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Abstract

An elementary introduction to the celebrated gamma function Γ(x)
and its various representations. Some of its most important properties
are described.

1 Introduction

The gamma function was first introduced by the Swiss mathematician Leon-
hard Euler (1707-1783) in his goal to generalize the factorial to non integer
values. Later, because of its great importance, it was studied by other eminent
mathematicians like Adrien-Marie Legendre (1752-1833), Carl Friedrich Gauss
(1777-1855), Christoph Gudermann (1798-1852), Joseph Liouville (1809-1882),
Karl Weierstrass (1815-1897), Charles Hermite (1822-1901), ... as well as many
others.

The gamma function belongs to the category of the special transcendental
functions and we will see that some famous mathematical constants are occur-
ring in its study.

It also appears in various area as asymptotic series, definite integration,
hypergeometric series, Riemann zeta function, number theory ...

Some of the historical background is due to Godefroy’s beautiful essay on
this function [9] and the more modern textbook [3] is a complete study.

2 Definitions of the gamma function

2.1 Definite integral

During the years 1729 and 1730 ([9], [12]), Euler introduced an analytic function
which has the property to interpolate the factorial whenever the argument of the
function is an integer. In a letter from January 8, 1730 to Christian Goldbach
he proposed the following definition :

Definition 1 (Euler, 1730) Let x > 0

Γ(x) =

∫ 1

0

(− log(t))
x−1

dt. (1)
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By elementary changes of variables this historical definition takes the more
usual forms :

Theorem 2 For x > 0

Γ(x) =

∫

∞

0

tx−1e−tdt, (2)

or sometimes

Γ(x) = 2

∫

∞

0

t2x−1e−t
2

dt. (3)

Proof. Use respectively the changes of variable u = − log(t) and u2 =
− log(t) in (1).

From this theorem, we see that the gamma function Γ(x) (or the Eulerian
integral of the second kind) is well defined and analytic for x > 0 (and more
generally for complex numbers x with positive real part).

The notation Γ(x) is due to Legendre in 1809 [11] while Gauss expressed it
by Π(x) (which represents Γ(x+ 1)).

The derivatives can be deduced by differentiating under the integral sign of
(2)

Γ′(x) =

∫

∞

0

tx−1e−t log(t)dt,

Γ(n)(x) =

∫

∞

0

tx−1e−t logn(t)dt.

2.1.1 Functional equation

We have obviously

Γ(1) =

∫

∞

0

e−tdt = 1 (4)

and for x > 0, an integration by parts yields

Γ(x+ 1) =

∫

∞

0

txe−tdt = [−txe−t]∞0 + x

∫

∞

0

tx−1e−tdt = xΓ(x), (5)

and the relation Γ(x+ 1) = xΓ(x) is the important functional equation.
For integer values the functional equation becomes

Γ(n+ 1) = n!,

and it’s why the gamma function can be seen as an extension of the factorial
function to real non null positive numbers.

A natural question is to determine if the gamma function is the only solution
of the functional equation ? The answer is clearly no as may be seen if we
consider, for example, the functions cos(2mπx)Γ(x), where m is any non null
integer and which satisfy both (4) and (5). But the following result states that
under an additional condition the gamma function is the only solution of this
equation.
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Theorem 3 (Bohr-Mollerup, 1922, [6]) There is a unique function f : ]0,+∞[→
]0,+∞[ such as log(f(x)) is convex and

f(1) = 1,

f(x+ 1) = xf(x).

Proof. An elementary one is given in [2].

Other conditions may also work as well, see again [2].
It’s also possible to extend this function to negative values by inverting the

functional equation (which becomes a definition identity for −1 < x < 0)

Γ(x) =
Γ(x+ 1)

x
,

and for example Γ(−1/2) = −2Γ(1/2). Reiteration of this identity allows to
define the gamma function on the whole real axis except on the negative integers
(0,−1,−2, ...). For any non null integer n, we have

Γ(x) =
Γ(x+ n)

x(x+ 1)...(x+ n− 1)
x+ n > 0. (6)

Suppose that x = −n+ h with h being small, then

Γ(x) =
Γ(1 + h)

h(h− 1)...(h− n)
∼ (−1)n

n!h
when h→ 0,

so Γ(x) possesses simple poles at the negative integers −n with residue (−1)n/n!
(see the plot of the function 2.1.1).

