Physics 116A Additional practice problems I Winter 2010

Here is a collection of practice problems suitable for the first midterm exam. The
exam will cover material from Chapters 1 and 2 of Boas and the first three homework
sets.

1. Evaluate the following limits:
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2. Find the radius of convergence of the following three series:
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3. The Taylor series about x = 0 for some function is given by:
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(a) What is the radius of convergence of this series?
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(b) Evaluate 73 (x) o

(c) Find a series for df /dzx.

(d) Find a closed-form expression for f(x) by summing the series above.

4. Determine whether the following series are absolutely convergent, conditionally
convergent or divergent.
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5. What is the behavior of the function:
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as x — 07 (Obtaining the limit as  — 0 is not sufficient.)

6. Evaluate f(z) =In+/(1+2)/(1 —z) — tanz at « = 0.0015 without a calculator.
Determine the numerical accuracy of your result. Is your calculator a useful tool for
this problem? (Try it!)

7. For each expression find all possible values and express your result both in the
form x + 4y and in polar form 7e?, where @ is the principal value of the argument.
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8. Let z = 1 —i. Express each of the following in the form of x + iy. For any
multi-valued function, you should indicate all possible values of the result.

9. Solve for all possible values of the real numbers x and y in the following equations:
(a) x + iy = y + ix.
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10. Find the disk of convergence of the following complex power series:
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11. Evaluate the integral
/ sin 3z cos 4x dx .
0

HINT: Rewrite the trigonometric functions in exponential form.

12. Consider the multi-valued function w = In 2.

(a) Show that in general
Inz*# 2Inz, (1)

by demonstrating that for a given z, some of the possible values of In 22 can never be
written in the form of 21n z.

(b) Show that
Inz?=Inz+Inz. (2)

How do you explain the consistency of egs. (1) and (2)7
(c) If n is a positive integer, prove that
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by showing that as multi-valued functions, the set of possible values on both sides of
eq. (3) coincide.



