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Motivation: The Strong CP Problem and mu = 0
There are three plausible solutions to the strong CP problem.

1 Axions
2 Spontaneous CP Violation (Nelson-Barr mechanism)
3 mu = 0.

The last seems, at first, inconsistent with current algebra
estimates of meson masses. But, as pointed out by Kaplan and
Manohar, this may be naive (earlier work: MacArthur and
Georgi, others).
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This can be understood naively by thinking about instanton
effects in QCD. If mu = 0 at, say, 100 GeV, then instanton
corrections generate a u quark mass of order

mu =
mdms

λ
. (1)

where λ is an infrared cutoff. If λ = Λqcd , this is not much
different than the standard mu.
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Suppose, for a moment, that this is consistent with observed
facts of strong interactions. One can ask: how plausible is it
that mu = 0. After all, mu = 0 is not protected by any
(non-anomalous) symmetry.
But in response:

1 The same objection can be raised for the axion.

2 As for the axion, one can find explanations for a symmetry
violated only (or more precisely dominantly) by QCD.

In string theory, anomalous discrete symmetries common.
Could forbid mu. Broken only by stringy instantons, low
energy effects like QCD.
Models of quark masses (Leurer, Nir, Seiberg) often make
such a prediction.
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To determine these masses, the only tool we have is lattice
QCD; one fits to the spectrum as a function of quark masses (in
practice, one studies a lattice version of the chiral lagrangian).

With improvements in computing power and algorithms for
handling fermions, results for quark masses have been
obtained, especially by the MILC collaboration. For our
purposes the most important is mu, which is at least seven
standard deviations from zero.
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Table of quark masses from “ Nonperturbative QCD simulations with
2+1 flavors of improved staggered quarks", A. Bazavov et al, Reviews
of Modern Physics, Spring 2010. a = 0.06 Fm(?). (q ≈ 3 GeV).
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This subject is not without controversy. E.g. on the arXiv:

Skepticism about “rooted, staggered fermions", extrapolations. But I
won’t address these controversies directly today.
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This is a sufficiently important and dramatic claim that it is worthy of
scrutiny. There is, growing corroboration from other groups I should
say that if true, it will make me, many others very happy as it points
towards an axion; but precisely because of this, I would like to be
sure.
As always with experimental science, one would like to have a
calibration, i.e. an estimate of errors independent of the experimental
facts one is trying to explain. One would like some effect which one
could calculate analytically and compare with simulations. The beta
function at weak coupling is one such quantity. But we would like
something non-perturbative, specific to the chiral limit. Such an
objection would be theoretically interesting in its own right.
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Ancient history

Instanton calculations in QCD typically ir divergent. Not
surprising; a strongly coupled theory.
E.g. calculation of some quantity with dimensions of mass:

m = Λb0

∫
dρρb0−2. (2)

Similarly, our effective mu:

mu = Λb0mdms

∫
dρρb0 . (3)

In the bad old days, this lead to an elaborate program (Callan,
Dashen and Gross) to try and use instantons as the basis of a
solution of QCD. It was doomed to failure; there was no small
parameter which could be the basis of any systematic
approximation.
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Can one calculate short distance Green’s
functions?

Still in these bad old days, people asked: can one calculate
instanton contributions to short distance Green’s functions?
E.g. could one calculate such a contribution to Re+e− , by
computing an instanton correction to Πµν for Euclidean
separations, and continue to Minkowski space. But even for
short distances, one finds Π is infrared divergent.
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Typical expression in coordinate space:(schematic):

〈Jµ(x1)Jν(x2)〉 ∼ (gµν∂2 − ∂µ∂ν) (4)

×
∫

dρΛb0ρb0−1 d4x0

[(x1 − x0)2 + ρ2]2[(x2 − x0)2 + ρ2]2

The qualitative features of this result follow from dimensional
analysis. For large ρ, this behaves as dρρb0−5 (diverges unless
nf > 9).
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Appelquist and Shankar, Gross and Andrei, and Ellis and
collaborators noticed that the Fourier transform of Π is infrared
finite. Traces to fact that Fourier transform of instanton solution
(and zero modes, etc.) behaves as∫

d4x
eip·x

(x2 + ρ2)2 ∼ e−pρ.

Results fall as high powers of momentum.
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Suggests a lattice calibration. Calculate momentum space
Green’s functions which have no perturbative contribution, and
take Fourier transform. E.g., in three flavor, massless QCD:

∆(x) = 〈ū(x)u(x)d̄(0)d(0)s̄(0)s(0)〉. (5)

Fourier transform will behave as:

∆(p) =
Λ9

p5 . (6)

Very rapid fall off with momentum, so probably impossible in
practice. But proof of principle?
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What can we actually calculate?

