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To the Student

These notes are provided for your benefit as an attempt to organise the salient points of the course. They are a
very terse account of the main ideas of the course, and are to be used mostly to refer to central definitions and
theorems. The number of examples is minimal, and here you will find few exercises. The motivation or informal
ideas of looking at a certain topic, the ideas linking a topic with another, the worked-out examples, etc., are given
in class. Hence these notes are not a substitute to lectures: you must always attend to lectures. The order of
the notes may not necessarily be the order followed in the class.

There is a certain algebraic fluency that is necessary for a course at this level. These algebraic prerequisites
would be difficult to codify here, as they vary depending on class response and the topic lectured. If at any stage
you stumble in Algebra, seek help! I am here to help you!

Tutoring can sometimes help, but bear in mind that whoever tutors you may not be familiar with my conventions.
Again, I am here to help! On the same vein, other books may help, but the approach presented here is at times
unorthodox and finding alternative sources might be difficult.

Here are more recommendations:
e Read a section before class discussion, in particular, read the definitions.

e (Class provides the informal discussion, and you will profit from the comments of your classmates, as well as
gain confidence by providing your insights and interpretations of a topic. Don’t be absent!

e Once the lecture of a particular topic has been given, take a fresh look at the notes of the lecture topic.
e Try to understand a single example well, rather than ill-digest multiple examples.

e Start working on the distributed homework ahead of time.

e Ask questions during the lecture. There are two main types of questions that you are likely to ask.

1. Questions of Correction: Is that a minus sign there? If you think that, for example, I have missed
out a minus sign or wrote P where it should have been Q,! then by all means, ask. No one likes to carry
an error till line XLV because the audience failed to point out an error on line I. Don’t wait till the end
of the class to point out an error. Do it when there is still time to correct it!

2. Questions of Understanding: I don’t get 1t! Admitting that you do not understand something is an act
requiring utmost courage. But if you don’t, it is likely that many others in the audience also don’t. On
the same vein, if you feel you can explain a point to an inquiring classmate, I will allow you time in the
lecture to do so. The best way to ask a question is something like: “How did you get from the second
step to the third step?’ or “What does it mean to complete the square?’ Asseverations like “I don’t
understand” do not help me answer your queries. If I consider that you are asking the same questions
too many times, it may be that you need extra help, in which case we will settle what to do outside the
lecture.

e Don’t fall behind! The sequence of topics is closely interrelated, with one topic leading to another.

e The use of calculators is allowed, especially in the occasional lengthy calculations. However, when graphing, you
will need to provide algebraic/analytic/geometric support of your arguments. The questions on assignments
and exams will be posed in such a way that it will be of no advantage to have a graphing calculator.

o Presentation is critical. Clearly outline your ideas. When writing solutions, outline major steps and write in
complete sentences. As a guide, you may try to emulate the style presented in the scant examples furnished
in these notes.

1My doctoral adviser used to say “I said A, I wrote B, I meant C and it should have been D!




Chapter

Preliminaries

1.1 Sets and Notation

1 Definition We will mean by a set a collection of well defined members or elements.

2 Definition The following sets have special symbols.

N={0,1,2,3,...} denotes the set of natural numbers.

Z=A{...,—3,—2,—1,0,1,2,3,...} denotes the set of integers.

Q denotes the set of rational numbers.
R denotes the set of real numbers.

C denotes the set of complex numbers.
1% denotes the empty set.

3 Definition (Implications) The symbol = is read “implies”, and the symbol < is read “if and only if.”
4 Example Prove that between any two rational numbers there is always a rational number.
Solution: Let (a, c) € Z2, (b,d) € (N\ {0})?, % < g- Then da < bc. Now

ab+ad<ab+bc = a(b+d)<b(a+c) = —«<

da+dc<cb+cd = d(a+c)<c(b+d) =

a

lies between b

. a-+c¢
whence the rational number b and %.

|:| We can also argue that the average of two distinct numbers lies between the numbers and so

T +7T .
! 2 lies between them.

if 1 < T2 are rational numbers, then

5 Definition Let A be a set. If a belongs to the set A, then we write a € A, read “a is an element of A.” If a does
not belong to the set A, we write a &€ A, read “a is not an element of A.”
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6 Definition (Conjunction, Disjunction, and Negation) The symbol V is read “or” (disjunction), the symbol A is
read “and” (conjunction), and the symbol — is read “not.”

7 Definition (Quantifiers) The symbol V is read “for all” (the universal quantifier), and the symbol 3 is read “there
exists” (the ezistential quantifier).

