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The Characteristic Polynomial

1. Coefficients of the characteristic polynomial

Consider the eigenvalue problem for an n × n matrix A,

A~x = λ~x , ~x 6= 0 . (1)

The solution to this problem consists of identifying all possible values of λ (called
the eigenvalues), and the corresponding non-zero vectors ~x (called the eigenvec-
tors) that satisfy eq. (1). Noting that I~x = ~x, one can rewrite eq. (1) as

(A − λI)~x = 0 . (2)

This is a set of n homogeneous equations. If A − λI is an invertible matrix, then
one can simply multiply both sides of eq. (2) by (A−λI)−1 to conclude that ~x = 0
is the unique solution. By definition, the zero vector is not an eigenvector. Thus,
in order to find non-trivial solutions to eq. (2), one must demand that A − λI is
not invertible, or equivalently,

p(λ) ≡ det(A − λI) = 0 . (3)

Eq. (3) is called the characteristic equation. Evaluating the determinant yields
an nth order polynomial in λ, called the characteristic polynomial, which we have
denoted above by p(λ).

The determinant in eq. (3) can be evaluated by the usual methods. It takes
the form,

p(λ) = det(A − λI) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 − λ a12 · · · a1n

a21 a22 − λ · · · a2n

...
...

. . .
...

an1 an2 · · · ann − λ

∣
∣
∣
∣
∣
∣
∣
∣
∣

= (−1)n
[
λn + c1λ

n−1 + c2λ
n−2 + · · · + cn

]
, (4)

where A = [aij ]. The coefficients ci are to be computed by evaluating the deter-
minant. Note that we have identified the coefficient of λn to be (−1)n. This arises
from one term in the determinant that is given by the product of the diagonal
elements. It is easy to show that this is the only possible source of the λn term in
the characteristic polynomial. It is then convenient to factor out the (−1)n before
defining the coefficients ci.
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Two of the coefficients are easy to obtain. Note that eq. (4) is valid for any
value of λ. If we set λ = 0, then eq. (4) yields:

p(0) = det A = (−1)ncn .

Noting that (−1)n(−1)n = (−1)2n = +1 for any integer n, it follows that

cn = (−1)n det A

One can also easily work out c1, by evaluating the determinant in eq. (4) using
the cofactor expansion. This yields a characteristic polynomial of the form,

p(λ) = det(A − λI) = (a11−λ)(a22−λ) · · · (ann−λ) + c ′
2λ

n−2 + c ′
3λ

n−3 + · · ·+c ′
n .

(5)
The term (a11−λ)(a22−λ) · · · (ann−λ) is the product of the diagonal elements of
A−λI. It is easy to see that none of the remaining terms that arise in the cofactor
expansion [denoted by c ′

2λ
n−2 + c ′

3λ
n−3 + · · · + c ′

n in eq. (5)] are proportional to
λn or λn−1.∗ Moreover,

(a11 − λ)(a22 − λ) · · · (ann − λ) = (−λ)n + (−λ)n+1 [a11 + a22 + · · ·+ ann] + · · · ,

= (−1)n
[
λn − λn−1(Tr A) + · · ·

]
,

where · · · contains terms that are proportional to λp, where p ≤ n − 2. This
means that the terms in the characteristic polynomial that are proportional to
λn and λn−1 arise solely from the term (a11 − λ)(a22 − λ) · · · (ann − λ). The term
proportional to −(−1)nλn−1 is the trace of A, which is defined to be equal to the
sum of the diagonal elements of A. Comparing eqs. (4) and (5), it follows that:

c1 = −Tr A

Expressions for c2, c3, . . . , cn−1 are more complicated. For example, eqs. (4) and
(5) yield

c2 =

n∑

i=1

n∑

j=1

i<j

aiiajj + c ′
2 .