Finiteness is fine, but are these actually the dominant
contributions to anything?

Why can’t we calculate quantities at short distances?

Organize using the language of the operator product
expansion.
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Start with QCD with two flavors. Consider the operator:

ū(x)u(x)d̄(0)d(0) (7)

In perturbation theory, the leading term on the right hand side is
non-singular,

ū(x)u(x)d̄(0)d(0) ∼ (1 +O (αs(x))) ū(0)u(0)d̄(0)d(0) (8)

The matrix elements of the operator ū(0)u(0)d̄(0)d(0) are
infrared divergent in an instanton background. This why there is
an ir divergence in this correlation function, even at short
distances.
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In momentum space, this translates to δ(p), 1/p4.

If claiming to isolate an instanton effect, would require 1/pa,
a < 4.
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The unit operator

Beyond perturbation theory, the unit operator can appear in the
expansion. Consider N colors, Nf flavors. Study maximally
chirality violating Green’s functions:

∆(x) = 〈
Nf−A∏
f=1

q̄f (x)qf (x)

Nf∏
g=Nf−A+1

q̄g(0)qg(0)〉 (9)
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OPE

Nf−A∏
f=1

q̄f (x)qf (x)

Nf∏
g=Nf−A+1

q̄g(0)qg(0) + . . . (10)

= C(x) + D(x)

Nf∏
f=1

q̄f (0)qf (0)

D(x) has the form 1 + aαs(x); it is logarithmically singular in
perturbation theory. It’s Fourier transform behaves roughly as
1/p4.

If generated by instantons C(x) has the form

C(x) ≈ Λ11/3N−2/3Nf |x |11/3N−11/3Nf . (11)

So power law singularity if Nf > N, non-singular (i.r. divergent) if
Nf < N, borderline (logarithm) if Nf = N.

SU(2) with three flavors first interesting (singular at short distances)
case.
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Momentum space:

C(p) ∼ Λ11/3N−2/3Nf p−4p(11/3Nf−11/3N) (12)

Lesson: if instanton contributions are to dominate, the
coefficient of the unit operator in the OPE must be singular.
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The Instanton Computation

Verification that infrared finite.

Fermion zero modes:

qi
α = ρ

√
2
π

δi
α

[(x − x0)2 + ρ2]3/2 , (13)

So

∆(x) = C
∫

d4x0dρ
(Λρ)

11
3 N− 2

3 Nf ρ3Nf−5

[(x − x0)2 + ρ2]3A[x2
0 + ρ2]3(Nf−A)

(14)

where C is a constant obtained from the non-zero modes, x0
and ρ are the translational and rotational collective coordinates.
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Perform the integral over x0 using Feynman parameters:

∆(x) = C′
∫

dα[α3A−1(1− α)3(Nf−A)−1]dρ
(Λρ)

11
3 N− 2

3 Nf ρ3Nf−5

[x2α(1− α) + ρ2]3Nf−2 .(15)

For large ρ:

∆ ∼
∫ ∞
|x |

dρ
ρ
ρ

11
3 (N−Nf ). (16)

The integral converges for large ρ if Nf > N, exhibits a power
law divergence for Nf < N, and diverges logarithmically for
Nf = N.
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Significance of the Infrared Divergences:

In the infrared divergent cases, the divergent part is identical to
the (similarly ill-defined) instanton contribution to 〈O1(0)O2(0)〉.
For Nf < N, the (cutoff) integral is non-singular for small x ,
corresponding to non-singular corrections to the coefficients of
operators appearing in the OPE.
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For the case Nf = N, the expression also has a logarithmic
singularity for small x , indicating the appearance of the unit
operator in the OPE, with a coefficient function behaving as
log(x). It is necessary to define the operators appearing in
these expressions at a scale M, and this introduces a mass
scale both into the matrix element and into the coefficient of the
unit operator.

We see that the coefficient of the unit operator is proportional to
a single power of a logarithm. We will see that the unit operator
can dominate, but only by a fractional power of a logarithm.
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Systematic approximation for small x

Two types of contributions to ∆:
1 Perturbative corrections to the instanton: For Nf > N, the

contributions to the unit operator are infrared finite.
Controlled by αs(x).

e
− 8π2

g2(x)

(
1 +

∑
cnαs(x)n

)
. (17)

2 Dilute gas contributions to the leading instanton result:
These are infrared divergent, but the divergence, again, is
a contribution to the matrix elements of higher dimension
operators.

