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Usually speak of three solutions of the strong CP problem

1 mu = 0
2 Spontaneous CP violation with nearly vanishing θ

(“Nelson-Barr" or NB)
3 The axion, or the Peccei-Quinn symmetry

There are others (e.g. Hiller and Schmaltz, Anson Hook) which
can be shoehorned into this classification scheme).
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Among naturalness problems, the strong CP problem is special
in that it is of almost no consequence. We don’t have to invoke
anthropic selection to realize that if the cosmological constant
was a few orders of magnitude larger than observed, the
universe would be dramatically different. The same is true for
the value of the weak scale and of the light quark and lepton
masses. But if θ were, say, 10−3, nuclear physics would hardly
be different than we observe, since effects of θ are shielded by
small quark masses.

So while theorists may be endlessly clever in providing
solutions to the problem, we might choose to be guided by a
principle that the smallness of θ should be a consequence of
other aspects of physical theory, or, at the least, a plausible
accident of features of an underlying theory.
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One goal today is to ask to look at how each of these solutions
might fare under this principle. Needles to say, this will require
us to be at least somewhat precise about what these solutions
are and how they differ (and not least whether this
characterization is in some sense exhaustive).
I come at this with a bias, and can readily twist things to get the
result I want. But it should be clear that, at least within the
present state of our knowledge of what a complete theory of
high energy physics might look like (string theory in its various
guises) we can not make a statement divorced from prejudice.
The mu = 0 and axion solutions have been subjected to the
greatest scrutiny under this principle, so I will devote a
disproportionate amount of time to the NB solution.
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Outline

mu = 0.
1 Theoretical justifications
2 Lattice status and a proposed calibration of lattice

measurements of mq
3 Generalizations

The axion: PQ Quality
Nelson-Barr

1 Loop corrections at low energy and insensitivity to high
energy physics

2 Role of axions (and reprise for mu = 0)
3 Nelson-Barr in a landscape
4 Tuning of parameters at tree level
5 Loop Corrections

Michael Dine Solutions of the Strong CP Problem: A Scorecard



mu = 0

If mu = 0, one can rotate away θ. More precisely, one requires

mu

md
< 10−10. (1)

There are two issues with this proposal:
1 Why might mu be so small?
2 We can measure mu (with the help of the lattice). Is this

consistent with lattice results?
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Accounting for small mu

Banks, Nir, Seiberg put forward models which, in accounting for
quark flavor, gave rise to small or zero mu.

A simple possibility is suggested by string theory, which often
exhibits anomalous discrete symmetries; more precisely, the
chiral content of the theory is anomalous, with the anomaly
being cancelled by the non-linear transformation of an
axion-like field. In the supersymmetric case, this means that
one has a modulus field, coupling to the ū quark as

e−ΦQHU ū. (2)

One requires that the exponential be very small, but this is
plausible. One can speculate as to whether or not a suitable
discrete symmetry structure is typical of underlying theories.
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How might mu = 0 be consistent with known facts
of hadron physics

Instantons suggestive (Georgi-McArthur). With three light
quarks, generate an effective u quark mass (two point function)
proportional to mdms. Simple dimensional analysis suggests
the effect goes as

mdms

Λ
(3)

with Λ a suitable QCD scale. This could easily be of order the
few MeV expected from current algebra. Kaplan and Manohar
expressed this as an ambiguity in current algebra, i.e. they
isolated a term and second order in quark masses which could
mimic the effects of a u quark mass.
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Current algebra analysis

(Follows treatment of Banks, Nir, Seiberg)

Leading order chiral Lagrangian:

L2 =
F 2

4
Tr

(
∂µU†∂µU

)
+

F 2

4
Tr

(
χ†U

)
+ c.c. (4)

χ = 2MB0 , U = ei λ
AπA
F , (5)

M is the quark mass matrix, and B0 is proportional to the
magnitude of the chiral condensate.
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The second order operator