In fact, also by mean of relation (6), the gamma function can be defined in
the whole complex plane.
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Γ(x) function

2.2 Another definition by Euler and Gauss

In another letter written in October 13, 1729 also to his friend Goldbach, Euler
gave another equivalent definition for Γ(x).

Definition 4 (Euler, 1729 and Gauss, 1811) Let x > 0 and define

Γp(x) =
p!px

x(x+ 1)...(x+ p)
=

px

x(1 + x/1)...(1 + x/p)
, (7)

then
Γ(x) = lim

p→∞
Γp(x). (8)

(Check the existence of this limit). This approach, using an infinite product,
was also chosen, in 1811, by Gauss in his study of the gamma function [8].

Clearly

Γp(1) =
p!

1(1 + 1)...(1 + p)
p =

p

p+ 1
, and

Γp(x+ 1) =
p!px+1

(x+ 1)...(x+ p+ 1)
=

p

x+ p+ 1
xΓp(x),

hence

Γ(1) = 1,

Γ(x+ 1) = xΓ(x).

We retrieve the functional equation verified by Γ(x).
It’s interesting to observe that the definition is still valid for negative values

of x, except on the poles (0,−1,−2, ...). Using this formulation is often more
convenient to establish new properties of the gamma function.

2.3 Weierstrass formula

The relation

px = ex log(p) = ex(log(p)−1−1/2−...−1/p)ex+x/2+...+x/p,

entails

Γp(x) =
1

x

1

x+ 1

2

x+ 2
...

p

x+ p
px =

ex(log(p)−1−1/2−...−1/p)ex+x/2+...+x/p

x(1 + x)(1 + x/2)...(1 + x/p)
,

Γp(x) = ex(log(p)−1−1/2−...−1/p) 1

x

ex

1 + x

ex/2

1 + x/2
· · · ex/p

1 + x/p
.
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Now Euler’s constant is defined by

γ = lim
p→∞

(

1 +
1

2
+ ...+

1

p
− log(p)

)

= 0.5772156649015328606...,

and therefore follows the Weierstrass form of the gamma function.

Theorem 5 (Weierstrass) For any real number x, except on the negative inte-
gers (0,−1,−2, ...), we have the infinite product

1

Γ(x)
= xeγx

∞
∏

p=1

(

1 +
x

p

)

e−x/p. (9)

From this product we see that Euler’s constant is deeply related to the
gamma function and the poles are clearly the negative or null integers. Ac-
cording to Godefroy [9], Euler’s constant plays in the gamma function theory a
similar role as π in the circular functions theory.

It’s possible to show that Weierstrass form is also valid for complex numbers.

3 Some special values of Γ(x)

Except for the integer values of x = n for which

Γ(n) = (n− 1)!

some non integers values have a closed form.
The change of variable t = u2 gives

Γ(1/2) =

∫

∞

0

e−t√
t
dt = 2

∫

∞

0

e−u
2

du = 2

√
π

2
=
√
π.

The functional equation (5) entails for positive integers n (see [1])

Γ

(

n+
1

2

)

=
1.3.5...(2n− 1)

2n
√
π, (10)

Γ

(

n+
1

3

)

=
1.4.7...(3n− 2)

3n
Γ

(

1

3

)

,

Γ

(

n+
1

4

)

=
1.5.9...(4n− 3)

4n
Γ

(

1

4

)

,

and for negative values

Γ

(

−n+
1

2

)

=
(−1)n2n

1.3.5...(2n− 1)

√
π.

