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Abstract

This essay is a general and elementary overview of some of the prop-

erties of the famous numbers introduced by Bernoulli and used by Euler

to express the value of the zeta function at integer even values.

1 Introduction

Bernoulli’s numbers play an important and quite mysterious role in mathemat-
ics and in various places like analysis, number theory and differential topology.
They first appeared in Ars Conjectandi, page 97, a famous (and posthumous)
treatise published in 1713, by Jakob Bernoulli (1654-1705) when he studied the
sums of powers of consecutive integers

sp(n) =

n−1
∑

k=1

kp, (1)

where p and n are two given positive integers.
Bernoulli’s numbers also appear in the computation of the numbers

ζ(2p) =

∞
∑

k=1

1

k2p

and in the expansion of many usual functions as tan(x), tanh(x), 1/ sin(x), · · ·
Perhaps one of the most important result is Euler-Maclaurin summation

formula, where Bernoulli’s numbers are contained and which allows to accelerate
the computation of slow converging series (see the essay on Euler’s constant at
[9]). They also appear in numbers theory (Fermat’s theorem) and in many
other domains and have caused the creation of a huge literature (see the 2700
and more entries enumerated in [6]).

According to Louis Saalschültz [17], the term Bernoulli’s numbers was used
for the first time by Abraham De Moivre (1667-1754) and also by Leonhard
Euler (1707-1783) in 1755.
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2 Bernoulli’s approach

During the first years of the Calculus period and in its first integral computations
of the function x 7→ xp, Pierre de Fermat (1601-1665) in 1636 had to evaluate
the sums sp(n) defined by (1). You can see this by replacing the area under the
curve x 7→ xp by it’s rectangular approximations and naturally comes the need
to compute sp(n).

Also in 1631, Johann Faulhaber (1580-1635) developed explicit formulas for
these sums up to p = 17 (read the excellent [12] for the beginnings of integration
and [18] for some excerpts of Bernoulli’s work). Thus, it was already known to
Jakob Bernoulli that

s0(n) = n

s1(n) =
1

2
n2 − 1

2
n =

n(n− 1)

2

s2(n) =
1

3
n3 − 1

2
n2 +

1

6
n =

n(n− 1)(2n− 1)

6

s3(n) =
1

4
n4 − 1

2
n3 +

1

4
n2 =

n2(n− 1)2

4

s4(n) =
1

5
n5 − 1

2
n4 +

1

3
n3 − 1

30
n =

n(n− 1)(2n− 1)(3n2 − 3n− 1)

30

s5(n) =
1

6
n6 − 1

2
n5 +

5

12
n4 − 1

12
n2 =

n2(2n2 − 2n− 1)(n− 1)2

12
...

Jakob Bernoulli then, empirically, noticed that the polynomials sp(n) have
the form

sp(n) =
1

p+ 1
np+1 − 1

2
np +

p

12
np−1 + 0× np−2 + ...

In this expression, the numbers (1,−1/2, 1/12, 0, ...) are appearing and do
not depend on p. More generally, the sums sp(n) can be written in the form

sp(n) =

p
∑

k=0

Bk

k!

p!

(p+ 1− k)!
np+1−k

=
B0

0!

np+1

p+ 1
+
B1

1!
np +

B2

2!
pnp−1 +

B3

3!
p(p− 1)np−2 + ...+

Bp

1!
n

where the Bk are numbers which are independent of p and called Bernoulli’s
numbers.

We find by identification

B0 = 1, B1 = −1

2
, B2 =

1

6
, B3 = 0, ...

To illustrate the usefulness of his formula, Bernoulli computed the astonish-
ing value of s10(1000) with little effort (in less than ”half a quarter of an hour”

2



he says ... [18])
91409924241424243424241924242500

(you can check it !). To achieve this he needed to find B0 up to B10.
There is good evidence that the famous Japanese mathematician, Seki Takakazu

(1642-1708) also discovered Bernoulli’s numbers at the same time. The famous
Indian mathematician Srinivasa Ramanujan (1887-1920) independently studied
and rediscovered those numbers in 1904. He wrote one of his first article on this
subject in 1911 [15].

3 A more modern definition

An equivalent definition of the Bernoulli’s numbers is obtained from the series
expansion of the function z/(ez − 1):

G(z) =
z

ez − 1
=

∞
∑

k=0

Bk
zk

k!
|z| < 2π (2)

In other words, the generating function of the Bernoulli’s numbers Bk is
z/(ez − 1). The first terms of the expansion of this function are

G(z) =

(

1 +
z

2!
+
z2

3!
+
z3

4!
+ ...

