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The Euler constant : γ
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γ = 0.57721566490153286060651209008240243104215933593992 . . .

1 Introduction

Euler’s Constant was first introduced by Leonhard Euler (1707-1783) in 1734
as

γ = lim
n→∞

(

1 +
1

2
+

1

3
+ · · · +

1

n
− log(n)

)

. (1)

It is also known as the Euler-Mascheroni constant. According to Glaisher [4],
the use of the symbol γ is probably due to the geometer Lorenzo Mascheroni
(1750-1800) who used it in 1790 while Euler used the letter C.

The constant γ is deeply related to the Gamma function Γ(x) thanks to the
Weierstrass formula

1

Γ(x)
= x exp(γx)

∏

n>0
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x

n

)
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(

−

x

n

)]

.

This identity entails the relation

Γ′(1) = −γ. (2)

It is not known if γ is an irrational or a transcendental number. The question
of its irrationality has challenged mathematicians since Euler and remains a
famous unresolved problem. By computing a large number of digits of γ and
using continued fraction expansion, it has been shown that if γ is a rational
number p/q then the denominator q must have at least 242080 digits.

Even if γ is less famous than the constants π and e, it deserves a great
attention since it plays an important role in Analysis (Gamma function, Bessel
functions, exponential-integral, ...) and occurs frequently in Number Theory
(order of magnitude of arithmetical functions for instance [11]).

2 Computation of the Euler constant

2.1 Basic considerations

Direct use of formula (1) to compute Euler constant is of poor interest since the
convergence is very slow. In fact, using the harmonic number notation

Hn = 1 +
1

2
+

1

3
+ · · · +

1

n
,

1This pages are from //numbers.computation.free.fr/Constants/constants.html
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we have the estimation

Hn − log(n) − γ ∼

1

2n
.

This estimation is the first term of an asymptotic expansion which can be used
to compute effectively γ, as shown in next section. Nevertheless, other formulae
for γ (see next sections) provide a simpler and more efficient way to compute it
at a large accuracy. Better estimations are :

1

2(n + 1)
< Hn − log(n) − γ <

1

2n
(Young [13])

0 < Hn −

log(n) + log(n + 1)

2
− γ <

1

6n(n + 1)
(Cesaro)

−1

48n3
< Hn − log(n +

1

2
+

1

24n
) − γ <

−1

48(n + 1)3
. (Negoi)

Application of the third relation with n = 100 gives

−0.6127.10−9 < 0.577215664432730− γ < 0

and n = 1000 gives

−0.6238.10−13 < 0.577215664901484− γ < 0.

A similar estimation is given in [6].

2.2 Asymptotic expansion of the harmonic numbers

The Euler-Maclaurin summation can be used to have a complete asymptotic
expansion of the harmonic numbers. We have (see the essay on Bernoulli’s
numbers)

Hn − log(n) ≈ γ +
1

2n
−

∑

k≥1

B2k

2k

1

n2k
, (3)

where the B2k are the Bernoulli numbers. Since B2k grows like 2(2k)!/(2π)2k,
the asymptotic expansion should be stopped at a given k. For example, the first
terms are given by

γ = Hn−log(n)−
1

2n
+

1

12n2
−

1

120n4
+

1

252n6
−

1

240n8
+

1

132n10
−

691

32760n12
+

1

12n14
.

This technique, directly inherited from the definition, can be employed to com-
pute γ at a high precision but suffers from two major drawbacks :

• It requires the computation of the B2k, which is not so easy ;

• the rate of convergence is not so good compared to other formulas with γ.



Numbers, constants and computation 3

2.2.1 Euler’s computation

In 1736, Euler used the asymptotic expansion 3 to compute the first 16 decimal
digits of γ. He went up to k = 7 and n = 10, and wrote

γ = H10−log(10)−
1

20
+

1

1200
−

1

1, 200, 000
+

1

252, 000, 000
−

1

24, 000, 000, 000
+...

with

H10 = 2.9289682539682539

log(10) = 2.302585092994045684

giving the approximation

γ ≈ 0.5772156649015329.