No basic expression is known for Γ(1/3) or Γ(1/4), but it was proved that
those numbers are transcendental (respectively by Le Lionnais in 1983 and
Chudnovsky in 1984).
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Up to 50 digits, the numerical values of some of those constants are :

∣

∣

∣

∣

∣

∣

∣

∣

Γ (1/2) = 1.77245385090551602729816748334114518279754945612238...
Γ (1/3) = 2.67893853470774763365569294097467764412868937795730...
Γ (1/4) = 3.62560990822190831193068515586767200299516768288006...
Γ (1/5) = 4.59084371199880305320475827592915200343410999829340...

.

For example, thanks to the very fast converging formula (which is based on the
expression (34) and uses the Arithmetic-Geometric Mean AGM, [7])

Γ2 (1/4) =
(2π)3/2

AGM(
√
2, 1)

,

this constant was computed to more than 50 millions digits by P. Sebah and M.
Tommila [10]. Similar formulae are available for other fractional arguments like
Γ (1/3) ...

4 Properties of the gamma function

4.1 The complement formula

There is an important identity connecting the gamma function at the comple-
mentary values x and 1 − x. One way to obtain it is to start with Weierstrass
formula (9) which yields

1

Γ(x)

1

Γ(−x) = −x2eγxe−γx
∞
∏

p=1

[(

1 +
x

p

)

e−x/p
(

1− x

p

)

ex/p
]

.

But the functional equation gives Γ(−x) = −Γ(1−x)/x and the equality writes
as

1

Γ(x)Γ(1− x)
= x

∞
∏

p=1

(

1− x2

p2

)

,

and using the well-known infinite product :

sin(π x) = π x
∞
∏

p=1

(

1− x2

p2

)

finally gives

Γ(x)Γ(1− x) =
π

sinπx
. (11)

Relation (11) is the complement (or reflection) formula and is valid when x
and 1− x are not negative or null integers and it was discovered by Euler.
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For example, if we apply this formula for the values x = 1/2, x = 1/3,
x = 1/4 we find

Γ

(

1

2

)

=
√
π,

Γ

(

1

3

)

Γ

(

2

3

)

=
2π
√
3

3
,

Γ

(

1

4

)

Γ

(

3

4

)

= π
√
2.

4.2 Duplication and Multiplication formula

In 1809, Legendre obtained the following duplication formula [11].

Theorem 6 (Legendre, 1809)

Γ(x)Γ(x+ 1/2) =

√
π

22x−1
Γ(2x). (12)

Proof. Hint : an easy proof can lie on the expression of Γp(x) and Γp(x+1/2)
from (7), then make the product and find the limit as p→∞.

Notice that by applying the duplication formula for x = 1/2, we retrieve the
value of Γ(1/2), while x = 1/6 permits to compute

Γ

(

1

6

)

= 2−1/3

√

3

π
Γ2

(

1

3

)

.

This theorem is the special case when n = 2 of the more general result known
as Gauss multiplication formula :

Theorem 7 (Gauss)

Γ (x) Γ

(

x+
1

n

)

Γ

(

x+
2

n

)

...Γ

(

x+
n− 1

n

)

= (2π)(n−1)/2n1/2−nxΓ (nx)

Proof. Left as exercise.

Corollary 8 (Euler)

Γ

(

1

n

)

Γ

(

2

n

)

...Γ

(

n− 1

n

)

=
(2π)(n−1)/2

√
n

Proof. Set x = 1/n in the Gauss multiplication formula.
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4.3 Stirling’s formula

It’s of interest to study how the gamma function behaves when the argument x
becomes large. If we restrict the argument x to integral values n, the following
result, due to James Stirling (1692-1730) and Abraham de Moivre (1667-1754)
is famous and of great importance :

Theorem 9 (Stirling-De Moivre, 1730) If the integer n tends to infinite we
have the asymptotic formula

Γ(n+ 1) = n! ∼
√
2πnnne−n. (13)

Proof. See [2] for a complete proof. You may obtain a weaker approxima-
tion by observing that the area under the curve log(x) with x ∈ [1, n] is well
approximated by the trapezoidal rule, therefore

∫ n

1

log(x)dx = n log(n)− n+ 1

=

n−1
∑

k=1

log(k) + log(k + 1)

2
+Rn = log((n− 1)!) +

1

2
log(n) +Rn

and because Rn = O(1) (check this!), we find

log(n!) ≈ n log(n) +
1

2
log(n)− n+ C

which gives this weaker result

n! ≈ eCnn
√
ne−n.