L ⊃ r1

(
Tr(χ†Uχ†U)− Tr(χ†U)2

)
, (6)

can mimic the effects of a u quark mass. Indeed, by a
redefinition of χ, r1 can be eliminated, providing an effective
contribution to mu of order mdms. Alternatively, having fixed the
ambiguity by requiring – for instance – that M is proportional to
the UV quark mass matrix in a precisely specified scheme, a
value of r1 (of order 10−3 and a small value of the bare mu
would be compatible with the observed pseudoscalar meson
masses.
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The KM transformation is not a symmetry of QCD. In a lattice
computation with fixed bare masses and small lattice spacing,
one can take M to be the bare mass matrix. Then, for example,

m2
π = β1(mu + md ) + β2ms(mu + md ) +O(m2

u,d ) . (7)

Typical lattice calculations are done with mu(a) = md (a) ≡ m̂.
The parameters β1 and β2 can be extracted on the lattice by
varying m̂ and ms(a) independently; e.g.,

β2

β1
≈

m2
π1
−m2

π2

m2
π2

ms1 −m2
π1

ms2

. (8)
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Require

β2

β1
≈ 5 GeV−1. (9)

Lattice results are quoted in terms of Gasser-Leutweyler
parameters. From quoted lattice results we estimate

β2

β1
≈ (1) GeV−1. (10)

The error bars are large, but the ratio is far too small to account
for the effects of the u quark mass. However, β2/β1 is a
fundamental prediction of QCD and it would be interesting to
see a dedicated study with increased precision. It would
provide another demonstration of mu 6= 0, as well as a probe of
the contribution of small instantons to the chiral lagrangian.
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Summary of lattice results for light quark masses

Current results from lattice simulations (summarized by the
FLAG working group)

mu = 2.16 (9)(7)MeV md = 4.68 (14)(7)MeV ms = 93.5(2.5)MeV (11)

Numbers are in MS scheme at 2 GeV.

So mu is many standard deviations from zero.
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Aside: A lattice test

Arguably this is the end of the story. But the calculations are
complicated and the stakes are high (indeed, the question of
whether mu is consistent with zero would seem the most
interesting question for light quark physics on the lattice).

One possible test of error estimates. Singular parts of certain
Green’s functions, in the massless limit, calculable from
instantons. Roughly objects like:

G(x) = 〈ū(x)u(x)d̄(x)d(x)s̄(0)s(0)〉 (12)

With two colors, leading term behaves as

G(x) = C
Λ16/3

|x |11/3 (13)

Coefficient is known; there is a systematic expansion in powers
of g(x). Analysis for N = 3 slightly more involved because a
borderline case.

Challenging, but given small masses and lattice spacings
currently accessible, may be possible.Michael Dine Solutions of the Strong CP Problem: A Scorecard



Axion Quality

Global symmetries should arise only as accidents of gauge
symmetry and the structure of low dimension terms in an
effective action. It has been recognized almost from the
beginning that this is a challenge for the axion solution of the
strong CP problem.

We can define an axion quality factor, Qa, as

Qa =
fa
∂Vpq−v (a)

∂a
m2
πf 2
π

(14)

where Vpa−v is the PQ-violating potential. Solving the strong
CP problem requires

Qa < 10−10 (15)
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In a conventional effective field theory analysis (i.e. finite
number of degrees of freedom above fa), this is quite a
challenge. If

〈Φ〉 = faeia/fa (16)

symmetry violating operators like

Φn+4

Mn
p

(17)

make too large a contribution to Qa even for fa = 1011 GeV
unless n > 7. We might try to achieve this with a discrete ZN ,
but this requires N = 11 at least, which certainly violates our
minimalist principle.

Michael Dine Solutions of the Strong CP Problem: A Scorecard



Axions in string theory

Witten pointed out early on that string theory provides a
possible resolution to this conundrum.