)−1

= 1− z

2
+
z2

12
− z4

720
+

z6

30240
− z8

1209600
+ ...

which permit to obtain the first value of the Bernoulli’s numbers:

B0 = 1 , B1 = −1

2
, B2 =

1

6
, B3 = 0,

B4 = − 1

30
, B5 = 0, B6 =

1

42
, B7 = 0, B8 = − 1

30
.

Further, we observe that

G(z) +
z

2
=

z

2

(

2

ez − 1
+ 1

)

=
z

2

ez/2 + e−z/2

ez/2 − e−z/2
=

z

2
coth

z

2
,

where coth is the hyperbolic tangent, hence G(z) + z/2 is an even function and
consequently every Bernoulli’s numbers of the form B2k+1 (k > 0) is null.

3.1 Bernoulli’s polynomials

With a little modification it’s possible to define Bernoulli’s polynomials Bk(x)
by

G(z, x) =
zezx

ez − 1
=

∞
∑

k=0

Bk(x)
zk

k!
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and G(z, 0) = G(z) hence the value of the function Bk(x) at x = 0 is Bk and
because

∂G

∂x
(z, x) = zG(z, x) =

∞
∑

k=0

dBk

dx
(x)

zk

k!

it follows the important relation

dBk

dx
(x) = kBk−1(x).

Then, it’s easy to deduce that Bk(x) are polynomials of degree k, and the
first one are

B0(x) = 1

B1(x) = x− 1

2

B2(x) = x2 − x+
1

6

B3(x) = x3 − 3

2
x2 +

1

2
x

B4(x) = x4 − 2x3 + x2 − 1

30

B5(x) = x5 − 5

2
x4 +

5

3
x3 − 1

6
x

...

Thanks to Bernoulli’s polynomials, it’s possible to rewrite the expression of
the sums sp(n) as

sp(n) =

n−1
∑

k=0

kp =
1

p+ 1
(Bp+1(n)−Bp+1) .

There are many relations with these polynomials, for example

Bk(1− x) = (−1)kBk(x),

(−1)kBk(−x) = Bk(x) + kxk−1,

|B2k(x)| < |B2k| k = 1, 2, ... and 0 < x < 1,

Bk

(

1

2

)

= −(1− 21−k)Bk k = 0, 1, ...

...

Consult [1] for other formulas.
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4 Properties

4.1 Recurrence relation

In the expression

sp(n) =

p
∑

k=0

Bk

k!

p!

(p+ 1− k)!
np+1−k

we let n = 1, giving

0 =

p
∑

k=0

Bk

k!

1

(p+ 1− k)!

or equivalently

Bp = −
1

p+ 1

p−1
∑

k=0

(

p+ 1

k

)

Bk. (3)

The recurrence relation (3) allows an easy generation of Bernoulli’s numbers
and shows that the numbers Bp are all rational numbers. It’s convenient to
rewrite this relation as the symbolic equation

(B + 1)p+1 −Bp+1 = 0,

and expand the binomial (B+1)p+1 where each power Bk must be replaced by
Bk.

Example 1 With p = 4 we have

5B4 + 10B3 + 10B2 + 5B1 +B0 = 0

thus

5B4 +

(

0 + 10.
1

6
− 5.

1

2
+ 1

)

= 0 therefore B4 = − 1

30
.

4.2 Bernoulli’s numbers and the zeta function

In 1735, the solution of the Basel problem, expressed by Jakob Bernoulli some
years before, was one of Euler’s most sensational discovery. The problem was
to find the limit of

ζ(2) =

∞
∑

n=1

1

n2
,

he found it to be π2/6. He also discovered the values of the sums

ζ(2k) =

∞
∑

n=1

1

n2k

for k up to 13 ([8] and for more details [7]).
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It’s an extraordinary result that ζ(2k) can be expressed with Bernoulli’s
numbers ; the values of these sums are given by

ζ(2k) =

∞
∑

n=1

1

n2k
=

4k |B2k|π2k

2(2k)!
k > 0, (4)

(a proof based on two different expansions of z cot(z) is given in [4] p. 383).
No similar expression is known for the odd values of the Zeta function.

On the extension of this function to negative values, we also have

ζ(1− 2k) = −B2k

2k
k > 0,

which may also be used to compute B2k (see [5]).