Stirling’s formula is remarkable because the pure arithmetic factorial func-
tion is equivalent to an expression containing important analytic constants like
(
√
2, π, e).
There is an elementary way to improve the convergence of Stirling’s formula.

Suppose you can write

n! =
√
2πnnne−n

(

1 +
a1

n
+

a2

n2
+ ...

)

,

then this relation is still valid for n+ 1

(n+ 1)! =
√

2π(n+ 1)(n+ 1)(n+1)e−(n+1)

(

1 +
a1

n+ 1
+

a2

(n+ 1)2
+ ...

)

(14)

but we also have (n+ 1)! = (n+ 1)n! giving

(n+ 1)! = (n+ 1)
√
2πnnne−n

(

1 +
a1

n
+

a2

n2
+ ...

)

. (15)
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We now compare relations (14) and (15) when n becomes large. This gives after
some simplifications and classical series expansions

(

1 +
a1

n
+

a2

n2
+ ...

)

=

(

1 +
1

n

)n+1/2

e−1

(

1 +
a1

n+ 1
+

a2

(n+ 1)2
+ ...

)

= 1 +
a1

n
+
a2 − a1 +

1
12

n2
+

13
12a1 − 2a2 + a3 − 1

12

n3
+ ...

and after the identification comes

−a1 +
1

12
= 0,

13

12
a1 − 2a2 −

1

12
= 0,

...

Therefore we found, by elementary means, the first correcting terms of the
formula to be : a1 = 1/12, a2 = 1/288, ... A more efficient (but less elementary)
way to find more terms is to use the Euler-Maclaurin asymptotic formula.

In fact the following theorem is a generalization of Stirling’s formula valid
for any real number x :

Theorem 10 When x→∞, we have the famous Stirling’s asymptotic formula
[1]

Γ(x+ 1) =
√
2πxxxe−x

(

1 +
1

12x
+

1

288x2
− 139

51840x3
− 571

2488320x4
...

)

. (16)

For example here are some approximations of the factorial using different
values for n :

n n! Stirling formula + correction 1/ (12n)
5 120 118 119
10 3628800 3598695 3628684
20 2432902008176640000 2422786846761133393 2432881791955971449

5 Series expansion

To estimate the gamma function near a point it’s possible to use some series
expansions at this point. Before doing this we need to introduce a new function
which is related to the derivative of the gamma function.

5.1 The digamma and polygamma functions

Many of the series involving the gamma function and its derivatives may be
derived from the Weierstrass formula. By taking the logarithm on both sides of
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the Weierstrass formula (9) we find the basic relation

− log(Γ(x)) = log(x) + γx+
∞
∑

p=1

(

log

(

1 +
x

p

)

− x

p

)

. (17)

5.1.1 Definition

Definition 11 The psi or digamma function denoted Ψ(x) is defined for any
non nul or negative integer by the logarithmic derivative of Γ(x), that is :

Ψ(x) =
d

dx
(log(Γ(x))) .

By differentiating the series (17) we find

Ψ(x) =
Γ′(x)

Γ(x)
= −γ − 1

x
+

∞
∑

p=1

(

1

p
− 1

x+ p

)

,

= −γ +

∞
∑

p=1

(

1

p
− 1

x+ p− 1

)

x 6= 0,−1,−2, ... (18)

= −γ +

∞
∑

p=1

(

x− 1

p(x+ p− 1)

)

x 6= 0,−1,−2, ...

and those series are slowly converging for any non negative integer x.