So calculation is systematic.
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Dilute gas corrections to the single instanton result

Michael Dine QCD Instantons: SUSY and NOT



For Nf = N at best the instanton wins (or loses) by a power of a
logarithm. To analyze one must compute the anomalous
dimensions of the various operators appearing in the OPE.
Indeed one finds that for suitable operators, the instant on does
win. Will interesting in principle, in practice, e.g. in a lattice
computation, this would be numerically hard, if possible at all.
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Applications to Lattice Gauge Theory

Real lattice computations: finite quark masses (mq ≥ 10 MeV).
So correlation functions like ∆ receive contributions already in
perturbation theory. It is necessary that quark masses be very
small if the instanton computation is to dominate.
E.g. SU(2) with three flavors:

〈O1(x)O2(0)〉 = C
Λ16/3

x11/3 (1 +O(αs(x))). (18)

where

C = 9× 103 Λ16/3 = µ16/3e
−8π2

g2(µ) (19)

in the MS scheme.
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With finite quark mass, helpful to consider operators with parity
properties such that they have vanishing expectation values
(acknowledgment to Steve Sharpe). Then leading diagrams are
high loop, so suppressed both by quark masses and αs, and
seem small enough, given masses used in practice.

So tests of lattice computations seem feasible, and potentially
interesting.
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Feynman diagram including mass insertions giving a
perturbative contribution to the correlator.
Behaves as αs(a)3mumdmsa−3.
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Applications to Supersymmetric Gauge Theories

Novikov, Shifman, Vainshtein, Zakharov: (1982- ) – in a
program with far reaching implications, studied instanton
contributions in supersymmetric gauge theories.
Prototype: SU(2) gauge theory, with chiral fermions in the
adjoint representation (gluinos), λ.

∆(x) = 〈λ(x)λ(x)λ(0)λ(0)〉 (20)
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Supersymmetry implies that this correlator is independent of x .
Argued

1 One can compute at short distances. Found a finite result
(i.e. no ir divergence) for the leading contribution:

∆(x) = CΛ6 (21)

2 There is a non-renormalization theorem, and no
corrections to the result.

3 Taking x large, by cluster, gives value of gluino
condensate.
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Inconsistent, however, with result obtained using arguments of
Seiberg.

Calculate in theory with a single quark flavor of mass m. For
small m, compute < λλ > (or ∆). Find discrepancy by a
constant factor (3/5).

What went wrong?

Does analysis in terms of OPE provide insight?
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Some observations:
1 We have seen that short distance, by itself, does not guarantee

calculability.

2 If there are infrared divergences, these can lead to order one
corrections. E.g.

δ∆ = Λ6
∫

dρ
ρ

g2 = g2 log(M/λ) (22)

with λ an ir cutoff. λ ∝ (Me
−8π2

g2 ) gives an order one correction
(consistent with holomorphy).

3 Non-perturbatively (dilute gas corrections)

δ∆ =
Λb0 (Λ̄Λ)nb0

λ2nb0
(23)

behaves like the lowest order result, up to a numerical constant.

We will demonstrate that this is the issue.
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Exact β function

Novikov, Shifman, Vainshtein and Zakharov: exact instanton result

〈λλ2N ≈ 1

g2Ne− 8π2

g2 M3N

leads to an “exact beta function":

β(g) = −
3N g3

16π2

(1− 2N g2

16π2 )
. (24)

Agrees with two loop beta function (universal). But beyond two loops,
scheme dependent. What is the scheme? Here a simple explanation
(building in part on work of Arkani-Hamed and Murayama) of the
result, and a clear identification of the scheme – and why it is not
singled out by any compelling physical consideration.
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Observation of AHM: N = 4 theory, suitably deformed, can
serve as a (holomorphic) regulator for the N = 1 theory.

In a popular presentation of the theory, in N = 1 language,
there are three adjoint chiral fields, Φi , i = 1,2,3, and an SU(4)
R symmetry.

L =

∫
d4θ

1
g2 Φ†i Φi −

1
32π2

∫
d2θ

(
8π2

g2 + iθ
)

W 2
α (25)

+

∫
d2θ

1
g2 Φ1Φ2Φ3 + c.c.