We have
—(Vx € A,P(x)) & (F€A,—Px)) (1.1)

—(3€e APx)) & (Vxe€ A,—P(x)) (1.2)
8 Definition (Subset) If Va € A we have a € B, then we write A C B, which we read “A is a subset of B.”
In particular, notice that for any set A, & C A and A C A. Also
NCZCQCRCC
|:| A=B &< (ACB)A(BCA).
9 Definition The union of two sets A and B, is the set

AUB={x:(x€eA) V (x € B)..

This is read “A union B.” See figure 1.1.

10 Definition The intersection of two sets A and B, is
ANB={x:(xeA) N\ (x € B)..

This is read “A intersection B.” See figure 1.2.

11 Definition The difference of two sets A and B, is
A\B={x:(x€A) N(x¢&B)}.

This is read “A set minus B.” See figure 1.3.

2 ) O

A B A B A B

Figure 1.1: AUB Figure 1.2: ANB Figure 1.3: A\ B

12 Example Prove by means of set inclusion that

(AUB)NC=(ANC)u(BnNC).
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Solution: We have,

x€ (AUB)NC xc€ (AUB)AxeC
xeAVxeB)AxeC
xeAAxeC)V(xeBAxe(C)

xeANC)V(xeBNC(C)

I 1117

xe(ANC)U(BNCQC),
which establishes the equality.

13 Definition Let Aq,A>,...,An, be sets. The Cartesian Product of these n sets is defined and denoted by
Al XAz X -+ X Ap ={(ar,0az2,...,0an) : ax € A},

that is, the set of all ordered n-tuples whose elements belong to the given sets.

|:| In the particular case when all the Ay are equal to a set A, we write
Al XAz X+ XA, =A".

Ifa€ A andb € A we write (a,b) € AZ.

14 Definition Let x € R. The absolute value of x—denoted by |x|—is defined by

—x if x <0,
x| =
X if x > 0.
It follows from the definition that for x € R,
—xl < x < Ixl. (1.3)
t>0 = <t & —t<x<t. (1.4)
YaeR = Vva?=]|q. (1.5)

15 Theorem (Triangle Inequality) Let (a,b) € R?. Then

la+b| < |al + |b|. (1.6)
Proof: From 1.3, by addition,
—lal < a < a]
to
—[b| <b < [b|
we obtain

—(lal+ b)) < a+b < (la] + [bl),
whence the theorem follows by 1.4. O
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16 Problem Prove that between any two rational numbers
there is an irrational number.

17 Problem Prove that X \ (X \ A) =X NA.

18 Problem Prove that X\ (AUB) = (X\ A) N (X\ B).

19 Problem Prove that X\ (AN B)=(X\A)U (X\B).

20 Problem Prove that (AUB)\(ANB) = (A\B)U(B\A).

21 Problem Shew how to write the union A U B U C as a
disjoint union of sets.

22 Problem Prove that a set with n > 0 elements has 2"
subsets.

23 Problem Let (a,b) € R%. Prove that ||a|—|b|| < |a—Db].

1.2 Partitions and Equivalence Relations

24 Definition Let S & be a set. A partition of S is a collection of non-empty, pairwise disjoint subsets of S whose

union is S.

25 Example Let

27 ={...,—6,—4,-2,0,2,4,6,...}=0

be the set of even integers and let

2Z+1={...,—5,—

be the set of odd integers. Then
2Z2)U (22 +1) =Z,

and so {27, 27 + 1} is a partition of Z.

26 Example Let

3,-1,1,3,5,...}=1

2Z2)N (2Z +1) = @,

3%2-={...—9,,—6,-3,0,3,6,2,...1=0
be the integral multiples of 3, let

3Z+1={..,-8,-5-21,47,..}=1
be the integers leaving remainder 1 upon division by 3, and let

3Z2+2={..,-7,—4,-1,258,...}=2

be integers leaving remainder 2 upon division by 3. Then

(BZ)UBZ+1)U((BZ+2) =17,
(3Z)N(BZ+1) =2, 32)N(B3Z+2)=2,(3Z+1)N((3Z+2) =2,

and so {3%Z,37Z + 1,37 + 2} is a partition of Z.

|:| Notice that 0 and 1 do not mean the same in examples 25 and 26. Whenever we make use
of this notation, the integral divisor must be made explicit.

27 Example Observe
R=(QUR\Q),

2 =(Q) N (R\Q),

which means that the real numbers can be partitioned into the rational and irrational numbers.

28 Definition Let A, B be sets. A relation R is a subset of the Cartesian product A X B. We write the fact that

(x,y) € Rasx ~y.
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29 Definition Let A be a set and R be a relation on A X A. Then R is said to be
e reflexive if (Vx € A),x ~x,
e symmetric if (V(x,y) € A?),x ~y — y~x,
e anti-symmetric if (V(x,y) € A?),(x~y)A(y~x) = x=1y,
e transitive if (V(x,y,z) € A3),(x~y) A (y~z) = (x~2z2).
A relation R which is reflexive, symmetric and transitive is called an equivalence relation on A. A relation R which

is reflexive, anti-symmetric and transitive is called a partial order on A.