5.1.2 Properties

Polygamma functions Now if we go on differentiating relation (18) several
times, we find

Ψ′(x) =
Γ(x)Γ′′(x)− Γ′

2
(x)

Γ2(x)
=

∞
∑

p=1

1

(p+ x− 1)2
, (19)

Ψ′′(x) = −
∞
∑

p=1

2

(p+ x− 1)3
,

Ψ(n)(x) =

∞
∑

p=1

(−1)n+1n!

(p+ x− 1)n+1
, (20)

and the Ψn = Ψ(n) functions are the polygamma functions :

Ψn(x) =
dn+1

dxn+1
(log(Γ(x))) ,

Ψ0(x) = Ψ(x).

Observe from (19) that for x > 0, Ψ′(x) > 0 so it’s a monotonous function
on the positive axis and therefore the function log(Γ(x)) is convex when x > 0.
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Recurrence relations The structure of the series expansion (18) suggests
to study

Ψ(x+ 1)−Ψ(x) =

∞
∑

p=1

(

1

x+ p− 1
− 1

x+ p

)

which gives, just like for the gamma function, the recurrence formulae

Ψ(x+ 1) = Ψ(x) +
1

x
,

Ψ(x+ n) = Ψ(x) +
1

x
+

1

x+ 1
+ ...+

1

x+ n− 1
n ≥ 1,

and by differentiating the first of those relations we deduce

Ψn(x+ 1) = Ψn(x) +
(−1)nn!
xn+1

. (21)

Complement and duplication formulae By logarithmic differentiation of
the corresponding complement (11) and duplication (12) formulae for the gamma
function we find directly :

Theorem 12

Ψ(1− x) = Ψ(x) + π cotπx,

Ψ(2x) =
1

2
Ψ(x) +

1

2
Ψ

(

x+
1

2

)

+ log(2).

5.1.3 Special values of the Ψn

Values at integer arguments From the relations (18) and (20) comes

Ψ(1) = −γ,
Ψ1(1) = ζ(2) = π2/6,

Ψ2(1) = −2ζ(3),
Ψn(1) = (−1)n+1n!ζ(n+ 1), (22)

where ζ(k) is the classical Riemann zeta function. Using the recurrence rela-
tions (21) allow to compute those values for any other positive integer and, for
example, we have

Ψ(n) =
Γ′(n)

Γ(n)
= −γ +

n−1
∑

p=1

1

p
(23)

= −γ +Hn−1.
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Values at rational arguments The value Ψ(1/2) can be computed directly
from (18) or from the psi duplication formula with x = 1/2 :

Ψ

(

1

2

)

= −γ − 2 + 2

∞
∑

p=1

(

1

2p
− 1

2p+ 1

)

,

= −γ − 2 + 2 (1− log(2)) = −γ − 2 log(2).

To end this section we give the interesting identities

Ψ

(

1

3

)

= −γ − 3

2
log(3)−

√
3

6
π,

Ψ

(

1

4

)

= −γ − 3 log(2)− π

2
,

Ψ

(

1

6

)

= −γ − 2 log(2)− 3

2
log(3)−

√
3

2
π.

which are consequences of a more general and remarkable result :

Theorem 13 (Gauss) Let 0 < p < q being integers

Ψ

(

p

q

)

= −γ − π

2
cot

(

πp

q

)

− log (2q) +

q−1
∑

k=1

cos

(

2πkp

q

)

log

(

sin

(

πk

q

))

.

Proof. See [2] for a proof.

From this aesthetic relation, we see that the computation of Ψ(p/q) for any
rational argument always involves the three fundamental mathematical con-
stants : π, γ, log(2) !

5.1.4 Series expansions of the digamma function

The following series expansions are easy consequences of relations (22) and of
the series

1

1 + x
− 1 = −

∞
∑

k=2

(−1)kxk−1.