For the moment, I will not explicitly evaluate c2, c3, . . . , cn−1. In the Appendix
to these notes, I will provide explicit expressions for these coefficients in terms
of traces of powers of A. It follows that the general form for the characteristic
polynomial is:

p(λ) = det(A − λI)

= (−1)n
[
λn − λn−1 Tr A + c2λ

n−2 + · · ·+ (−1)n−1cn−1λ + (−1)ndet A
]
. (6)

∗In computing the cofactor of the ij element, one crosses out row i and column j of the ij
element and evaluates the determinant of the remaining matrix [multiplied by the sign factor
(−1)i+j ]. Except for the product of diagonal elements, there is always one factor of λ in each of
the rows and columns that is crossed out. This implies that the maximal power one can achieve
outside of the product of diagonal elements is λn−2.
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By the fundamental theorem of algebra, an nth order polynomial equation of
the form p(λ) = 0 possesses precisely n roots. Thus, the solution to p(λ) = 0 has
n potentially complex roots, which are denoted by λ1, λ2, . . . , λn. These are the
eigenvalues of A. If a root is non-degenerate (i.e., only one root has a particular
numerical value), then we say that the root has multiplicity one—it is called a
simple root. If a root is degenerate (i.e., more than one root has a particular
numerical value), then we say that the root has multiplicity p, where p is the
number of roots with that same value—such a root is called a multiple root. For
example, a double root (as its name implies) arises when precisely two of the roots
of p(λ) are equal. In the counting of the n roots of p(λ), multiple roots are counted
according to their multiplicity.

In principle, one can always factor a polynomial in terms of its roots.† Thus,
eq. (4) implies that:

p(λ) = (−1)n(λ − λ1)(λ − λ2) · · · (λ − λn) ,

where multiple roots appear according to their multiplicity. Multiplying out the
n factors above yields

p(λ) = (−1)n






λn − λn−1

n∑

i=1

λi + λn−2

m−1∑

i=1

m−1∑

j=1

i<j

λiλj + . . .

+λn−k

n∑

i1=1

n∑

i2=1

· · ·

n∑

ik=1

i1<i2<···<ik

λiiλi2 · · ·λik
︸ ︷︷ ︸

k factors

+ · · · + λ1λ2 · · ·λn







. (7)

Comparing with eq. (6), it immediately follows that:

Tr A =

n∑

i=1

λi = λ1 + λ2 + · · · + λn , det A = λ1 ·λ2 ·λ3 · · ·λn

The coefficients c2, c3, . . . , cn−1 are also determined by the eigenvalues. In general,

ck = (−1)k

n∑

i1=1

n∑

i2=1

· · ·

n∑

ik=1

i1<i2<···<ik

λi1λi2 · · ·λik
︸ ︷︷ ︸

k factors

, for k = 1, 2, . . . , n . (8)

†I say in principle, since in practice it may not be possible to explicitly determine the roots
algebraically. According to a famous theorem of algebra, no general formula exists (like the
famous solution to the quadratic equation) for an arbitrary polynomial of fifth order or above.
Of course, one can always determine the roots numerically.
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2. The Cayley-Hamilton Theorem

Theorem: Given an n×n matrix A, the characteristic polynomial is defined by
p(λ) = det(A − λI) = (−1)n [λn + c1λ

n−1 + c2λ
n−2 + · · ·+ cn−1λ + cn], it follows

that

p(A) = (−1)n
[
An + c1A

n−1 + c2A
n−2 + · · · + cn−1A + cnI

]
= 0 , (9)

where A0 ≡ I is the n × n identity matrix and 0 is the n × n zero matrix.

False proof: The characteristic polynomial is p(λ) = det(A − λI). Setting
λ = A, we get p(A) = det(A − AI) = det(A − A) = det(0) = 0. This “proof”
does not make any sense. In particular, p(A) is an n× n matrix, but in this false
proof we obtained p(A) = 0 where 0 is a number.

Correct proof: Recall that the classical adjoint of M , denoted by adj M , is
the transpose of the matrix of cofactors. In class, we showed that the cofactor
expansion of the determinant is equivalent to the equation‡

M adj M = I det M . (10)

In particular, setting M = A − λI, it follows that

(A − λI) adj(A − λI) = p(λ)I , (11)

where p(λ) = det(A − λI) is the characteristic polynomial. Since p(λ) is an nth-
order polynomial, it follows from eq. (11) that adj(A−λI) is a matrix polynomial
of order n − 1. Thus, we can write:

adj(A − λI) = B0 + B1λ + B2λ
2 + · · · + Bn−1λ

n−1 ,

where B0, B1, . . . , Bn−1 are n× n matrices (whose explicit forms are not required
in these notes). Inserting the above result into eq. (11) and using eq. (4), one
obtains:

(A−λI)(B0+B1λ+B2λ
2+· · ·+Bn−1λ

n−1) = (−1)n
[
λn + c1λ

n−1 + · · ·+ cn−1λ + cn

]
I .