30 Example Let S ={All Human Beings}, and define ~ on S as a ~ b if and only if a and b have the same
mother. Then a ~ a since any human a has the same mother as himself. Similarly, a ~b =— b ~ a and
(a~b)A(b~c) = (a~ c). Therefore ~ is an equivalence relation.

31 Example Let L be the set of all lines on the plane and write 1; ~ 1, if 11|[l; (the line 1y is parallel to the line
12). Then ~ is an equivalence relation on L.

32 Example In Q define the relation & ~ X <= ay = bx, where we will always assume that the denominators

by
are non-zero. Then ~ is an equivalence relation. For % ~ % since ab = ab. Clearly
a X X a
—~— = ay=bx = xb=ya = — ~ —.
b vy y b

Finally, if ¢ ~ 3

This gives

and 3 ~ % then we have ay = bx and xt = sy. Multiplying these two equalities ayxt = bxsy.
ayxt —bxsy =0 = xy(at —bs) =0.

Now if x = 0, we will have a = s = 0, in which case trivially at = bs. Otherwise we must have at — bs = 0 and so
a S

= ~ =

b t°

33 Example Let X be a collection of sets. Write A ~ B if A C B. Then ~ is a partial order on X.

34 Example For (a,b) € R? define
a~bsa?+b%s2

Determine, with proof, whether ~ is reflexive, symmetric, and/or transitive. Is ~ an equivalence relation?

Solution: Since 02 + 02 % 2, we have 0 ~ 0 and so ~ is not reflexive. Now,

a~b & a?+b2
& b2+ a?
&S b~a,

so ~ is symmetric. Also O ~ 3 since 0> + 3% > 2 and 3 ~ 1 since 3% + 12> 2. But 0 ~ 1 since 02 + 12 % 2. Thus
the relation is not transitive. The relation, therefore, is not an equivalence relation.

35 Definition Let ~ be an equivalence relation on a set S. Then the equivalence class of a is defined and denoted
by
l[al={x € S:x ~ al}.

36 Lemma Let ~ be an equivalence relation on a set S. Then two equivalence classes are either identical or disjoint.
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Proof: We prove that if (a,b) € S?, and [alN[b] # & then [a] = [b]. Suppose that x € [a] N [b].
Nowx €la] = x~a = a~x, by symmetry. Similarly, x € [b] =— x ~ b. By transitivity

(a~x)A(x~b) = a~b.

Now, if y € [b] then b ~y. Again by transitivity, a ~y. This means thaty € [a]. We have shewn
thaty € [b] =— y € [a] and so [b] C [a]. In a similar fashion, we may prove that [a] C [b]. This
establishes the result. [

37 Theorem Let S &/ & be a set. Any equivalence relation on S induces a partition of S. Conversely, given a
partition of S into disjoint, non-empty subsets, we can define an equivalence relation on S whose equivalence classes
are precisely these subsets.

Proof: By Lemma 36, if ~ 1s an equivalence relation on S then

S=Jlal,

aces

and [a]N[b]l =& if a » b. This proves the first half of the theorem.

Conversely, let

S=JS«, SanSpg=-2 if a B,

be a partition of S. We define the relation = on S by letting a = b if and only if they belong to
the same S4. Since the Sy are mutually disjoint, it is clear that = is an equivalence relation on
S and that for a € Sy, we have [a] = S,. O

38 Problem For (a,b) € (Q \ {0})? define the relation ~ as | 40 Problem Define the relation ~in R by x ~y < xeV =
follows: a ~ b & ¢ € Z. Determine whether this relation is | ye*. Prove that ~ is an equivalence relation.
reflexive, symmetric, and/or transitive.

41 Problem Define the relation~inQbyx ~y < 3h € Z

39 Prf)blem G_ive an example of a relation on Z\ {0} which is such that x — 3y + h_ [A] Prove that ~ is an equivalence re-
reflexive, but is neither symmetric nor transitive. . . .
lation. [B] Determine [x], the equivalence of x € Q. [C] Is
2 49
375

1.3 Binary Operations

42 Definition Let S, T be sets. A binary operation is a function

SxS§S = T
& : .
(a,b) = (a,b)

We usually use the “infix” notation a ® b rather than the “prefix” notation ®(a, b). If S = T then we say that the
binary operation is internal or closed and if S & T then we say that it is external. If

a®@b=b®a
then we say that the operation @ is commutative and if
a®(b®c)=(a®b)®c,
we say that it is assoctative. If ® is associative, then we can write
a®®(bRc)=(a®b)RKc=aRbRc,

without ambiguity.
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|:| We usually omit the sign ® and use juztaposition to indicate the operation ®. Thus we write
ab nstead of a ® b.

