
Physics 116A Homework Set #5 Winter 2010

DUE: THURSDAY FEBRUARY 11, 2010

To receive full credit, you must exhibit the intermediate steps that lead you to
your final results. The nth problem in Boas from section a.b is designated by a.b–n.

1. In class, we showed that the volume Vn of an n-dimensional hypersphere with
radius R = 1 is given by

Vn =
πn/2

Γ(n
2

+ 1)
.

We remarked that as a function of increasing n, Vn first increases and then decreases,
approaching zero as n→ ∞.

(a) Using Stirling’s approximation for the gamma function, prove the assertion
that limn→∞ Vn = 0.

(b) Using Stirling’s approximation for the logarithm of the gamma function, com-
pute the value of n at which Vn is a maximum. [HINT: First, estimate the location of
the maximum of ln(Vn) by evaluating the derivative of ln(Vn) with respect to n and
setting the derivative equal to zero. (In computing the derivative, you may neglect at
first approximation any term that vanishes for large n.) Argue that your result also
provides the approximate value of n for which Vn is a maximum.]

(c) Compute Vn for values of integer n near its maximum and determine which
integer n corresponds to the largest value of Vn. Compare your result with part (b) and
comment. For those of you who are more ambitious, use a calculator or a computer
algebraic system (e.g. Mathematica or Maple) to determine the actual (non-integer)
value of n for which Vn is maximal.

2. In class, we derived the following result. For any non-negative integer n,

lim
x→−n

(x+ n)Γ(x) =
(−1)n

n!
. (1)

In this problem, you shall determine the behavior of Γ(x) as x→ −n.

(a) Prove that for an infinitesimal quantity, |ǫ| ≪ 1, eq. (1) is equivalent to the
following result:

Γ(−n+ ǫ) ≃ (−1)n

n!

1

ǫ
.

(b) Prove that the behavior of Γ(x) as x→ −n is given by:

Γ(−n + ǫ) ≃ (−1)n

n!

[

1

ǫ
+ ψ(n+ 1) + O(ǫ)

]

, (2)



where ψ(n+ 1) is the logarithmic derivative of the gamma function evaluated at the
integer n + 1, which was shown in class to be equal to:

ψ(n + 1) = −γ +

n
∑

k=1

1

k
,

and γ ≡ −Γ′(1) ≃ 0.5772156649 · · · is Euler’s constant.

HINT: Justify the following steps.

ǫΓ(−n + ǫ) =
ǫΓ(1 − n+ ǫ)

−n + ǫ
=

ǫΓ(2 − n+ ǫ)

(−n + ǫ)(1 − n + ǫ)
= · · ·

=
ǫΓ(ǫ)

(−n + ǫ)(1 − n+ ǫ)(2 − n+ ǫ) · · · (−1 + ǫ)

=
(−1)nΓ(1 + ǫ)

(n− ǫ)(n− 1 − ǫ)(n− 2 − ǫ) · · · (1 − ǫ)

=
(−1)nΓ(1 + ǫ)

n!
(

1 − ǫ

n

)

(

1 − ǫ

n− 1

)(

1 − ǫ

n− 2

)

· · · (1 − ǫ)

.

Then, expand the right hand side above in a power series around ǫ = 0, keeping only
terms up to and including O(ǫ). Do not forget to expand Γ(1 + ǫ) to first order in ǫ.
Show that the end result (after dividing by ǫ in the final step) is that of eq. (2).

3. The logarithmic derivative of the gamma function is defined by

ψ(x) ≡ d

dx
ln Γ(x) =

Γ′(x)

Γ(x)
.

(a) Starting from Γ(x+ 1) = xΓ(x), take two derivatives and show that

ψ′(x+ 1) = − 1

x2
+ ψ′(x) , (3)

where ψ′(x) denotes the derivative of ψ(x) with respect to x.

(b) Use the result of part (a) to show that for any non-negative integer n,

ψ′(n+ 1) = ψ′(1) −
n
∑

k=1

1

k2
. (4)

HINT: Use eq. (3) repeatedly for x = 1, 2, . . . , n .

(c) Starting with Stirling’s approximation for ln Γ(x+ 1), prove that

lim
n→∞

ψ′(n+ 1) = 0 .

(d) Taking the n → ∞ limit of eq. (4), compute ψ′(1) and Γ′′(1), where Γ′′(1) is
the second derivative of the gamma function Γ(x) evaluated at x = 1.



4. In class, we derived the leading term of the asymptotic expansion of Γ(x+ 1),
which is valid for x → ∞. In this problem, you will compute the first correction to
Stirling’s formula as follows. Starting with

Γ(1 + x) =

∫

∞

0

ex ln t−t dt ,

one can expand the argument of the exponent in a Taylor series about t = x. We will
need to keep four terms in this series:

x ln t− t ≃ x ln x− x− (t− x)2

2x
+

(t− x)3

3x2
− (t− x)4

4x3
.

(a) Inserting this expansion into the integral above, and changing the integration
variable to

u ≡ t− x√
2x

,

show that

Γ(1 + x) ≃
√

2xex lnx−x

∫

∞

−

√
x/2

du exp

(

−u2 +
2
√

2u3

3
√
x

− u4

x

)

.

(b) Since x is assumed to be large, we can replace the lower limit of the integral
by −∞ (the resulting error in making this approximation is exponentially small).
Moreover, the integrand can be approximated in the limit of large x to be of the
form:

exp

(

−u2 +
2
√

2u3

3
√
x

− u4

x

)

= e−u2

exp

(

2
√

2u3

3
√
x

− u4

x

)

≃ e−u2

[

1 +
A(u)√
x

+
B(u)

x

]

,

where A(u) and B(u) are simple u-dependent polynomials. Determine the explicit
forms for A(u) and B(u).

(c) Using the results for A(u) and B(u) obtained in part (b), complete the analysis
by computing the integral over u:

Γ(1 + x) ≃
√

2xex lnx−x

∫

∞

−∞

du e−u2

[

1 +
A(u)√
x

+
B(u)

x

]

. (5)

Show that the final result is of the form:

Γ(x+ 1) ≃
√

2πxe−xxx

[

1 +
C

x

]

,

where C is determined from your computation of the integral in eq. (5).

HINT: The integrals that you need to evaluate in part (c) are very simply related to
the integrals of problem 1 of homework set #4.



5. Boas, p. 558, problem 11.12–1.

6. Boas, p. 559, problem 11.12–12. To obtain the numerical value of this integral,
either use the relevant mathematical software, or employ the appropriate expansion
obtained in problem 5.

7. Boas, p. 88, problem 3.2–13.

8. Boas, p. 88, problem 3.2–15.

9. Boas, p. 122, problem 3.6–6.

10. Boas, p. 122, problem 3.6–7.