(12)
Eq. (12) is true for any value of λ. Consequently, the coefficient of λk on the
left-hand side of eq. (12) must equal the coefficient of λk on the right-hand side
of eq. (12), for k = 0, 1, 2, . . . , n. This yields the following n + 1 equations:

AB0 = (−1)ncnI , (13)

−Bk−1 + ABk = (−1)ncn−kI , k = 1, 2, . . . , n − 1 , (14)

−Bn−1 = (−1)nI . (15)

‡If det M 6= 0, then we may divide both sides of eq. (10) by the determinant and identify
M−1 = adj M/det M , since the inverse satisfies MM−1 = I.
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Using eqs. (13)–(15), we can evaluate the matrix polynomial p(A).

p(A) = (−1)n
[
An + c1A

n−1 + c2A
n−2 + · · ·+ cn−1A + cnI

]

= AB0 + (−B0 + B1A)A + (−B1 + B2)A
2 + · · ·+ (−Bn−2 + Bn−1A)An−1 − Bn−1A

n

= A(B0 − B0) + A2(B1 − B1) + A3(B2 − B2) + · · · + An−1(Bn−2 − Bn−2) + An(Bn−1 − Bn−1)

= 0 ,

which completes the proof of the Cayley-Hamilton theorem.
It is instructive to illustrate the Cayley-Hamilton theorem for 2 × 2 matrices.

In this case,
p(λ) = λ2 − λTr A + det A .

Hence, by the Cayley-Hamilton theorem,

p(A) = A2 − A Tr A + I det A = 0 .

Let us take the trace of this equation. Since Tr I = 2 for the 2×2 identity matrix,

Tr(A2) − (Tr A)2 + 2 det A = 0 .

It follows that

det A = 1

2

[
(Tr A)2 − Tr(A2)

]
, for any 2 × 2 matrix .

You can easily verify this formula for any 2 × 2 matrix.

Appendix: Identifying the coefficients of the characteristic polynomial

in terms of traces

The characteristic polynomial of an n × n matrix A is given by:

p(λ) = det(A − λI) = (−1)n
[
λn + c1λ

n−1 + c2λ
n−2 + · · ·+ cn−1λ + cn

]
.

In Section 1, we identified:

c1 = −Tr A , cn = (−1)ndet A . (16)

One can also derive expressions for c2, c3, . . . , cn−1 in terms of traces of powers
of A. In this appendix, I will exhibit the relevant results without proofs (which
can be found in the references at the end of these notes). Let us introduce the
notation:

tk = Tr(Ak) .

Then, the following set of recursive equations can be proven:

t1+c1 = 0 and tk +c1tk−1+ · · ·+ck−1t1+kck = 0 , k = 2, 3, . . . , n . (17)
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These equations are called Newton’s identities. A nice proof of these identities can
be found in ref. [1]. The equations exhibited in eq. (17) are called recursive, since
one can solve for the ck in terms of the traces t1, t2, . . . , tk iteratively by starting
with c1 = −t1, and then proceeding step by step by solving the equations with
k = 2, 3, . . . , n in successive order. This recursive procedure yields:

c1 = −t1 ,

c2 = 1

2
(t21 − t2) ,

c3 = −1

6
t31 + 1

2
t1t2 −

1

3
t3 ,

c4 = 1

24
t41 −

1

4
t21t2 + 1

3
t1t3 + 1

8
t22 −

1

4
t4 ,

etc.

The results above can be summarized by the following equation [2],

cm = −
tm

m
+

1

2!

m−1∑

i=1

m−1∑

j=1

i+j=m

titj

ij
−

1

3!

m−2∑

i=1

m−2∑

j=1

m−2∑

k=1

i+j+k=m

titjtk

ijk
+· · ·+

(−1)mtm1
m!

, m = 1, 2, . . . , n .

Note that by using cn = (−1)ndet A, one obtains a general expression for the
determinant in terms of traces of powers of A,

det A = (−1)ncn = (−1)n






−

tn

n
+

1

2!

n−1∑

i=1

n−1∑

j=1

i+j=n

titj

ij
−

1

3!

n−2∑

i=1

n−2∑

j=1

n−2∑

k=1

i+j+k=n

titjtk

ijk
+ · · ·+

(−1)ntn1
n!







,

where tk ≡ Tr(Ak). One can verify that:

det A = 1

2

[
(Tr A)2 − Tr(A2)

]
, for any 2 × 2 matrix ,

det A = 1

6

[
(Tr A)3 − 3 Tr A Tr(A2) + 2 Tr(A3)

]
, for any 3 × 3 matrix ,

etc.