43 Example The operation + (ordinary addition) on the set Z X Z is a commutative and associative closed binary
operation.

44 Example The operation — (ordinary subtraction) on the set N X N is a non-commutative, non-associative non-
closed binary operation.

45 Example The operation ® defined by a ® b = 1T + ab on the set Z X Z is a commutative but non-associative
internal binary operation. For
a®b=1+ab=1+ba=>ba,

proving commutativity. Also, T® (2®3)=1® (7) =8 and (1®2)®3 = (3) ® 3 = 10, evincing non-associativity.

46 Definition Let S be aset and ® : S X S — S be a closed binary operation. The couple (S, ®) is called an
algebra.

|:| When we desire to drop the sign ® and indicate the binary operation by juztaposition, we
simply speak of the “algebra S.”

47 Example Both (Z,+) and (Q,-) are algebras. Here + is the standard addition of real numbers and - is the
standard multiplication.

48 Example (Z,—) is a non-commutative, non-associative algebra. Here — is the standard subtraction operation
on the real numbers

49 Example (Putnam Exam, 1972) Let S be a set and let * be a binary operation of S satisfying the laws V(x,y) €
SZ
x*x(x*xy) =1y, (1.7)
(U*x)xx=uy. (1.8)

Shew that * is commutative, but not necessarily associative.

Solution: By (1.8)
x*xYy=((x*y)*x)*X.

By (1.8) again

((xxy)xex)xx=((x*y)*((x*y) *y)) *x.
By (1.7)

((x*y)* ((x*xy)*y)) *x = (y) *x =y *Xx,

which is what we wanted to prove.

To shew that the operation is not necessarily associative, specialise S = Z and x * y = —x — y (the opposite of
x minus y). Then clearly in this case * is commutative, and satisfies (1.7) and (1.8) but

Ox(0%x1)=0%(—0—1)=0x(—1)=—0—(—1) =1,

and
(0x0)x1=(—0—0)*x1=(0)%x1=—0—1=-—1,

evincing that the operation is not associative.

50 Definition Let S be an algebra. Then 1 € S is called a left identity if Vs € S we have ls = s. Similarly r € S
is called a right tdentity if Vs € S we have sr = s.
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51 Theorem If an algebra S possesses a left identity 1 and a right identity r then 1 = r.

Proof: Since l is a left identity
r=1r
Since 1 1s a right identity
L=1r.
Combining these two, we gather
r=1Ilr=1,

whence the theorem follows. [

52 Example In (Z, +) the element O € Z acts as an identity, and in (Q, -) the element 1 € Q acts as an identity.

53 Definition Let S be an algebra. An element a € S is said to be left-cancellable or left-reqular if V(x,y) € S?

ax=ay = x=1.

Similarly, element b € S is said to be right-cancellable or right-reqular if V(x,y) € S?

xb=yb — x=y.

Finally, we say an element ¢ € S is cancellable or regular if it is both left and right cancellable.

54 Definition Let (S, ®) and (S, T) be algebras. We say that T is left-distributive with respect to ® if

V(x,y,2) € 3, xT(y®2z) = (xTy) ® (xTz).

Similarly, we say that T is right-distributive with respect to ® if

V(x,y,2) €83 (y®2)Tx=(yTx) ® (zTx).

We say that T is distributive with respect to ® if it is both left and right distributive with respect to &.

55 Problem Let
S={xe€Z:3(a,b) € Z* x=a*>+b>+c*—3abcl.

Prove that S is closed under multiplication, that is, if x € S
andy € S thenxy € S.

56 Problem Let (S, ®) be an associative algebra, let a € S
be a fixed element and define the closed binary operation T
by

xXTy=x®a®y.

Prove that T is also associative over S x S.

57 Problem On QN] — 1;1[ define the a binary operation ®

a+b

a®b =3

where juxtaposition means ordinary multiplication and + is
the ordinary addition of real numbers. Prove that

O Prove that ® is a closed binary operation on QN]—1;1[.

O Prove that ® is both commutative and associative.

0 Find an element e € R such that (Va € QnN] —
;1) (e® a=a).

00 Given e as above and an arbitrary element a €
QnN] — 1;1[, solve the equation a ® b = e for b.

58 Problem On R \ {1} define the a binary operation ®
a®b=a+b—ab,

where juxtaposition means ordinary multiplication and + is
the ordinary addition of real numbers. Clearly & is a closed
binary operation. Prove that

0 Prove that ® is both commutative and associative.

0 Find an element e € R \ {1} such that (Va €
RA\{1}) (e®a=a).

0 Given e as above and an arbitrary element a € R\ {1},
solve the equation a ® b = e for b.
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59 Problem (Putnam Exam, 1971) Let S be a set and let | Shew that o is commutative.
o be a binary operation on S satisfying the two laws

(Vx € S)(x ox =x),
60 Problem Define the symmetric difference of the sets A, B
as AAB=(A\B)U (B\ A). Prove that A is commutative
(V(ix,y,z) € S$3)((x o yloz=(yoz)ox). and associative.

and

1.4 Zn

61 Theorem (Division Algorithm) Let n > O be an integer. Then for any integer a there exist unique integers q
(called the gquotient) and r (called the remainder) such that a=qn +rand 0 < r<qg.