4.3 Asymptotic expansion of Bernoulli’s numbers

From the previous relation (4) with the Zeta function, it’s clear that

|B2k| =
2(2k)!

(2π)2k
ζ(2k) (5)

and because, when k becomes large, thanks to Stirling’s formula

ζ(2k) ∼ 1,

(2k)! ∼ (2k)2ke−2k
√
4πk,

we have

|B2k| ∼ 4

(

k

πe

)2k√
πk.

In [16], the following results describes how the numerator N2k of B2k grows
with k:

log |N2k| = 2k log(k) +O(k).

4.4 Bounds

It may be useful to estimate bounds for B2k, to achieve this we use the following
relation between the function ζ(s) and the alternating series ζa(s)

ζ(s) =
ζa(s)

1− 21−s

ζa(s) =

∞
∑

n=1

(−1)n−1

ns

and since

1− 1

2s
< ζa(s) < 1,
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we have the bounds for ζ(s)

1− 2−s

1− 21−s
< ζ(s) <

1

1− 21−s
.

If we use this relation with (5), the bounds for B2k are therefore

2(2k)!(1− 4−k)

(2π)2k(1− 2.4−k)
< |B2k| <

2(2k)!

(2π)2k(1− 2.4−k)
.

5 Clausen-von Staudt’s theorem

The following famous and important theorem was published in 1840 by Karl
von Staudt (1798-1867) and it allows to compute easily the fractional part
of Bernoulli’s numbers (thus it also permits to compute the denominator of
those numbers). This theorem was discovered the same year, independently, by
Thomas Clausen (1801-1885).

Theorem 2 The value B2k, added to the sum of the inverse of prime numbers
p such that (p− 1) divides 2k, is an integer. In other words,

−B2k ≡
∑

(p−1)|2k

1

p
(mod 1)

Proof. A complete proof is given in [11], p. 91.

When k > 1, we observe that the primes p = 2, 3 are such as (p− 1) divides
2k. Let’s illustrate this theorem with a few examples. For k = 1, it becomes

−B2 ≡
∑

(p−1)|2

1

p
=

1

2
+

1

3
=

5

6
(mod 1)

B2 ≡ 1

6
(mod 1)

for k = 5

−B10 ≡
∑

(p−1)|10

1

p
=

1

2
+

1

3
+

1

11
=

61

66
(mod 1)

B10 ≡ 5

66
(mod 1)

and for k = 8

−B16 ≡
∑

(p−1)|16

1

p
=

1

2
+

1

3
+

1

5
+

1

17
=

47

510
(mod 1)

B16 ≡ 463

510
(mod 1)
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Corollary 3 (due to Rado 1934) For every prime numbers k of the form 3n+1

B2k ≡
1

6
(mod 1).

Proof. It’s an easy consequence of the Staudt’s theorem since p− 1 divides
2k = 2(3n + 1) only if p − 1 is one of 1, 2, 3n + 1, 6n + 2, that is p is one of
2, 3, 3n+2, 6n+3. But 6n+3 is divisible by 3 and 3n+2 is divisible by 2 because
3n+ 1 is prime so the only primes p candidates are 2 and 3.

Example 4 The first primes of the form 3n+1 are 7, 13, 19, 31, 37, 43, 61, 67, ...
hence we have

B14 ≡ B26 ≡ B38 ≡ B62 ≡ B74 ≡ B86 ≡ B122 ≡ B134 ≡
1

6
(mod 1).

Clausen-von Staudt’s theorem also permits to compute exactly a Bernoulli’s
number as soon as a sufficiently good approximation of it is known.

6 Expansion of usual functions

In a previous section we gave the definition

z

ez − 1
=

∞
∑

k=0

Bk
zk

k!
|z| < 2π

and the consequence

z

2
coth

z

2
=

∞
∑

k=0

B2k
z2k

(2k)!
.

