1. The reflection formula for the gamma function is: $\Gamma(x) \Gamma(1-x)=\pi / \sin (\pi x)$.
(a) Multiplying this equation by x, deduce an expression for $\Gamma(1+x) \Gamma(1-x)$.
(b) The integral definition of the gamma function,

$$
\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} d t
$$

converges for all complex z such that $\operatorname{Re} z>0$. Show that:

$$
\overline{\Gamma(z)}=\Gamma(\bar{z}),
$$

where \bar{z} is the complex conjugate of z and $\overline{\Gamma(z)}$ is the complex conjugate of $\Gamma(z)$.
(c) Using the results of parts (a) and (b), prove that:

$$
|\Gamma(1+i y)|^{2}=\frac{\pi y}{\sinh (\pi y)}
$$

where y is a real number.
2. Use Stirling's formula to evaluate the following two limits:
(a) $\lim _{n \rightarrow \infty} \frac{\Gamma\left(n+\frac{3}{2}\right)}{\sqrt{n} \Gamma(n+1)}$,
(b) $\lim _{n \rightarrow \infty} \frac{(n!)^{1 / n}}{n}$.
3. Let A be a 3×3 matrix. Assume that $A \neq 0$. The determinant of A is denoted by $\operatorname{det} A$.
(a) Is the equation $\operatorname{det}(3 A)=3 \operatorname{det} A$ true or false? Explain.
(b) Suppose that $\operatorname{det} A=1$. Let B be a matrix obtained from A by permuting the order of the rows so that the first row of A is the second row of B, the second row of A is the third row of B and the third row of A is the first row of B. (This is called a cyclic permutation.) What is the value of $\operatorname{det} B$?
(c) Suppose that the 3×3 matrix $A \neq 0$ but $\operatorname{det} A=0$. What can you say about the rank of A ?
4. Consider the system of equations:

$$
\begin{array}{r}
x_{1}+3 x_{2}-x_{3}=4, \\
x_{1}+2 x_{2}+x_{3}=2, \\
3 x_{1}+7 x_{2}+x_{3}=c,
\end{array}
$$

where c is some unspecified real number.
(a) Is there any value of c for which there is a unique solution to the system of equations above? Explain your answer.
(b) There exists one value of c for which there are an infinite number of solutions to the above system of equations. Find that value of c and determine the allowed solutions.

HINT: Solve the system of equations with c arbitrary by constructing the augmented matrix and reducing it to reduced row echelon form. At the end of your computation, you can read off the required value of c.