Proof: In the proof of this theorem, we use the following property of the integers, called the
well-ordering principle: any non-empty set of non-negative integers has a smallest element.

Consider the set
S={a—bn:be€ZAa>bnl.

Then S s a collection of nonnegative integers and S # @ as £a—0-n € S and this is non-negative
for one choice of sign. By the Well-Ordering Principle, S has a least element, say r. Now, there
must be some q € Z such that r = a — qn since v € S. By construction, v > 0. Let us prove
that v < . For assume thatr > n. Thenr>r—m=a—qn—nmn=a— (q + 1)n > 0, since
r—m>0. Butthena— (q+1)n € S and a— (q+ 1)n < r which contradicts the fact that r is the
smallest member of S. Thus we must have 0 < r < n. To prove that r and q are unique, assume
thatqmm+ri =a=gm—+712, 0<11<n, 0<1r<n. Then 1 — 11 =n(q1 — q2), that s, n
duvides (r2 — 11). But [r2 — 11| < n, whence r3 = r1. From this it also follows that q1 = q2. This
completes the proof. [

62 Example If n =5 the Division Algorithm says that we can arrange all the integers in five columns as follows:

—-10 —9 -8 —7 —6

5 —4 —3 —2 —1

The arrangement above shews that any integer comes in one of 5 flavours: those leaving remainder O upon division
by 5, those leaving remainder T upon division by 5, etc. We let

52={...,—15,-10,—5,0,5,10,15,...} = 0,
52+1={..,—14,—9,—4,1,6,11,16,...} =1,
572+2={..,—13,-8,-3,2,7,12,17,...} =2,
572+3={..,—12,—-7,-2,3,8,13,18,...} = 3,
52+4={..,—11,—6,—1,4,9,14,19,.. .} =4,

and

ZS ={0>1a2>3a4}'
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Let n be a fixed positive integer. Define the relation = by x = y if and only if they leave the same remainder upon
division by n. Then clearly = is an equivalence relation. As such it partitions the set of integers Z into disjoint
equivalence classes by Theorem 37. This motivates the following definition.

63 Definition Let n be a positive integer. The n residue classes upon division by n are

0=nZ, 1=mZ+1, 2=mZ+2, ..., n—1=nZ+n—1.

The set of residue classes modulo n is L
Zn ={0,1,...,m—1}.

Our interest is now to define some sort of “addition” and some sort of “multiplication” in Z,.

64 Theorem (Addition and Multiplication Modulo n) Let n be a positive integer. For (a,b) € (Zn)? define
a + b = T, where r is the remainder of a + b upon division by n. and a - b = t, where t is the remainder of ab
upon division by n. Then these operations are well defined.

Proof: We need to prove that given arbitrary representatives of the residue classes, we always

obtain the same result from our operations. That is, if a = a’ and b = b’ then we have a + b =
a’4+b’anda-b=a’-b’.

Now

a-a’ = 3(q,q)ezZ?,reNa=gqn+r, a’'=gn+r, 0<r<n,

—/

b-b = 3(g1,q)) €Z*,rm eENb=qgmn+r1;, b/ =qgin+r;, 0<r <n

Hence
a+b=(gq+qi)n+r+r;, a +b'=(q" +q)n+r-+r,

meaning that both a + b and a’ + b’ leave the same remainder upon division by n, and therefore

a+b=a+b=a’+b’=a’+b"

Stmalarly
ab = (qqin+ qry +rgi)n+rry, a’d’=(q’qm+q’ry +rq;)n+rry,

and so both ab and a’b’ leave the same remainder upon division by n, and therefore

a-b-ab-ab -a’ b

This proves the theorem. [

65 Example Let

Z¢ =10,1,2,3,4,5}

be the residue classes modulo 6. Construct the natural addition + table for Zg. Also, construct the natural
multiplication - table for Zg.

Solution: The required tables are given in tables 1.1 and 1.2.

We notice that even though 2 /0 and 3 #/ 0 we have 2 - 3 = 0. This prompts the following definition.