The coefficients of the characteristic polynomial, ck, can also be expressed directly
in terms of the eigenvalues of A, as shown in eq. (8).

BONUS MATERIAL

One can derive another closed-form expression for the ck. To see how to do
this, let us write out the Newton identities explicitly.
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Eq. (17) for k = 1, 2, . . . , n yields:

c1 = −t1 ,

t1c1 + 2c2 = −t2 ,

t2c1 + t1c2 + 3c3 = −t3 ,
...

...

tk−1c1 + tk−2c2 + · · ·+ t1ck−1 + kck = −tk ,

...
...

tn−1c1 + tn−2c2 + · · ·+ t1cn−1 + ncn = −tn .

Consider the first k equations above (for any value of k = 1, 2, . . . , n). This is a
system of linear equations for c1, c2, . . . , ck, which can be written in matrix form:












1 0 0 · · · 0 0
t1 2 0 · · · 0 0
t2 t1 3 · · · 0 0
...

...
...

. . .
...

...
tk−2 tk−3 tk−4 · · · k − 1 0
tk−1 tk−2 tk−3 · · · t1 k























c1

c2

c3

...
ck−1

ck












=












−t1
−t2
−t3
...

−tk−1

−tk












.

Applying Cramer’s rule, we can solve for ck in terms of t1, t2, . . . , tk [3]:

ck =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 0 0 · · · 0 −t1
t1 2 0 · · · 0 −t2
t2 t1 3 · · · 0 −t3
...

...
...

. . .
...

...
tk−2 tk−3 tk−4 · · · k − 1 −tk−1

tk−1 tk−2 tk−3 · · · t1 −tk

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 0 0 · · · 0 0
t1 2 0 · · · 0 0
t2 t1 3 · · · 0 0
...

...
...

. . .
...

...
tk−2 tk−3 tk−4 · · · k − 1 0
tk−1 tk−2 tk−3 · · · t1 k

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

The denominator is the determinant of a lower triangular matrix, which is equal
to the product of its diagonal elements. Hence,

ck =
1

k!

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 0 0 · · · 0 −t1
t1 2 0 · · · 0 −t2
t2 t1 3 · · · 0 −t3
...

...
...

. . .
...

...
tk−2 tk−3 tk−4 · · · k − 1 −tk−1

tk−1 tk−2 tk−3 · · · t1 −tk

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.
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It is convenient to multiply the kth column by −1, and then move the kth column
over to the first column (which requires a series of k − 1 interchanges of adja-
cent columns). These operations multiply the determinant by (−1) and (−1)k−1

respectively, leading to an overall sign change of (−1)k. Hence, our final result is:§

ck =
(−1)k

k!

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

t1 1 0 0 · · · 0
t2 t1 2 0 · · · 0
t3 t2 t1 3 · · · 0
...

...
...

...
. . .

...
tk−1 tk−2 tk−3 tk−4 · · · k − 1
tk tk−1 tk−2 tk−3 · · · t1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, k = 1, 2, . . . , n .

We can test this formula by evaluating the the first three cases k = 1, 2, 3:

c1 = −t1 , c2 =
1

2!

∣
∣
∣
∣

t1 1
t2 t1

∣
∣
∣
∣
= 1

2
(t21 − t2) ,

c3 = −
1

3!

∣
∣
∣
∣
∣
∣

t1 1 0
t2 t1 2
t3 t2 t1

∣
∣
∣
∣
∣
∣

= 1

6

[
−t31 + 3t1t2 − 2t3

]
,

which coincide with the previously stated results. Finally, setting k = n yields
the determinant of the n × n matrix A, det A = (−1)ncn, in terms of traces of
powers of A,

det A =
1

n!

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

t1 1 0 0 · · · 0
t2 t1 2 0 · · · 0
t3 t2 t1 3 · · · 0
...

...
...

...
. . .

...
tn−1 tn−2 tn−3 tn−4 · · · n − 1
tn tn−1 tn−2 tn−3 · · · t1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

where tk ≡ Tr(Ak). Indeed, one can check that our previous results for the
determinants of a 2 × 2 matrix and a 3 × 3 matrix are recovered.
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1, 1, 1, . . . , 1, appearing just above the main diagonal of σk should be replaced by 1, 2, 3, . . . , k−1.

8