This is most easily understood in the framework of
supersymmetry. Typically string models possess moduli, Φ,
whose imaginary component obeys a discrete shift symmetry:

Φ = x + ia; a→ a + 2π (18)

This insures, for example, that any superpotential is a function
of e−Φ at large x . Here x might be 8π2

g2 for some gauge coupling
g.
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So the issue becomes: why or whether the theory sits in an
asymptotic region of the moduli space where e−x is very small.
One can put forward various scenarios (and this is consistent at
least with the fact that the observed gauge couplings are
small), but reliable computations are not possible at present.
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The Nelson-Barr mechanism

Invokes spontaneous CP violation to argue “bare θ" is zero.
Constructs a mass matrix such that CP breaking gives a large
CKM angle (as observed, δ = 1.2) with arg det mq = 0.

Such a structure is perhaps made plausible by string theory,
where CP is a (gauge) symmetry, necessarily spontaneously
broken. Some features of the required mass matrices appear,
e.g., in Calabi-Yau compactifications of the heterotic string.
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Simple realization of the NB structure

Complex scalars ηi with complex (CP-violating) vev’s.
Additional vectorlike quark with charge 1/3.

L = µq̄q + λifηi d̄f q + yfgQf d̄gφ (19)

where φ is Higgs; y , λ, µ real.

M =

(
µ B
0 md

)
(20)

Bf = λifηi . This has real determinant.

The structure is reminiscent of an E6 gauge theory, which has
the requisite vector-like quarks and singlets.
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Requirements for a successful NB Solution

1 Symmetries: It is important that ηi not couple to q̄q, for
example. So, e.g., η’s complex, subject to a ZN symmetry.

2 Coincidences of scale: if only one field η, CKM angle
vanishes (can make d quark mass matrix real by an overall
phase redefinition). Need at least two, and their vev’s
(times suitable couplings) have to be quite close:

δCKM ∝
Bsmall

Blarge
(21)

3 Similarly, µ (which might represent vev of another field) can
not be much larger than ηi , and if much smaller the
Yukawa’s and B’s have to have special features.
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Constraints on the Overall Scale

Before considering radiative effects, possible higher dimension
operators in L constrain the scales ηi , µ. E.g.

η∗i ηj

Mp
q̄q (22)

requires |η|Mp
< 10−10.
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Barr-Nelson With/Without Supersymmetry

Without supersymmetry, highly tuned. Two light scalars and µ
(or three light scalars). Far worse than θ.

Even ignoring that, require close coincidence of scales.

Supersymmetry helps. Allows light scalars. Coincidences still
required (and typically more chiral multiplets to achieve desired
symmetry breakings – typically seven in total). Some of the
high dimension operators better controlled (e.g. if µ, ηi much
larger than susy breaking scale, don’t have analogs of the
η∗i ηj q̄q operator).
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Axions in the NB Scenario

What does it mean that the “bare" θ is naturally zero in a model
which is CP-conserving at some underlying level? String theory
provides a realization. Here one might mean that the vev’s of
the moduli are CP conserving, i.e. that the various axions have
vanishing vev. These axions might be presumed to be heavier
than the conventional QCD axion (otherwise they would provide
a PQ resolution of strong CP). Such masses could arise from
strong string effects, or other strong gauge groups.

So NB might be considered a particular limit of the PQ picture.
Here it is not necessary that the quality be particular good,
provided that arg det mq ≈ 0 and the axion coupling to the fields
which break CP is weak enough.
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How plausible is θbare = 0

Thinking of “θbare" as the expectation value of some axion-like
field, one can ask: how likely is it that this quantity vanishes.
One model: flux landscapes. Here, “KKLT" we might consider a
model with a superpotential

W = e−Φ/b + W0. (23)

Looking at supersymmetric stationary points, the value of the
axion depends on the phase of W0. θbare = 0 requires that W0
is real.

In a landscape, this is likely to be extremely rare. Roughly
speaking requires that all CP-odd fluxes (presumably 1/2)
should vanish. Exponential suppression.
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Loop Corrections at Low Energies

Note, first, that loop corrections to θ in the Standard Model are
highly suppressed. Focussing on divergent corrections, one
requires Higgs loops. These involve the Hermitian matrices

A = y†dyd ; B = y†uyu (24)

Contributions to θ are proportional to traces of the form

Tr(ABA2B . . . ) (25)

one additional matrix factor for each loop. It is easy to check
that the first complex combination involves six matrices, e.g.