66 Definition (Zero Divisor) An element a # 0 of Z,, is called a zero divisor if ab = 0 for some b € Z,.




+|0(1]2]|3|4]|5 0|1(2|3|4]|5
0(0[1T|2|3|4]|5 ojojofojo|0|O
1(1|2(3|4|5|0 T(0(1|2(3|4]|5
22|3(4|5|0]|1 2(|0(2(4(0|2|4
33/4|5|0[1]|2 3(10(3|0(3]0]3
44|5(0|17]2]|3 4(0(4|2(0(4]|2
5(5/0(1|2(3|4 5(0(5[4(3|2]|1
Table 1.1: Addition table for Z. Table 1.2: Multiplication table for Zs.

We will extend the concept of zero divisor later on to various algebras.

67 Example Let

Z7 :{0)1)2)3)4)5)6}

be the residue classes modulo 7. Construct the natural addition + table for Z7. Also, construct the natural multi-
plication - table for Z,

Solution: The required tables are given in tables 1.3 and 1.4.

+|0|T|2|3|4|5]|6 0|1]2|3|4|5]|6
00|1T]2|3]|4|5]|6 ojofo|o|0|0|0|O
1(1|2/3|4|5|6]|0 T|0(1T|2|3|4|5|6
2(2|3|4|5|6|0]|1 2/0(2|4]6|1|3|5
313|4/5/6/0|1]2 3/l0(3|6[2|5|1|4
414|5/6/0[1|2]|3 4(10(4(1|5|2|6]|3
5(5|/6[0(1]2|3|4 5/|0(5(3|1|6|4|2
6(6/0[1/2/3|4]|5 60654321
Table 1.3: Addition table for Z7. Table 1.4: Multiplication table for Zs.

68 Example Solve the equation

oyl
x
Il
(9]

in Zn.
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Solution: Multiplying by 9 on both sides L
45x = 27,

that is,

We will use the following result in the next section.

69 Definition Let a, b be integers with one of them different from 0. The greatest common divisor d of a, b,
denoted by d = gcd(a, b) is the largest positive integer that divides both a and b.

70 Theorem (Bachet-Bezout Theorem) The greatest common divisor of any two integers a, b can be written as a
linear combination of a and b, i.e., there are integers x, y with

ged(a,b) = ax + by.

Proof: Let A ={ax+ by :ax+ by > 0,x,y € Z}. Clearly one of +a,=xb is in A, as one of
a,b s not zero. By the Well Ordering Principle, A has a smallest element, say d. Therefore,
there are xo,Yo such that d = axp + byo. We prove that d = ged(a,b). To do this we prove that
d diwvides a and b and that if t divides a and b, then t must also diwvide then d.

We first prove that d divides a. By the Division Algorithm, we can find integers q,r,0 < r < d
such that a=dq + r. Then

r=a—dq=a(l —qgxo) — byo.
If r > 0, then v € A 1is smaller than the smaller element of A, namely d, a contradiction. Thus

r =0. This entails dq = a, i.e. d divides a. We can similarly prove that d divides b.

Assume that t divides a and b. Then a = tm,b = tn for integers m,n. Hence d = axp + bxg =
t(mxo + nyo), that is, t divides d. The theorem 1is thus proved. O

71 Problem Write the addition and multiplication tables of | in Z11.
Z11 under natural addition and multiplication modulo 11.

72 Problem Solve the equaflon 73 Problem Prove that if n > 0 is a composite integer, Zn has

2 3 ..
5x° =3 zero divisors.

1.5 Fields

74 Definition Let F be a set having at least two elements O and 1 (Op # 1r) together with two operations
- (multiplication, which we usually represent via juxtaposition) and + (addition). A field (F,-,+) is a triplet
satisfying the following axioms V(a, b, ¢) € F3:

F1 Addition and multiplication are associative:

(a+b)+c=a+ (b+c), (ab)c=a(bc) (1.9)

F2 Addition and multiplication are commutative:

a+b=b+a, ab=>ba (1.10)

F3 The multiplicative operation distributes over addition:

a(b+c)=ab+ ac (1.11)
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F4 Oy is the additive identity:
Or+a=a+0p=a (1.12)
F5 Tp is the multiplicative identity:
Tra=alp=a (1.13)
F6 Every element has an additive inverse:
d—a€elF, a+(—a)=(—a)+a=0p (1.14)
F7 Every non-zero element has a multiplicative inverse: if a /Oy
Ja'eF, aa'=ala=1g (1.15)

The elements of a field are called scalars.

An important property of fields is the following.
75 Theorem A field does not have zero divisors.

Proof: Assume that ab = Og. If a /O then it has a multiplicative inverse a~'. We deduce
a'ab=a'0p = b=0p.

This means that the only way of obtaining a zero product is if one of the factors is Op. O

76 Example (Q, -, +), (R,-,+), and (C, -, +) are all fields. The multiplicative identity in each case is 1 and the

additive identity is 0.

