
Physics 116A Winter 2010

Asymptotic Power Series

In this note, I will define an asymptotic power series, and contrast its definition
with that of a convergent power series. All convergent power series are in fact
asymptotic series. However, an asymptotic power series may be convergent or
divergent.

We first consider a power series of a function f(x) expanded about the point
x = a (where a is finite; the point a = 0 is the most common example). Given a
power series approximation to f(x), we may write

f(x) = f(a) +

N
∑

n=1

cn(x − a)n + RN(x) . (1)

where RN(x) is the remainder term. By Taylor’s theorem,

cn = f (n)(a)/n! , (2)

where f (n) ≡ (dnf/dxn)x=a. The power series in eq. (1) is convergent if

lim
N→∞

[

f(x) −

N
∑

n=0

cn(x − a)n

]

= 0 , for |x − a| < r .

That is, for any value of x whose distance from a lies within the radius of conver-
gence r, limN→∞ RN (x) = 0. A convergent power series of f(x) equivalent to its
Taylor series expanded about x = a.

In contrast, to determine whether a power series is asymptotic, we fix N and
study the behavior or RN(x) in the limit of x → a. Since we never take N to
infinity, the question of convergence or divergence does not enter. The power
series of eq. (1) is asymptotic as x → a if

lim
x→a

1

(x − a)N

[

f(x) −

N
∑

n=0

cn(x − a)n

]

= 0 , for any fixed finite value of N. (3)

Using the definition of the big-oh (order) symbol, the remainder term of an
asymptotic power series satisfies

RN(x) = O((x − a)N+1) . (4)

This simply means that limx→a RN (x)/(x − a)N+1 is a finite constant (which is
independent of x). Explicitly, we have

lim
x→a

1

(x − a)N

[

f(x) −
N

∑

n=0

cn(x − a)n

]

= lim
x→a

(x − a)[cN+1 + O((x − a)2)] = 0 .
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It should be clear that eq. (4) is also satisfied by a convergent power series. Con-
sequently, any convergent power series is automatically an asymptotic series. Of
course, one may sum all the terms in a convergent series from n = 0 to ∞ to get
a unique answer. For a divergent asymptotic series, this is not possible. Never-
theless, it is common practice to write:

f(x) ∼

∞
∑

n=0

cn(x − a)n , as x → a , (5)

for a divergent asymptotic series. This notation should be understood to mean
that one only sums a finite number of terms and uses the remainder term [as
defined in eq. (1)] to estimate the error.

Given a function of f(x) with a well defined limit as x → a, the coefficients of
the asymptotic power series are still given by eq. (2). One can also determine the
coefficients by using the following formula [which is a consequence of eq. (4)]:

lim
x→a

1

(x − a)N+1

[

f(x) −

N
∑

n=0

cn(x − a)n

]

= cn+1 n = 0, 1, 2, . . . .

Here, c0 = f(a), and the coefficients are determined in order starting with c1.
Clearly, the asymptotic series of f(x) as x → a is unique. However, the

converse is not true. That is, given an asymptotic series as x → a, the function
that is asymptotic to this series is not uniquely defined. The reason for this is that
there are functions whose asymptotic series are equal to zero. For example, the
function e−1/x2

is asymptotic to zero as x → 0 since limx→0 [e−1/x2

−0]/xN = 0. In
the notation of eq. (5), we shall write e−1/x2

∼ 0 as x → 0. That is, exponentially
small terms are subdominant to the power law terms that define the asymptotic
expansion.

To summarize, convergence is an absolute concept; it is an intrinsic property
of the expansion coefficients cn. One can prove that a series converges without
knowing the function to which it converges. However, asymptoticity is a relative

property of the expansion coefficients and the function f(x) to which the series
is asymptotic. To prove that a power series is asymptotic to f(x) as x → a, one
must consider both f(x) and the expansion coefficients. In particular, every power
series is asymptotic to some continuous function f(x) as x → a.∗

Not all functions possess asymptotic power series. But very often, given a
function g(x), one can write g(x) = h(x)f(x) + b(x), where f(x) possesses an
asymptotic power series. On problem 9 of homework set #2, you will demonstrate
that xexE1(x) possesses an asymptotic power series as x → ∞. So in this case,
we identify g(x) = E1(x), h(x) = e−x/x and b(x) = 0.

∗This paragraph is taken from Advanced Mathematical Methods for Scientists and Engineers,

by Carl M. Bender and Steven A. Orszag. This is a very advanced textbook, but contains some

very nice examples of asymptotic analysis.