Action is not manifestly holomorphic in τ . To exploit the power
of holomorphy, necessary to rescale the adjoints so that there
are no factors of g in the superpotential:

Φi → g2/3Φi . (26)
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We can add mass terms for the Φi ’s (for simplicity, we will take
all masses the same, but this is not necessary, and allowing
them to differ allows one to consider other questions):

L =

∫
d4θ

1
g2/3 Φ†i Φi −

1
32π2

∫
d2θ

(
8π2

g2 + iθ
)

W 2
α (27)

+

∫
d2θ(Φ1Φ2Φ3 + mholΦiΦi + c.c.).

Holomorphic presentation of the N = 4 theory.
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Under a renormalization group transformation (a change from
cutoff m(1)

hol to m(2)
hol ,

8π2

g2(m2)
=

8π2

g2(m1)
+ 3N log(m(2)

hol/m
(1)
hol) (28)

But the holomorphic masses don’t correspond to the masses of
physical particles; these are, at tree level:

mphys = g2/3mhol . (29)

Substituting in the eqn. for g, yields the NSVZ beta function.
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So it is tempting to say that the NSVZ scheme is that
associated with the physical masses of the cutoff fields, i.e.
some “physical" cutoff scale. However, at higher orders, the
actual physical masses of the adjoints receive perturbative
corrections (indeed already at one loop). So the NSVZ scheme,
beyond two loop order, while easy to specify, is just one of an
infinite class of schemes:

mcut = g2/3(mcut )(1 +
g2

16π2 f (g2))mhol . (30)
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An alternative regulator is provided by the compactification of
the theory on R3 × S1 (Hollowood, Mattis, Dorey...). This is
essentially a three dimensional gauge theory with scalars (A4)
in the adjoint representation. The theory has a classical flat
direction (SU(2))

A4 = v
σ3

2
. (31)

In this theory, the simplest instantons are (from a four
dimensional perspective) static magnetic monopoles. There are
actually two types of monopoles, the usual BPS monopole, and
a transformation of the monopole (the “KK monopole) by

U = e−i πx4
β
σ3 . (32)
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One can compute a superpotential in this theory; the potential
has two minima, corresponding to breaking the Z2 symmetry. In
each vacuum, one can calculate 〈λλ〉 by summing the
contributions from these two monopoles (each of which has two
zero modes),

〈λλ〉 = 〈λλ〉BPS + 〈λλ〉KK , (33)

remarkably obtaining the weak coupling result for the
condensate.
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To understand the failure of the strong coupling calculation,
study:

∆(x) = 〈(λ(x)λ(x)) (λ(0)λ(0))〉. (34)

This is generated by instantons which can be described as
monopole pairs. We can label the three types of solution as
BPS − BPS, BPS − KK , and KK − KK . Consider, first, the limit
|x | � β. Then ∆ will be generated by configurations where one
monopole is near x and one near 0. For large separations we
have

∆ = 〈(λλ)(λλ)〉BPS−BPS + 〈(λλ)(λλ)〉BPS−KK + 〈(λλ)(λλ)〉KK−KK (35)

= 〈λλ〉〈λλ〉.

Michael Dine QCD Instantons: SUSY and NOT



To compare with the strong coupling calculation, we are
interested in the opposite limit, |x | � β. Because the
correlation function is a constant in x , the result obtained by the
simple, factorized computation still holds in this other limit.

The BPS-KK instanton is known explicitly from finite
temperature studies (Lee). If one takes the limit β →∞, this
solution reduces to the infinite volume solution.

Much is known about the BPS-BPS solution, though an analytic
form is not available. It is independent of x4. So it cannot lead,
in general, to O(4) invariant expressions for Green’s functions.
On the other hand, its contribution to 〈λλ〉 is a constant. So this
is a contribution to 〈λλ〉 which survives in the large β limit. The
KK − KK instanton contributions are identical to the
BPS − BPS contributions.
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The BPS-KK instanton, while formally identical to the infinite
volume theory at large β, also makes a different contribution
than that found by NSVZ. This is because the limit β →∞ does
not commute with the collective coordinate integrals.
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We can summarize as follows. If one works in the formal infinite
volume limit, there is no systematic computation of ∆; the
infrared is not under control, and there is no approximation
scheme. In a situation where systematic computations are
possible, an infrared cutoff is present. There are contributions
to ∆ which survive in the limit the cutoff is taken to infinity, So
the formal infinite volume result has, as expected, infrared
sensitivity.

By definition, contributions in the winding number one
sector from configurations which are not identical to the
usual instant are, at infinite volume,
instanton-anti-instanton effects.

So it is the dilute gas which is the problem, as expected.
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THE END
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