77 Example Let
Q(V2) ={a+ V2b: (a,b) € Q%)

and define addition on this set as
(a+v2b)+ (c+Vv2d) = (a+¢) + V2(b +d),

and multiplication as

(a+ V2b)(c+ Vv2d) = (ac + 2bd) + V2(ad + be).

Then (Q + v2Q, , +) is a field. Observe Op = 0, 1r = 1, that the additive inverse of a + v/2b is —a — +/2b, and

the multiplicative inverse of a 4+ v/2b, (a,b) # (0,0) is

1  a—v2b  a V2b
at++v2b aZ—2b2 aZ—2b2 aZ—2bZ

(a+v2b)~' =
Here a? — 2b2 /0 since v/2 is irrational.
78 Theorem If p is a prime, (Zp, -, +) is a field under - multiplication modulo p and + addition modulo p.

Proof: Clearly the additive identity is 0 and the multiplicative identity is 1. The additive
inverse of @ is p — a. We must prove that every a € Zp \ {0} has a multiplicative inverse. Such
an a satisfies ged(a, p) = 1 and by the Bachet-Bezout Theorem 70, there exist integers x,y with
px + ay = 1. In such case we have

T=px+ay=ay=a-y,

whence (@)~ =y. O
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79 Definition A field is said to be of characteristic p 0 if for some positive integer p we have Va € F, pa = Op,
and no positive integer smaller than p enjoys this property.

If the field does not have characteristic p # 0 then we say that it is of characteristic 0. Clearly Q, R and C are of
characteristic 0, while Z, for prime p, is of characteristic p.

80 Theorem The characteristic of a field is either O or a prime.

Proof: If the characteristic of the field is 0, there is nothing to prove. Let p be the least positive
integer for which Va € F,pa = Or. Let us prove that p must be a prime. Assume that instead we
had p = st with integers s > 1,t > 1. Take a = 1p. Then we must have (st)1p = Op, which entails
(s1p)(t1g) = Op. But in a field there are no zero-diwvisors by Theorem 75, hence either slp = Op or
tly = Op. But either of these equalities contradicts the minimality of p. Hence p ts a prime. [

81 Problem Consider the set of numbers 83 Problem Let I be a field and a s Or. Prove that
Q(v2,v3,V6) = {a+bV2+cvV3+dV6: (a,b,c,d) € Q*)

-1 -1
Assume that Q(v/2,+/3,v/6) is a field under ordinary addi- (—a) " =—(a" ).

tion and multiplication. What is the multiplicative inverse of
the element V2 + 2v/3 + 3v/67
84 Problem Let F be a field and a,b two non-zero elements

82 Problem Let F be a field and a,b two non-zero elements of F'. Prove that

of F. Prove that
—(ab ") =(—a)b ' =a(-b" ). ab ' = (—a)(—b ).

1.6 Functions

85 Definition By a function or a mapping from one set to another, we mean a rule or mechanism that assigns to
every input element of the first set a unique output element of the second set. We shall call the set of inputs the
domazn of the function, the set of possible outputs the target set of the function, and the set of actual outputs the
tmage of the function.

We will generally refer to a function with the following notation:

D - T
x B f(x)

Here f is the name of the function, D is its domain, T is its target set, x is the name of a typical input and f(x) is
the output or image of x under f. We call the assignment x + f(x) the assignment rule of the function. Sometimes
X is also called the independent variable. The set f(D) = {f(a)la € D} is called the image of f. Observe that
f(D)CT

L A Jo—\ P
2 8 2 2
3. 4 3

Figure 1.4: An injection. Figure 1.5: Not an injection
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X —- Y
86 Definition A function f : is said to be injective or one-to-one if V(a,b) € X?, we have

x = f(x)

a/b = f(a) Zf(b).

This is equivalent to saying that
f(a) =f(b) = a=>.

87 Example The function « in the diagram 1.4 is an injective function. The function 3 represented by the diagram
1.5, however, is not injective, B(3) = (1) =4, but 3 #1.

88 Example Prove that
RAA{1} = RA\{1}

t:
x+ 1
X
x—1
is an injection.
Solution: Assume t(a) = t(b). Then
a+1 b+1
t = t(b = e
(a) (b) = p— T
= (a+1)(b—-1) = (b+1)(a—1)
= ab—a+b—1 = ab—b+a—1
= 2a = 2b
— a = b

We have proved that t(a) = t(b) — a = b, which shews that t is injective.

1 4 | L S
2 2 2 2
3

Figure 1.6: A surjection Figure 1.7: Not a surjection

89 Definition A function f : A — B is said to be surjective or onto if (Vb € B) (Ja € A) : f(a) = b. That is,
each element of B has a pre-image in A.

|:| A function s surjective if its 1mage coincides with its target set. It is easy to see that a
graphical criterton for a function to be surjective is that every horizontal line passing through a
point of the target set (a subset of the y-azis) of the function must also meet the curve.