2



The definitions above need to be modified slightly for power series that are
expanded about the point of infinity. Such a power series takes the form:

f(x) = f(∞) +
N

∑

n=1

cn

xn
+ RN (x) .

In this case, RN(x) = O(1/xN+1). A convergent power series would satisfy:

lim
N→∞

[

f(x) −
N

∑

n=0

cn

xn

]

= 0 , for |x| > r .

The corresponding condition for an asymptotic series as x → ∞ is given by:

lim
x→∞

xN

[

f(x) −

N
∑

n=0

cn

xn

]

= 0 , for any fixed value of N .

The coefficients of the this asymptotic power series are then given by:

lim
x→∞

xN+1

[

f(x) −

N
∑

n=0

cn

xn

]

= cn+1 n = 0, 1, 2, . . . ,

where c0 = f(∞). Again, the coefficients are determined in order starting with
c1. For a divergent asymptotic power series as x → ∞, we write:

f(x) ∼
∞

∑

n=0

cn

xn
, as x → ∞ , (6)

with similar caveats to the ones discussed below eq. (5).
Most asymptotic series that you will encounter are divergent. Nevertheless,

they generally provide very useful approximations to the function near the point
x = a (or for very large x if the asymptotic series is for x → ∞). Of course,
when evaluating the value of the function at some point (let us call it b) that is
near a, one needs to decide how large to take N . If this were a convergent series,
one could choose any N and the approximation would get better and better with
larger and larger N . For a divergent asymptotic series, one does not have the
option of taking arbitrarily large N (after all, the series diverges). For a given b,
there is always an optimal choice for N that gives the best approximation. How
good this best approximation is depends on how far b is from a. The closer b is
to a, the larger the N that corresponds to the optimal approximation.

For a divergent asymptotic series consisting of positive terms, the magnitudes
of the coefficients cn will initially decrease as n increases. But eventually, the
magnitudes of the coefficients starting to increase again. As n → ∞, one typically
finds that |cn| → ∞. In this case, the optimal choice for n is often the value of n
corresponding to the minimal value of cn. That is, the optimal approximation of
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f(x) is obtained by truncating the series when the minimal value of cn is reached.
This rule of thumb can be rigorously justified for some divergent asymptotic series,
but may not be reliable in all cases. If one has a closed form expression for RN (x),
then of course this would provide the best guide for estimating the error. For
divergent asymptotic series consisting of alternating positive and negative terms,
the partial sums will oscillate below and above the actual value of the function.
In this case, the best approximation often corresponds to the average of the two
adjacent partial sums with the smallest difference.

To illustrate the last point, consider the asymptotic series:

f(x) ≡

∫ ∞

0

e−t

1 + xt
dt ∼

∞
∑

n=0

(−1)nn! xn as x → 0+ , (7)

where x → 0+ means that x approaches zero from the positive side. Suppose
we wish to find the numerical value of f(0.1). Let us evaluate the partial sums
SN =

∑N
n=0 (−1)nn!xn for x = 0.1 and N = 3, 4, 5, . . . , 26. The results, obtained

by Mathematica, are displayed in the table below (to six significant figures).

N SN(0.1)
3 0.92
4 0.914
5 0.9164
6 0.9152
7 0.91592
8 0.915416
9 0.915819
10 0.915463
11 0.915819
12 0.915420
13 0.915899
14 0.915276
15 0.916148
16 0.914840
17 0.916933
18 0.913376
19 0.919778
20 0.907614
21 0.931943
22 0.880852
23 0.993252
24 0.734732
25 1.355180
26 -0.195941
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If we examine the table closely, we see that the smallest difference between two
adjacent terms corresponds to N = 10 and N = 11. Averaging these two values
gives us our optimal approximation: f(0.1) ≃ 0.915641. Numerically integrating
the function with the help of Mathematica, I find f(0.1) = 0.915633. Thus, we
have achieved four significant figure accuracy with the asymptotic expansion of
f(x). You can also begin to see the effects of the divergent series as N increases
significantly beyond the optimal value of N . By the time we get to N = 100,
S100 = −8.47714 × 1056 and S101 = 8.48491 × 1057. Need I say more?

Finally, we remark on some properties of asymptotic series. Given two asymp-
totic series (in both cases as x → a), then arithmetic operations such as addition,
subtraction, multiplication and division can be performed term by term. If f(x)
is continuous and integrable near x = a, then one may integrate the asymptotic
series given by eq. (5) term by term to get another asymptotic series:

∫ x

a

f(t) dt ∼
∞

∑

n=0

cn

n + 1
(x − a)n+1 , as x → a .