It obviously leads to the two following expansions

z coth(z) =

∞
∑

k=0

4kB2k
z2k

(2k)!
= 1 +

z2

3
− z4

45
+

2z6

945
− ... |z| < π

z cot(z) =

∞
∑

k=0

(−4)kB2k
z2k

(2k)!
= 1− z2

3
− z4

45
− 2z6

945
− ... |z| < π

where cot(z) = cos(z)/ sin(z) = i coth(iz) is the cotangent function.
Now it’s possible to find the expansion for tanh(z) and tan(z), if we observe

that

2 coth(2z)−coth(z) = 2
cosh(2z)

sinh(2z)
−cosh(z)

sinh(z)
=

cosh2(z) + sinh2(z)

sinh(z) cosh(z)
−cosh(z)

sinh(z)
= tanh(z)

so that

tanh(z) =

∞
∑

k=1

4k(4k − 1)B2k
z2k−1

(2k)!
= z − z3

3
+

2z5

15
− 17z7

315
+ ... |z| < π

2
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tan(z) =

∞
∑

k=1

(−4)k(1− 4k)B2k
z2k−1

(2k)!
= z +

z3

3
+

2z5

15
+

17z7

315
+ ... |z| < π

2
.

Bernoulli’s numbers also occur in the expansions of other classical functions

z

sin(z)
,

z

sinh(z)
, log

(

sin(z)

z

)

, log(cos(z)), log

(

tan(z)

z

)

, ...

6.1 Series

Setting z = 1 or z = −1 in the expansion (2) of z/(ez − 1) leads to the fast
converging series

1

e− 1
=

∞
∑

k=0

Bk

k!
=

1

2
+

∞
∑

k=1

B2k

(2k)!

and
B2k

(2k)!
∼ 2

(4π2)k
≈ 2

39.48k
.

In one of his famous notebook, Ramanujan stated without proof the following
result:

Theorem 5 Let (a, b) two positive real numbers such as ab = π2, let n > 1 an
integer, then

an
∞
∑

k=1

k2n−1

e2ak − 1
− (−b)n

∞
∑

k=1

k2n−1

e2bk − 1
= (an − (−b)n) B2n

4n
.

Proof. See [3].

Corollary 6 Let n ≥ 1, then

∞
∑

k=1

k4n+1

e2πk − 1
=

B4n+2

8n+ 4
.

Proof. Just apply the theorem with a = b = π and replace n by 2n+ 1.

It’s interesting to compare this result with the classical integral representa-
tion valid for n ≥ 1

∫ ∞

0

x2n−1

e2πx − 1
dx = (−1)n−1B2n

4n

which implies that for n ≥ 0

∫ ∞

0

x4n+1

e2πx − 1
dx =

B4n+2

8n+ 4
.
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7 Euler-Maclaurin formula

Let f(x) be a function of class C2p+2 on an interval [a, b] and let h = (b− a)/m
a subdivision of this interval into m equal parts then we have the important
result:

Theorem 7 There exist 0 < ϑ < 1 and

m
∑

k=0

f(a+ kh) =
1

h

∫ b

a

f(x)dx+
1

2
(f(a) + f(b)) +

p
∑

k=1

h2k−1

(2k)!
B2k

(

f (2k−1)(b)− f (2k−1)(a)
)

+
h2p+2

(2p+ 2)!
B2p+2

m−1
∑

k=0

f (2p+2)(a+ kh+ ϑh).

Proof. A proof is given in [10].

This formula was first studied by Euler in 1732 and independently by Colin
Maclaurin (1698-1746) in 1742 [13]. Euler used it to compute sums of slow
converging series and Maclaurin used it as a numerical quadrature formula.

With the same conditions, setting n = m+1, a = 1, b = n, h = 1 the theorem
becomes:

Theorem 8

n
∑

k=1

f(k) =

∫ n

1

f(x)dx+
1

2
(f(1) + f(n))+

p
∑

k=1

B2k

(2k)!

(

f (2k−1)(n)− f (2k−1)(1)
)

+Rn(f, p),

where Rn(f, p) is the remainder bounded by

Rn(f, p) ≤
2

(2π)2p

∫ n

1

∣

∣

∣
f (2p+1)(x)

∣

∣

∣
dx

7.1 Applications

1. f(x) = x2, the remainder is null since f (p)(x) = 0 for p > 2:

n
∑

k=1

k2 =

∫ n

1

x2dx+
1

2

(

1 + n2
)

+
B2

2
(2n− 2) + 0

=
n3 − 1

3
+

1 + n2

2
+
n− 1

6
=

n(n+ 1)(2n+ 1)

6
.

2. f(x) = 1/x, f (2k−1)(x) = −(2k − 1)!/x2k, Euler-Maclaurin formula yields
for a given p:

n
∑

k=1

1

k
− log(n) =

1

2
+

1

2n
+

p
∑

k=1

B2k

2k

(

1− 1

n2k

)

+Rn(f, p)
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when n → ∞, the left hand side of the equality tends to γ (Euler’s con-
stant) and the equality gives

γ =
1

2
+

p
∑

k=1

B2k

2k
+R∞(f, p),

finally

n
∑

k=1

1

k
− log(n) = γ +

1

2n
−

p
∑

k=1

B2k

2k

1

n2k
+ (Rn(f, p)−R∞(f, p)) .