Theorem 14 (Digamma series)

Ψ(1 + x) = −γ +

∞
∑

k=2

(−1)kζ(k)xk−1 |x| < 1, (24)

Ψ(1 + x) = − 1

1 + x
− (γ − 1) +

∞
∑

k=2

(−1)k (ζ(k)− 1)xk−1 |x| < 1. (25)
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5.1.5 Zeros of the digamma function

The zeros of the digamma function are the extrema of the gamma function.
From the two relations

Ψ(1) = −γ < 0

Ψ(2) = 1− γ > 0,

and because Ψ′(x) > 0, we see that the only positive zero x0 of the digamma
function is in ]1, 2[ and its first 50 digits are :

x0 = 1.46163214496836234126265954232572132846819620400644...

Γ(x0) = 0.88560319441088870027881590058258873320795153366990...,

it was first computed by Gauss, Legendre [11] and given in [13]. On the negative
axis, the digamma function has a single zero between each consecutive negative
integers (the poles of the gamma function), the first one up to 50 decimal places
are

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1 = −0.504083008264455409258269304533302498955385182368579...
x2 = −1.573498473162390458778286043690434612655040859116846...
x3 = −2.610720868444144650001537715718724207951074010873480...
x4 = −3.635293366436901097839181566946017713948423861193530...
x5 = −4.653237761743142441714598151148207363719069416133868...

and Hermite (1881) observed that when n becomes large [1]

xn = −n+
1

log(n)
+ o

(

1

log2(n)

)

.
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Ψ(x) function (digamma)

5.2 Series expansion of the gamma function

Finding series expansions for the gamma function is now an easy consequence
of the series expansions for the digamma function.

Theorem 15

log(Γ(1 + x)) = −γx+

∞
∑

k=2

(−1)kζ(k)
k

xk, |x| < 1, (26)

log(Γ(1 + x)) = − log(1 + x)− (γ − 1)x+

∞
∑

k=2

(−1)k (ζ(k)− 1)

k
xk, |x| < 1.

(27)

Proof. Use the term by term integration of the Taylor series (24) and (25).

We may observe that the Riemann zeta function at integer values appears in
the series expansion of the logarithm of the gamma function. The convergence
of the series can be accelerated by computing

1

2
(log(Γ(1 + x))− log(Γ(1− x))) = −1

2
log

(

1 + x

1− x

)

−(γ−1)x−
∞
∑

k=2

(ζ(2k + 1)− 1)

2k + 1
x2k+1,

We now observe that the complement formula (11) becomes

Γ(1 + x)Γ(1− x) =
πx

sinπx

and by taking the logarithms finally

1

2
log (Γ(1 + x)) +

1

2
(log Γ(1− x)) =

1

2
log

( πx

sinπx

)

and therefore we obtain the fast converging series due to Legendre :

log (Γ(1 + x)) =
1

2
log

( πx

sinπx

)

−1

2
log

(

1 + x

1− x

)

−(γ−1)x−
∞
∑

k=1

(ζ(2k + 1)− 1)

2k + 1
x2k+1,

(28)
valid for |x| < 1.

Gauss urged to his calculating prodigy student Nicolai (1793-1846) to com-
pute tables of log (Γ(x)) with twenty decimal places [8]. More modern tables
related to Γ(x) and Ψ(x) are available in [1].
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6 Euler’s constant and the gamma function

For x = 1 the formula (23) for Ψ(n) yields

Ψ(1) = Γ′(1) = −γ − 1 +H1 = −γ,

so Euler’s constant is the opposite of the derivative of the gamma function at
x = 1.

6.1 Euler-Mascheroni Integrals

Using the integral representation of Γ′(x) gives the interesting integral formula
for Euler’s constant

Γ′(1) =

∫

∞

0

e−t log(t)dt = −γ

and from (19) comes

Ψ′(1)Γ2(1) + Γ′
2
(1) = Γ(1)Γ′′(1)

hence

Γ′′(1) =

∫

∞

0

e−t log2(t)dt = γ2 +
π2

6
.

We may go on like this and compute the Euler-Mascheroni integrals

Γ(3)(1) = −γ3 − 1

2
π2γ − 2ζ(3),

Γ(4)(1) = γ4 + π2γ2 + 8ζ(3)γ +
3

20
π4,

Γ(5)(1) = −γ5 − 5

3
π2γ3 − 20ζ(3)γ2 − 3

4
π4γ − 24ζ(5)− 10

3
ζ(3)π2,

...