2.2.2 Mascheroni’s mistake

During the year 1790, in ”Adnotationes ad calculum integrale Euleri”, Mascheroni
made a similar calculation up to 32 decimal places. But, a few years later, in
1809, Johann von Soldner (1766-1833) found a value of the constant which was
in agreement only with the first 19 decimal places of Mascheroni’s calculation
... Embarrassing !

It was in 1812, supervised by the famous Mathematician Gauss, that a young
calculating prodigy Nicolai (1793-1846) evaluated γ up to 40 correct decimal
places, in agreement with Soldner’s value [4].

In order to avoid such miscalculations (see also William Shanks famous error
on his determination of the value of π), digits hunters are usually doing two
different calculations to check the result.

2.2.3 Stieltjes approach

In 1887, Stieltjes computed ζ(2), ζ(3), ..., ζ(70) to 32 decimal places and ex-
tended a previous calculation done by Legendre up to ζ(35) with 16 digits. He
was then able to compute Euler’s constant to 32 decimal places thanks to the
fast converging series

γ = 1 − log(
3

2
) −

∞
∑

k=1

(ζ(2k + 1) − 1)

4k(2k + 1)
. (4)

For large values of k we have

ζ(2k + 1) − 1 =
1

22k+1
+

1

32k+1
+ · · · ∼

1

22k+1

hence the series converges geometrically :

ζ(2k + 1) − 1

4k
∼

1

2.16k
,
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This relation is issued from properties of the Gamma function and a proof is
given in the Gamma function essay.

The first partial sums of series (4) are

x0 = 0.5(9453489189183561...) = 1 − log(
3

2
)

x1 = 0.577(69681662853609...) =
13

12
− log(

3

2
) −

ζ(3)

12
x5 = 0.57721566(733782033...)

x10 = 0.57721566490153(417...)

2.2.4 Knuth’s computation

In 1962, Knuth used a computer to approximate γ with the Euler-Maclaurin
expansion (3), with the parameters k = 250 and n = 104. The error is about

εk,n =
B(2k+2)

(2k + 2)

1

n(2k+2)
≈

2(2k + 2)!

(2k + 2)(2πn)2k+2
≈ 10−1272

and Knuth gave 1271 decimal places of γ [8].

Some numerical results on the error function

To appreciate the rate of convergence of this algorithm we give a table of the
approximative number of digits one can find with different values for k and n.
This integer in the table is the number of digits of 1/εk,n.

k = 10 k = 100 k = 250 k = 500
n = 103 63 390 769 1235
n = 104 85 592 1272 2237
n = 105 107 794 1773 3239
n = 106 129 996 2275 4241

This table shows that the Euler-Maclaurin summation could not be reasonably
used to compute more than a few thousands of decimal places of γ.

2.3 Exponential integral methods

An efficient way to compute decimal digits of the Euler constant is to start from
the identity γ = −Γ′(1) (see (2)) which entails for any positive integer n, after
integrating by part the formula

γ + log(n) = In − Rn, In =

∫ n

0

1 − e−t

t
dt, Rn =

∫ ∞

n

e−t

t
dt.

Plugging the series expansion of (1 − e−t)/t in In, we obtain

In =

∞
∑

k=1

(−1)k−1 nk

k · k!
.
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The value In is an approximation to γ with the error bound Rn = O(e−n).
By stopping the summation at the right index, we obtain the following formula
which provides an efficient way to approximate the Euler constant :

γ =

αn
∑

k=1

(−1)k−1 nk

k · k!
− log n + O(e−n), α = 3.5911 . . . (5)

The constant α is such that nαn/(αn)! is of order e−n, and satisfies α(log(α)−
1) = 1. To obtain d decimal places of γ with (5), the formula should be used
with n ' d log(10) and computations should be done with a precision of 2d
decimal places to compensate cancellations in the sum In. This method was
used by Sweeney in 1963 to compute 3566 decimal places of γ [9].

A refinement is obtained by approximating Rn by its asymptotic expansion,
leading to the formula

γ =

βn
∑

k=1

(−1)k−1 nk

k · k!
− log(n)−

e−n

n

n−2
∑

k=0

k!

