1. Determine whether the following series is absolutely convergent, conditionally convergent, or divergent:

$$
\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n^{2}-n}
$$

If this series is convergent, determine its sum.
2. Without using your calculator, compute the cube root of 1.09 , with an accuracy of four decimal places.
HINT: You can write the cube root of 1.09 as $(1+0.09)^{1 / 3}$.
3. Consider the function:

$$
f(x)=\frac{1}{x^{2}}\left[\frac{x}{2+x}-\frac{1}{2} \ln (1+x)\right] .
$$

(a) Compute $\lim _{x \rightarrow 0} f(x)$.
(b) Find the behavior of $f(x)$ as $x \rightarrow 0$.
4. Evaluate the following quantities:
(a) $(-1)^{i}$
(b) $\operatorname{Im}\left[i x+\sqrt{1-x^{2}}\right]^{-1}$, where x is a real number and $|x|<1$
(c) $\arg \left(e^{x+i y}\right)$, where x and y are real numbers

Be sure to indicate all possible values if the quantity in question is multi-valued. Simplify your expressions as much as possible.
5. Find all complex number solutions z to the following equations:
(a) $z^{3}=i$
(b) $e^{z}=1-i$

In both cases, simplify your expressions as much as possible.