Finally, f(x) has a continuous derivative, and f ′(x) possesses an asymptotic power
series as x → a, then one may differentiate an asymptotic series given in eq. (5)
term by term to produce a new asymptotic series:

df(x)

dx
∼

∞
∑

n=1

n cn(x − a)n−1 , as x → a . (8)

Similar results hold for asymptotic power series expanded about x → ∞.
The condition for differentiating an asymptotic series is a little stronger than

for integrating a series. The reason has to do with the fact that two functions dif-
fering by an exponentially subdominant term possess the same asymptotic series.
However, upon differentiation these subdominant terms could end up contribut-
ing significantly to the differentiated function. The classic example is the case of
f(x) = e−x sin(ex). This function has an asymptotic series f(x) ∼ 0 as x → ∞.
However, f ′(x) = cos(ex) − e−x sin(ex) oscillates as x → ∞ and thus has no
asymptotic expansion of the form given in eq. (6).

In practice, it may not be easy to discern whether f ′(x) possesses an asymptotic
series. Thus, other conditions have been formulated for which eq. (8) is valid. One
such result is as follows. Suppose f ′(x) exists, is integrable, and f(x) defined by
the integral given in eq. (5). Then f ′(x) is given by eq. (8).
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Verification of the asymptotic series given in eq. (7)

We end this short introduction with a practical example. Let us derive the
asymptotic power series for the function f(x) given in eq. (7):

f(x) ≡

∫ ∞

0

e−t

1 + xt
dt ∼

∞
∑

n=0

(−1)nn! xn as x → 0+ . (9)

Recall that for a finite geometric series:

N
∑

n=0

(−1)n(xt)n =
1 − (−xt)N+1

1 + xt
.

Thus, we can insert

1

1 + xt
=

N
∑

n=0

(−1)n(xt)n +
(−xt)N+1

1 + xt

into the expression for f(x) given in eq. (9) to obtain:†

f(x) =

∫ ∞

0

e−t dt

N
∑

n=0

(−1)n(xt)n + RN(x)

=
N

∑

n=0

(−1)n xn

∫ ∞

0

e−ttn dt + RN(x)

=

N
∑

n=0

(−1)n n! xn + RN(x) ,

where

RN (x) ≡

∫ ∞

0

e−t(−xt)N+1

1 + xt
dt .

To conclude that eq. (9) is the correct asymptotic power series expansion for f(x),
all we need to prove is that RN (x) = O(xN+1) as x → 0+. This is most easily
accomplished by noting that (1 + xt)−1 ≤ 1 for x > 0 and t ≥ 0, Hence,

|RN(x)| ≤ xN+1

∫ ∞

0

e−t tN+1 dt = (N + 1)! xN+1 .

Thus, we have proved that limx→0 x−(N+1)|RN+1| ≤ (N + 1)!, which means that
RN(x) = O(xN+1). Equivalently, we have verified that limx→0 x−N RN+1 = 0
which coincides with the definition of an asymptotic expansion given in eq. (3).

†The interchange of the order of the sum and integral is always possible when the sum involves

a finite number of terms.
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It is tempting to use a shortcut in deriving the asymptotic series of eq. (9)
directly by inserting the expansion

(1 + xt)−1 =

∞
∑

N=0

(−1)n (xt)n (10)

directly into the integral and then integrating the sum term by term. Indeed, this
does yield the expansion given in eq. (9) as follows

f(x)
?
=

∫ ∞

0

e−t dt

∞
∑

n=0

(−1)n(xt)n

?
=

∞
∑

n=0

(−1)n xn

∫ ∞

0

e−t tn dt

?
=

∞
∑

n=0

(−1)n n! xn .

However, this procedure is not mathematically valid, since eq. (10) converges
only when |xt| < 1, which is equivalent to |t| < 1/|x|. However, the range of
integration is 0 ≤ t < ∞, so some range of values of t in the integration region
lies outside the validity of eq. (10). This observation provides the explanation for
why the resulting asymptotic series is divergent. If the use of eq. (10) had been
mathematically correct throughout the entire range of integration, the result of
integrating term by term would have been convergent.‡ Thus, it is not surprising
that the resulting asymptotic series is divergent. Nevertheless, if one employs an
infinite series in the evaluation of an integral whose integration range is larger than
the radius of convergence of the infinite series, there is no guarantee in general that
the end result will correspond to the desired asymptotic series. To be completely
confident of the final result, one must check that the remainder term of any finite
sum satisfies the requirement of eq. (4).

‡This last statement assumes that the interchange of the order of integration and the infinite

summation is valid. Such an interchange is permitted for a uniformly convergent sum and

integral.
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