6.2 Euler’s constant and the zeta function at integer val-

ues

Series formulas involving ζ(k) can also be deduced from formula (26). Taking
x = 1 gives

log(Γ(2)) = −γ +

∞
∑

k=2

(−1)kζ(k)
k

,

thus

γ =
∞
∑

k=2

(−1)kζ(k)
k

,

which is due to Euler. Setting x = 1/2 into (26) gives

log

(

Γ

(

3

2

))

= log(
√
π/2) = −γ

2
+

∞
∑

k=2

(−1)kζ(k)
k

1

2k
,

15



therefore

γ = log

(

4

π

)

+ 2

∞
∑

k=2

(−1)k ζ(k)
2kk

.

It is of interest to use the series expansion (28) at x = 1/2,

log (Γ(3/2)) =
1

2
log

(π

2

)

− 1

2
log (3)− 1

2
(γ − 1)−

∞
∑

k=1

(ζ(2k + 1)− 1)

2k + 1

1

22k+1
.

It follows a fast converging expansion for γ

γ = 1− log

(

3

2

)

−
∞
∑

k=1

(ζ(2k + 1)− 1)

(2k + 1)4k
.

and for large values of k, we have

ζ(2k + 1)− 1 =
1

22k+1
+

1

32k+1
+ · · · ∼ 1

22k+1
hence

ζ(2k + 1)− 1

4k
∼ 1

2

1

16k
.

This expression was used by Thomas Stieltjes (1856-1894) in 1887 to compute
Euler’s constant up to 32 decimal places [14]. In the same article he also com-
puted ζ(2) up to ζ(70) with 32 digits.

7 The gamma function and the Riemann Zeta

function

The integral definition of the gamma function

Γ(x) =

∫

∞

0

tx−1e−tdt,

together with the change of variables t = ku (with k a positive integer) yields

Γ(x) =

∫

∞

0

(ku)x−1e−kuk du = kx
∫

∞

0

ux−1e−ku du.

We write this in the form

1

kx
=

1

Γ(x)

∫

∞

0

ux−1e−kudu,

hence by summation

∞
∑

k=1

1

kx
=

1

Γ(x)

∫

∞

0

ux−1
∞
∑

k=1

(

e−ku
)

du

=
1

Γ(x)

∫

∞

0

ux−1

(

1

1− e−u
− 1

)

du.

16



We have obtained the beautiful formula

ζ(x)Γ(x) =

∫

∞

0

tx−1

et − 1
dt (29)

and, for example, for x = 2, (29) becomes

π2

6
=

∫

∞

0

t

et − 1
dt.

There is another celebrated and most important functional equation between
those two functions, the Riemann zeta function functional equation :

Theorem 16 (Riemann, 1859) Let

Λ(s) = π−s/2Γ
(s

2

)

ζ(s),

an analytic function except at poles 0 and 1, then

Λ(s) = Λ(1− s).

Proof. Several proofs may be found in [15]. Euler demonstrated it for
integer values of s.

This equation allows to extend the definition of the Zeta function to negative
values of the arguments.

8 The Beta function

Let us now consider the useful and related function to the gamma function
which occurs in the computation of many definite integrals. It’s defined, for
x > 0 and y > 0 by the two equivalent identities :

Definition 17 The beta function (or Eulerian integral of the first kind) is given
by

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt (30)

= 2

∫ π/2

0

sin(t)2x−1 cos(t)2y−1dt = 2

∫ π/2

0

sin(t)2y−1 cos(t)2x−1dt,

(31)

= B(y, x).

This definition is also valid for complex numbers x and y such as <(x) >
0 and <(y) > 0 and Euler gave (30) in 1730. The name beta function was
introduced for the first time by Jacques Binet (1786-1856) in 1839 [5] and he
made various contributions on the subject.

