Here is a collection of practice problems covering material from Chapters 3 and 10 of Boas and homework sets $7-9$. Along with the first two practice problem sets, this may help you in preparing for the final exam.

1. One of the eigenvalues of the matrix A is $\lambda=0$. Prove that A^{-1} does not exist.
2. If $A^{\top}=-A$, then we say that A is a skew-symmetric (or antisymmetric) matrix. Prove that if A is antisymmetric and B is symmetric, then $\operatorname{Tr}(A B)=0$.

HINT: Note that for any matrix $M, \operatorname{Tr} M^{\top}=\operatorname{Tr} M$.
3. Let A be a complex $n \times n$ matrix. Prove that the eigenvalues of $A A^{\dagger}$ are real and non-negative.

HINT: Let $\overrightarrow{\boldsymbol{w}}=A^{\dagger} \overrightarrow{\boldsymbol{v}}$, where $\overrightarrow{\boldsymbol{v}}$ is an eigenvector of $A A^{\dagger}$. Investigate the consequence of the fact that the inner product $\langle\boldsymbol{\boldsymbol { w }} \mid \boldsymbol{\boldsymbol { w }}\rangle$ is non-negative in a complex Euclidean space.
4. Suppose that the $n \times n$ matrix A is diagonalizable. Then, we can find an invertible matrix S such that $S^{-1} A S=D$ where D is diagonal. Show that $A^{n}=S^{-1} D^{n} S$, where n is a positive integer. This provides a simple way to compute A^{n} since raising a diagonal matrix to a power is easy. Using these considerations, compute M^{10} where

$$
M=\left(\begin{array}{rr}
3 & -1 \\
-1 & 3
\end{array}\right)
$$

5. Determine whether the following matrices are diagonalizable. If diagonalizable, indicate whether it is possible to diagonalize the matrix with a unitary similarity transformation.

$$
\text { (a) } A=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right), \quad \text { (b) } A=\left(\begin{array}{rrr}
1 & -4 & 2 \\
-4 & 1 & -2 \\
2 & -2 & -2
\end{array}\right)
$$

6. A linear transformation T that is represented by a matrix M with respect to the standard basis \mathcal{B} is represented by the matrix $P^{-1} M P$ with respect to a different basis \mathcal{B}^{\prime}.
(a) Show that the characteristic equation for determining the eigenvalues of T does not depend on the choice of basis.

HINT: Note that $P^{-1} M P-\lambda \mathbf{I}=P^{-1}(M-\lambda \mathbf{I}) P$.
(b) Show that the eigenvalues of T do not depend on the choice of basis.
7. Four equal mass balls lying along the x-axis are attached by three springs. The two outermost balls are fixed, while the two innermost balls are free to oscillate in the x direction. Denote the displacement from equilibrium of the two balls by x_{1} and x_{2}. The total potential energy of the system is:

$$
V=\frac{1}{2} k x_{1}^{2}+\frac{1}{2} k\left(x_{2}-x_{1}\right)^{2}
$$

(a) Show that the equations of motion for the two displacements can be cast into the matrix equation:

$$
\frac{d^{2} \overrightarrow{\boldsymbol{x}}}{d t^{2}}=A \overrightarrow{\boldsymbol{x}}
$$

where $\overrightarrow{\boldsymbol{x}}=\binom{x_{1}}{x_{2}}$ and A is a 2×2 matrix.
(b) Diagonalize the matrix A and determine the two possible frequencies of vibrations. These are the normal modes of the system.
8. If A is a diagonalizable matrix, prove that

$$
e^{\operatorname{Tr} A}=\operatorname{det} e^{A}
$$

HINT: First prove this result for a diagonal matrix. Then, try to prove the more general result by diagonalizing A. This result is true for any matrix A, but if A is not diagonalizable, a more sophisticated technique is required.
9. A linear transformation A is represented by the matrix:

$$
A=\left(\begin{array}{rrr}
1 & -4 & 2 \\
-4 & 1 & -2 \\
2 & -2 & -2
\end{array}\right)
$$

with respect to the standard basis $\mathcal{B}=\{(1,0,0),(0,1,0),(0,0,1)\}$. Consider a new basis, $\mathcal{B}^{\prime}=\{(2,-2,1),(1,1,0),(-1,1,4)\}$, where the components of the basis vectors of \mathcal{B}^{\prime} are given with respect to the standard basis \mathcal{B}.
(a) What are the components of the basis vectors of \mathcal{B} when expressed relative to the basis \mathcal{B}^{\prime} ?
(b) Determine the matrix representation of A relative to the basis \mathcal{B}^{\prime}.
10. Consider tensors that live in n-dimensional Euclidean space.
(a) How many independent components does a symmetric second-rank tensor, $S_{i j}$, possess?
(b) How many independent components does an antisymmetric second-rank tensor, $A_{i j}$, possess?
11. In three dimensional space, the components of the vector cross product (in rectangular coordinates) is defined as

$$
(\overrightarrow{\boldsymbol{b}} \times \overrightarrow{\boldsymbol{c}})_{i}=\sum_{j=1}^{3} \sum_{k=1}^{3} \epsilon_{i j k} b_{j} c_{k},
$$

where $\epsilon_{i j k}$ is the Levi-Civita symbol.
(a) Using the formula for the determinant given on p. 509 of Boas, prove that:

$$
\overrightarrow{\boldsymbol{a}} \cdot(\overrightarrow{\boldsymbol{b}} \times \overrightarrow{\boldsymbol{c}})=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right| .
$$

(b) Using the properties of the determinant, prove that
(i) $\overrightarrow{\boldsymbol{a}} \cdot(\overrightarrow{\boldsymbol{b}} \times \overrightarrow{\boldsymbol{c}})=\overrightarrow{\boldsymbol{b}} \cdot(\overrightarrow{\boldsymbol{c}} \times \overrightarrow{\boldsymbol{a}})=\overrightarrow{\boldsymbol{c}} \cdot(\overrightarrow{\boldsymbol{a}} \times \overrightarrow{\boldsymbol{b}})$,
(ii) $\overrightarrow{\boldsymbol{a}} \cdot(\overrightarrow{\boldsymbol{b}} \times \overrightarrow{\boldsymbol{c}})=(\overrightarrow{\boldsymbol{a}} \times \overrightarrow{\boldsymbol{b}}) \cdot \overrightarrow{\boldsymbol{c}}$, [interchange of the dot and cross],
(iii) $\vec{a} \cdot(\vec{b} \times \vec{c})=-\vec{c} \cdot(\vec{b} \times \vec{a})$.
12. A product of Levi-Civita ϵ symbols can be expressed in terms of products of Kronecker deltas.
(a) Show that the following determinantal identity is satisfied:

$$
\epsilon_{i j k} \epsilon_{\ell m n}=\left|\begin{array}{ccc}
\delta_{i \ell} & \delta_{i m} & \delta_{i n} \\
\delta_{j \ell} & \delta_{j m} & \delta_{j n} \\
\delta_{k \ell} & \delta_{k m} & \delta_{k n}
\end{array}\right| .
$$

HINT: You may find eq. (5.5) on p. 509 of Boas useful.
(b) Set $k=\ell$ in part (a) and sum the resulting expression from $k=1$ to 3 . Show that the result coincides with eq. (5.8) on p. 510 of Boas.