(check that Rn(f, p)−R∞(f, p) = O(1/n2p+2) )

3. f(x) = log(x), with the same method (left as exercise) Euler-Maclaurin
formula becomes

n
∑

k=1

log(k) = n log(n)−n+log(n)

2
+log(

√
2π)+

p
∑

k=1

B2k

2k(2k − 1)

1

n2k−1
+O

(

1

n2p+1

)

so, for example, with p = 3

log(n!) = n log(n)− n+ log(
√
2πn) +

1

12n
− 1

360n3
+

1

1260n5
+O

(

1

n7

)

and taking the exponential

n! = nne−n
√
2πn exp

(

1

12n
− 1

360n3
+

1

1260n5
+O

(

1

n7

))

.

This is the asymptotic Stirling formula. Using the series expansion of the
exponential function near the origin, it’s more convenient to write it as

n! = nne−n
√
2πn

(

1 +
1

12n
+

1

288n2
− 139

51840n3
− 571

2488320n4
+

163879

209018880n5
+O

(

1

n6

))

8 Bernoulli’s numbers and Fermat’s last theo-

rem

The famous Fermat’s last theorem states that the equation

xn + yn = zn

never has non-zero integer solutions for n > 2. Since Fermat expressed this result
around 1630, the pursuit of a proof occupied generations of mathematicians.
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A big step was made in 1850 by Ernst Kummer (1810-1893) when he proved
Fermat’s theorem for n = p, whenever p is, what is called today, a regular prime.
Kummer gave the beautiful regularity criterion:

p is a regular prime if and only if p does not divide the numerator ofB2, B4, ..., Bp−3.

He showed that all primes before 37 where regular, hence Fermat’s theorem
was proved for those primes. 37 is the first non regular prime because it divides
the numerator of

B32 = −7709321041217

510
= −208360028141× 37

510
.

The next irregular primes (less than 300) are

59, 67, 101, 103, 131, 149, 157, 233, 257, 263, 271, 283, 293, ...

For example, 157 divides the numerators of B62 and B110.
Thanks to arithmetical properties of Bernoulli’s numbers, Johann Ludwig

Jensen (1859-1925) proved in 1915 that the number of irregular primes is infi-
nite. Even if it’s probable that the number of regular primes is infinite, a proof
remains unknown [16].

9 The first Bernoulli’s numbers

9.1 First numbers

Here is the list of the first Bernoulli’s numbers. Except for B1 numbers of the
form B2k+1 are null.

B0 = 1

B1 = −1/2
B2 = 1/6

B4 = −1/30
B6 = 1/42

B8 = −1/30
B10 = 5/66,

B12 = −691/2730
B14 = 7/6

B16 = −3617/510
B18 = 43867/798

B20 = −174611/330
B22 = 854513/138

B24 = −236364091/2730
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B26 = 8553103/6

B28 = −23749461029/870
B30 = 8615841276005/14322

B32 = −7709321041217/510
B34 = 2577687858367/6

B36 = −26315271553053477373/1919190
B38 = 2929993913841559/6

B40 = −261082718496449122051/13530
...

More numbers are given in [1] and in [17].

9.2 Some computations

Bernoulli himself computed the numbers that now bear his name up to B10.
Later, Euler computed these numbers up to B30, then Martin Ohm extended
the calculation up to B62 in 1840 [14]. A few years later, in 1877, Adams
made the impressive computation of all Bernoulli’s numbers up to B124 (or B∗

62

according to his convention) [2]. For instance, the numerator of B124 has 110
digits and the denominator is the number 30.

In 1996, Simon Plouffe and Greg J. Fee computed B200000 a huge number
of about 800000 digits, the computation took about 2 hours on a work station.
In 2002, the same authors improved the record to B600000 which has 2727474
digits by a 12 hours computation on a personal computer. The method is based
on the formula (5) which allow a direct computation of the required number
without the need to compute the previous ones.
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[17] L. Saalschütz, Vorlesungen über die Bernoullischen Zahlen, Berlin, Verlag
von Julius Springer, (1893)

[18] D.E. Smith, A Source Book in Mathematics, Dover Publications, New York,
(1959, first edition 1929)

14