(−n)k
+ O(e−2n), β = 4.32 . . . (6)

The constant β is such that β(log(β) − 1) = 2. This improvement, also due to
Sweeney [9], permits to take n ' d/2 log(10) and to work with a precision of
3d/2 decimal places to obtain d decimal places of γ.

Notice that Rn can be approximated as accurately as desired by using Euler’s
continued fraction

enRn = 1/n + 1/1 + 1/n + 2/1 + 2/n + 3/1 + 3/n + · · ·

This can be used to improve the efficiency of the technique, but leads to a much
more complicated algorithm.

More information about this technique can be found in [12].

2.4 Bessel function method

A better method (see also [12]) is based on the modified Bessel functions and
leads to the formula

γ =
An

Bn

− log(n) + O(e−4n),

with

An =
αn
∑

k=0

(

nk

k!

)2

Hk, Bn =
αn
∑

k=0

(

nk

k!

)2

,

where α = 3.5911 . . . satisfies α(log(α) − 1) = 1.
This technique is quite easy, fast and it has a great advantage compared to

Exponential integral techniques : to obtain d decimal places of γ, the interme-
diate computations can be done with d decimal places.
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A refinement can be obtained from an asymptotic series of the error term.
It consists in computing

Cn =
1

4n

2n
∑

k=0

[(2k)!]3

(k!)4(16n)2k
.

Brent and McMillan in [12] suggest that

γ =
An

Bn

−

Cn

B2
n

− log(n) + O(e−8n). (7)

This time, the summations in An and Bn should go up to βn where β =
4.970625759 . . . satisfies β(log(β) − 1) = 3. The error O(e−8n) followed an
empirical evidence but the result had not been proved by Brent and McMillan.
Formula (7) has been used by Xavier Gourdon with a binary splitting process
to obtain more than 100 millions decimal digits of γ in 1999.

Unlike the constant π with the AGM iteration for instance, no quadratically
(or more) convergent algorithm is known for γ.

3 Collection of formulae for the Euler constant

Integral and series formulae for the Euler constant can be found in Collection
of formulae for the Euler constant.
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4 Records of computation

Number of digits When Who Notes

5 1734 L. Euler He found γ = 0.577218.
15 1736 L. Euler The Euler-Maclaurin summation was used [1].
19 1790 L. Mascheroni Mascheroni computed 32 decimal places, but only 19 were correct.
24 1809 J. von Soldner In a work on the logarithm-integral function.
40 1812 F.B.G. Nicolai In agreement with Soldner’s calculation.
19 1825 A.M. Legendre Euler-Maclaurin summation was used with n = 10 [2].
34 1857 Lindman Euler-Maclaurin summation was used with n = 100.
41 1861 Oettinger Euler-Maclaurin summation was used with n = 100.
59 1869 W. Shanks Euler-Maclaurin summation was used with n = 1000.
110 1871 W. Shanks
263 1878 J.C. Adams Adams also computed the first 62 Bernoullian numbers [5].
32 1887 T. J. Stieltjes He used a series based on the zeta function.
??? 1952 J.W. Wrench Euler-Maclaurin summation [7].
1271 1962 D.E. Knuth Euler-Maclaurin summation [8].
3566 1962 D.W. Sweeney The exponential integral method was used [9].

20,700 1977 R.P. Brent Brent used Sweeney’s approach [10].
30,100 1980 R.P. Brent and E.M. McMillan The Bessel function method [12] was used
172,000 1993 J. Borwein A variant of Brent’s method was used.

1,000,000 1997 T. Papanikolaou This is the first gamma computation based on a binary splitting approach. He used a Sun SPARC Ultra, and the computation took 160 hours. He also proved that if γ is rational, its denominator has at least 242080 decimal digits.
7,286,255 1998 Dec. X. Gourdon Sweeney’s method (with N = 223 ) with binary splitting was used. The computation took 47 hours on a SGI R10000 (256 Mo). The verification was done with the value N = 223 + 1.

108,000,000 1999 Oct. X. Gourdon and P. Demichel Formula (7) was used with a binary splitting process. The program was from X. Gourdon and Launched by P. Demichel on a HP J5000, 2 processors PA 8500 (440 Mhz) with 2 Go of memory.
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