Here is a collection of practice problems suitable for the first midterm exam. The exam will cover material from Chapters 1 and 2 of Boas and the first three homework sets.

1. Evaluate the following limits:
(a) $\lim _{x \rightarrow 0}\left(\frac{1+x}{x}-\frac{1}{\sin x}\right)$,
(b) $\lim _{n \rightarrow \infty} \sqrt{n^{2}+3 n}-n$,
(c) $\lim _{x \rightarrow \infty} \frac{\ln x}{\sqrt{x}}$.
2. Find the radius of convergence of the following three series:
(a) $\sum_{n=1}^{\infty} \frac{x^{n}}{\ln (n+1)}$,
(b) $\sum_{n=0}^{\infty} \frac{(n!)^{2} x^{n}}{(2 n)!}$,
(c) $\sum_{n=0}^{\infty} \frac{n^{2}(x-5)^{n}}{5^{n}\left(n^{2}+1\right)}$.
3. The Taylor series about $x=0$ for some function is given by:

$$
f(x)=\frac{2}{\sqrt{\pi}} \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1) n!}
$$

(a) What is the radius of convergence of this series?
(b) Evaluate $\left.\frac{d^{3}}{d x^{3}} f(x)\right|_{x=0}$.
(c) Find a series for $d f / d x$.
(d) Find a closed-form expression for $f(x)$ by summing the series above.
4. Determine whether the following series are absolutely convergent, conditionally convergent or divergent.
(a) $\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{n+1}$,
(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2^{\ln n}}$,
(c) $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$.
5. What is the behavior of the function:

$$
f(x)=-1+\frac{1}{x^{2}}\left[\frac{1}{\left(1+x^{2}\right)^{3 / 2}}-\frac{1}{\left(1+x^{2}\right)^{5 / 2}}\right]
$$

as $x \rightarrow 0$? (Obtaining the limit as $x \rightarrow 0$ is not sufficient.)
6. Evaluate $f(x)=\ln \sqrt{(1+x) /(1-x)}-\tan x$ at $x=0.0015$ without a calculator. Determine the numerical accuracy of your result. Is your calculator a useful tool for this problem? (Try it!)
7. For each expression find all possible values and express your result both in the form $x+i y$ and in polar form $r e^{i \theta}$, where θ is the principal value of the argument.
(a) $i^{77}+i^{202}$
(b) $\frac{3+i}{2+i}$
(c) $\sqrt{-2+2 i \sqrt{3}}$
(d) $\left(\frac{1+i}{1-i}\right)^{4}$
(e) $\sqrt[4]{16}$
8. Let $z=1-i$. Express each of the following in the form of $x+i y$. For any multi-valued function, you should indicate all possible values of the result.
(a) $\cos (1 / z)$
(b) z^{z}
(c) $\tan (z-1)$
(d) $\operatorname{Ln} z$
(e) $\arg z$
9. Solve for all possible values of the real numbers x and y in the following equations:
(a) $x+i y=y+i x$.
(b) $\frac{x+i y}{x-i y}=-i$.
10. Find the disk of convergence of the following complex power series:
(a) $\sum_{n=0}^{\infty} \frac{(n!)^{2}}{(2 n)!} z^{n}$,
(b) $\sum_{n=1}^{\infty} \frac{(z-i)^{n}}{n}$.
11. Evaluate the integral

$$
\int_{0}^{\pi} \sin 3 x \cos 4 x d x .
$$

HINT: Rewrite the trigonometric functions in exponential form.
12. Consider the multi-valued function $w=\ln z$.
(a) Show that in general

$$
\begin{equation*}
\ln z^{2} \neq 2 \ln z, \tag{1}
\end{equation*}
$$

by demonstrating that for a given z, some of the possible values of $\ln z^{2}$ can never be written in the form of $2 \ln z$.
(b) Show that

$$
\begin{equation*}
\ln z^{2}=\ln z+\ln z . \tag{2}
\end{equation*}
$$

How do you explain the consistency of eqs. (1) and (2)?
(c) If n is a positive integer, prove that

$$
\begin{equation*}
\ln \left(z^{1 / n}\right)=\frac{1}{n} \ln z, \tag{3}
\end{equation*}
$$

by showing that as multi-valued functions, the set of possible values on both sides of eq. (3) coincide.

