important
(“relevant"), while the non-renormalizable terms become less
so. The Φ4 term flows more slowly.
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Fixed Points

Suppose the β function has a zero, as indicated in the figure:

β = ±C(g − go).

Then the running coupling is given by:

g − go = e±C(t).

So the running coupling goes to the fixed point either as
t = ln(µ/p)→ ∓∞. These are referred to, accordingly, as
ultraviolet or infrared fixed points. Operators of a given
anomalous dimension then tend to zero at the fixed points with
powers of p different than expected from classical dimensional
analysis. This is the origin of the term “anomalous dimension."
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The “Banks-Zaks" Fixed Point
In condensed matter physics, such conformal fixed points are
important in critical phenomena in range of systems, with
varying dimensionality. This is discussed in chapter 13 of your
text. There are now also a wide range of four dimensional field
theories known with non-trivial conformal fixed points. This has
emerged from the work of Seiberg; the theories of this sort
which are understood are supersymmetric (at some point, if we
do a supersymmetry course, we can discuss this).
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But there is a simple class of theories where a fixed point can
be found in perturbation theory. For these, we consider theories
with a large number of colors and flavors. It is simplest to
consider here also the supersymmetric case. Then, to two loop
order, the beta function is given by:

bo = −(3N−Nf )
g3

16π2 b1 = −[6N2−2NNf−4Nf
N2 − 1

2N
](

g2

16π2 )2g.

(2)
Vanishing of the beta function gives, to this order,

Nf = 3N − ε g∗2

16π2 =
ε

6N2 . (3)

Here we will think of N as extremely large, and ε as an integer
of order 1. There will be corrections to this result at higher
orders in g. In particular, at higher orders, g∗ is scheme
dependent.
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Note that near the fixed point,

g = g∗ + δ β = β′(g)δ = bδ =
ε2

3N2 δ (4)

So
δ(t) = δ(0)e−bt . (5)

One can consider the behavior of various quantities. For
example, one can add a small mass term for the scalar fields
and think of this as a perturbation. One finds that this runs
slowly to zero in the infrared. It is a “relevant" operator. At some
point, m > µ, and the theory is no longer conformal.
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Applications
Here I just mention a few:

1 The behavior of masses such as the proton mass in
asymptotically free theories:

mp = c µ e−
∫ dg′

β(g′) (6)

2 Behavior of high momentum/short distance quantities in
asymptotically free theories like QCD:

A ≈ f (g2(s)) (7)

At high energies, because the coupling is small, the behavior of
the amplitude can be computed (deep inelastic scattering, e+e−

annihilation, high transverse momentum scattering...)

3 Unification of masses in grand unified theories

4 Critical phenomena in statistical mechanics and condensed
matter physics

5 Two dimensional conformal field theories crucial in string theory
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Unification of fermion masses in grand unified
theories:

In SU(5), we have two types of allowed Yukawa couplings:

H1010 (8)

(where the indices are contracted with an ε tensor) and

H∗5̄10. (9)

The first coupling gives masses to the up type quarks; the
second to the down type quarks and to the leptons. In fact, for
each generation, ignoring mixing, this would predict:

md = m`. (10)
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This is clearly not a terribly successful prediction. There are
various types of phenomena which might correct them. For
example, consider non-renormalizable couplings involving the
adjoint field, Φ, and the various fields here. One such coupling
is: y

Mp
H∗i 5̄jΦ

i
k10kj (11)

This is a non-renormalizable coupling and we might be tempted
to ignore it. But assuming its coefficient is O(1/Mp), the effects
are not negligible for the light quarks; the ration 〈Φ〉/MP is of
order 10−2 − 10−3. So this yields a contribution to the first two
generation Yukawa couplings easily of the same order as the
renormalizable term.
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The third generation is more interesting. Here the tree level
relation is not wildly off (a factor of three) and much work has
gone intro trying to understand this. As for the gauge couplings,
we need to consider renormalization corrections. At very high
energies, much greater than the quark masses, we can treat
the mass terms as perturbative terms in the lagrangian, and
study their renormalization and their evolution with scale.
Indeed, we have already calculated the mass renormalization in
QED. In the case of a non-abelian group, the result (for fermions
in the fundamental representation, i.e. for SU(3) or SU(2), in
the case of the b and the τ ) one just multiplies by 1/2, for the
trace of the fermion generators. So, in the effective action,
integrating out physics between scale Λ and scale µ, we have

m0

(
1 + 3/2

g2

16π2 ln(
Λ2

µ2 )

)
ψ̄ψ (12)

where the g is that appropriate to either b or τ .
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From this, we can write a renormalization group equation for m:[
µ
∂

∂µ
+ β(g)

∂

∂g
+ 3

g2

16π2

]
= 0. (13)

The solution, to lowest non-trivial order in g2 is, from our
formulas above:

m(µ) = m(µ0)

(
α(µ)

α(µ0)

)3/b0

. (14)

(note that expanding in powers of g2 reproduces our formula
above). Since, for most of the range, the strong coupling is
largest, and the weak the second, we can estimate the size of
this effect by just including it; much more detailed and careful
analyses have been performed. Just using the observed values
for αs and mZ (about 0.1) and taking for the unified coupling
(about 0.04), and then evolving further to 5 GeV, I get
mb/mτ ≈ 2.34, vs. the observed valued of about 2.4. While
very crude, this is encouraging.
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