Tr(ABA2B2) (26)

but this and its complex conjugate both appear with the same
coefficient. It is necessary to add a U(1) gauge loop (which
distinguishes u and d) to have the possibility of a complex
traces. [Ellis, Gaillard]
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Loop Corrections in Nelson-Barr

In the non-supersymmetric case, in the simplest model,
potential corrections arise at three loops. These will constrain
modestly the various coupling constants.

If there are new light degrees of freedom, these can be more
problematic. This is well-known for the case of supersymmetry,
where phases in gaugino masses, and in the squark masses
can lead to large corrections.
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Constraints on new degrees of freedom
(discussions with S. Thomas)

While we have noted that NB does not require new degrees of
freedom, what is perhaps more interesting is that it does not
admit (or does not admit without great difficulty) new degrees of
freedom.

E.g. Extra Higgs doublets: phases in HUHD terms in potential
(and others). In non-susy case, potentially huge contributions
from ηiη

∗
j HUHD, etc. Lead to large relative phases in quark

mass matrices.
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Supersymmetry breaking and Nelson-Barr

Many possible phases once allow soft breaking Note: these
effects don’t decouple for large susy-breaking scale. E.g.
is susy breaking described by Goldstino superfield, X ,
superpotential couplings

Od

Md−2
p

X (27)

where 〈O〉 is complex can lead to large phases in soft
breakings. Similarly phases in W . Phases in gaugino masses
feed directly into θ.
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Phases in neutrino masses

In the nonsupersymmetric case, we have seen that the scale of
CP violation must be rather low, possibly less than 108 GeV.
This is a low scale compared to the scales at which we
generally suspect neutrino masses are generated. So NB
would strongly point to a real PMNS matrix. Leptogenesis
unlikely as the origin of the matter-antimatter asymmetry.
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Conclusions

Each proposed solution to the strong CP problem raises
troubling questions. We have argued, indeed, that θ is of so
little importance that any solution should be an outcome of
some other constraint on the physical theory. Solutions which
require many additional degrees of freedom, intricate
symmetries, or significant fine tuning have little plausibility.
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1 A very light u quark might be a consequence of horizontal
symmetries, or might arise as a result of the anomalous discrete
symmetries which seem ubiquitous in string theory. However,
there are now lattice computations which appear to definitively
rule out the possibility.

2 The axion raises the issues of the quality of the PQ symmetry.
String theory suggests a plausible answer, but our
understanding is limited.

3 Nelson-Barr: The basic premise, that if the underlying theory is
CP conserving, the “bare" θ vanishes, is open to question; it
requires an understanding of how certain moduli are stabilized,
and in a landscape would seem unlikely.
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Still more issues for Nelson-Barr:

These questions aside, without supersymmetry, the NB models
are constrained to relatively low scales and highly tuned to
achieve arg det mq, while reproducing observed KM angle. We
have noted that one requires several fields, with very similar
expectation values, well below the Planck scale.

Even in a supersymmetric framework, one requires several
fields (typically more than six), a close coincidence of scales,
and large (but not as large as for the axion) discrete
symmetries. None of these features are obvious ingredients to
explain some other question, though conceivably in theories of
flavor some of them might arise.
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Other solutions

1 Hiller-Schmaltz: essentially a variant on Barr-Nelson. CP
violation arises in kinetic terms of supersymmetric fields.
Requires strong couplings to obtain large δCKM and poses
other issues microscopically.

2 Anson Hook: Z2 relates two copies of the Standard Model;
additional fields transform under an approximate chiral
U(1). Only one θ parameter. Breaking of Z2 allows “other"
QCD to remove θ. Interesting low energy consequences.
Similarities to massless u quark solution.
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I will leave it to you to make a final scoresheet, and a viewpoint
on which solution of the strong CP problem is the most likely.
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