The beta function is symmetric and may be computed by mean of the gamma
function thanks to the important property :
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Theorem 18 Let <(x) > 0 and <(y) > 0, then

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
= B(y, x). (32)

Proof. We use the definite integral (3) and form the following product

Γ(x)Γ(y) = 4

∫

∞

0

u2x−1e−u
2

du

∫

∞

0

v2y−1e−v
2

dv

= 4

∫

∞

0

∫

∞

0

e−(u
2+v2)u2x−1v2y−1dudv,

we introduce the polar variables u = r cos θ, v = r sin θ so that

Γ(x)Γ(y) = 4

∫

∞

0

∫ π/2

0

e−r
2

r2(x+y)−1 cos2x−1 θ sin2y−1 θdrdθ

= 2

∫

∞

0

r2(x+y)−1e−r
2

dr.2

∫ π/2

0

cos2x−1 θ sin2y−1 θdθ

= Γ(x+ y)B(y, x).

From relation (32) follows

B(x+ 1, y) =
Γ(x+ 1)Γ(y)

Γ(x+ y + 1)
=

xΓ(x)Γ(y)

(x+ y)Γ(x+ y)
=

x

x+ y
B(x, y),

this is the beta function functional equation

B(x+ 1, y) =
x

x+ y
B(x, y). (33)

8.1 Special values

B

(

1

2
,
1

2

)

= π,

B

(

1

3
,
2

3

)

=
2
√
3

3
π,

B

(

1

4
,
3

4

)

= π
√
2,

B(x, 1− x) =
π

sin(πx)
,

B(x, 1) =
1

x
,

B(x, n) =
(n− 1)!

x.(x+ 1)...(x+ n− 1)
n ≥ 1,

B(m,n) =
(m− 1)!(n− 1)!

(m+ n− 1)!
m ≥ 1, n ≥ 1.
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8.2 Wallis’s integrals

For example the following integrals (Wallis’s integrals)

Wn =

∫ π/2

0

sinn θdθ =

∫ π/2

0

cosn θdθ,

may be computed by mean of the beta and gamma functions. Thanks to the
relation (31), we have

Wn =
1

2
B

(

n+ 1

2
,
1

2

)

,

and come naturally the two cases n = 2p+ 1 and n = 2p. For the odd values of
the argument n :

W2p+1 =
1

2
B

(

p+ 1,
1

2

)

=
Γ(p+ 1)Γ(1/2)

2Γ(p+ 3/2)
=

p!Γ(1/2)

(2p+ 1)Γ(p+ 1/2)

and using formula (10) produces the well-known result

W2p+1 =
2pp!

1.3.5...(2p+ 1)
=

4pp!2

(2p+ 1)!
.

The same method permits to compute the integrals for the even values

W2p =
1

2
B

(

p+
1

2
,
1

2

)

=
Γ(p+ 1/2)Γ(1/2)

2Γ(p+ 1)

and finally

W2p =
1.3.5...(2p− 1)

2p+1p!
π =

(2p)!

4pp!2
π

2
.

Observe that it’s easy to see that

Wn+2 =
1

2
B

(

n+ 2 + 1

2
,
1

2

)

=
1

2
B

(

n+ 1

2
+ 1,

1

2

)

=
(n+ 1)/2

n/2 + 1
Wn =

(

n+ 1

n+ 2

)

Wn

thanks to the beta function functional equation (33).
It’s interesting to notice that

Wα =
1

2
B

(

α+ 1

2
,
1

2

)

also works for any real number α > −1 and therefore we may deduce using (30)
and (31) that (respectively with α = −1/2 and α = 1/2)

∫ π/2

0

dθ√
sin θ

=

∫ 1

0

2dt√
1− t4

=
Γ2(1/4)

2
√
2π

, (34)

∫ π/2

0

√
sin θdθ =

∫ 1

0

2t2dt√
1− t4

=
(2π)3/2

Γ2(1/4)
.

Consequently the product of those two integrals permits to derive the relation
due to Euler

∫ 1

0

dt√
1− t4

∫ 1

0

t2dt√
1− t4

=
π

4
.
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