90 Example The function (3 represented by diagram 1.6 is surjective. The function y represented by diagram 1.7 is
not surjective as 8 does not have a preimage.
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R —- R
91 Example Prove that t : is a surjection.

X|—>X3

Solution: Since the graph of t is that of a cubic polynomial with only one zero, every horizontal line passing through
a point in R will eventually meet the graph of g, whence t is surjective. To prove this analytically, proceed as follows.
We must prove that (V b € R) (3a) such that t(a) = b. We choose a so that a = b'/3. Then

t(a) =t(b"/3) = (b"/3)3 =b.

Our choice of a works and hence the function is surjective.

92 Definition A function is bijective if it is both injective and surjective.

93 Problem Prove that 94 Problem Shew that
3
R — R R\< = — R\ {3}
h: f: 2
3 6x
X = X
x 2x —3
is an injection. is a bijection.
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Matrices and Matrix Operations

2.1 The Algebra of Matrices

95 Definition Let (F, -, +) be a field. An m X n (m by n) matriz A with m rows and n columns with entries over

F is a rectangular array of the form
ar

azq

ami

a2z

azz

am2

where V(1,j) € {1,2,...,m} x{1,2,...,n}, ay €F.

|:| As a shortcut, we often use the notation A = [aij] to denote the matric A with entries aij.
Notice that when we refer to the matriz we put parentheses—as in “(ai;l,” and when we refer to a
specific entry we do not use the surrounding parentheses—as in “aij.”

96 Example

is a 2 X 3 matrix and

is a 3 X 2 matrix.

97 Example Write out explicitly the 4 X 4 matrix A = [ai;] where a;; = i% — j2.

17

Ain

a2n

amn
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Solution: This is

1211 1222 1232 1242 0 -3 -8 —15

2212 22 _32 232 32 _ 42 3 0 -5 —12
A _

3212 3222 3232 3242 8§ 5 0 7

42 12 42 _22 42 _32 42 _ 42 15 12 7 0

98 Definition Let (F,-, +) be a field. We denote by M, xn (F) the set of all m X n matrices with entries over F.
If m = n we use the abbreviated notation My, (F) = Muxn(F). My (F) is thus the set of all square matrices of size
n with entries over F.

99 Definition The m X n zero matriz Omxn € Mmxn (F) is the matrix with Op’s everywhere,

Or Or Op .-+ Op
Or Or Op .-+ Op

Omxn= 10 Op Op --- Op

Or O O -+ Of

When m = n we write 0,, as a shortcut for Onxn.

100 Definition The n X n identity matriz I, € My (F) is the matrix with 1r’s on the main diagonal and Or’s
everywhere else,

g Op Op --- Op

Op 1r Op .-+ O

Or Op Op -+ Tp

101 Definition (Matrix Addition and Multiplication of a Matrix by a Scalar) Let A = [aij] € Mmxn(F), B =
[bij] € Mmxn(F) and @« € F. The matrix A + aB is the matrix C € My xn(F) with entries C = [ci;] where
Cij = Qi + O(bij.
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1 1 -1 1
102 Example For A= [_1 q1[andB=| 2 1 | wehave
0 2 0 -1
-1 3
A+2B=|(3 3
0 0
103 Theorem Let (A,B,C) € (Mmxn(F))3 and (&, ) € F2. Then
M1 M xn(F) is close under matrix addition and scalar multiplication
A+ B € My xn(F), A € My xn(F) (2'1)
M2 Addition of matrices is commutative
A+B=B+A (2.2)
M3 Addition of matrices is associative
A+(B+C)=(A+B)+C (2.3)
M4 There is a matrix Oy xn such that
M5 There is a matrix —A such that
A+ (—A)=(—A)+ A =0mxn (2.5)
M6 Distributive law
x(A + B) = xA + aB (2.6)
M7 Distributive law
(x+B)A =axA + BB (2.7)
M8
TrA =A (2.8)
M9
a(BA) = (aB)A (2.9)
Proof:  The theorem follows at once by reducing each statement to an entry-wise and appealing
to the field axioms. [
104 Problem Write out explicitly the 3 X 3 matrix A = [a;;] | 106 Problem Let
where a;; = /.
a —2a ¢ 1 2a c
M = 0 —a b|, N= a b—a —Db
105 Problem Write out explicitly the 3 X 3 matrix A = [aij] a+b 0 -1 a—b 0 1
where aij = 1]
be square matrices with entries over R. Find M+ N and 2M.
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107 Problem Determine x and y such that

3 x 1 213 7 3 7
+2 =

1 2 0 5 x 4 11

y 8

108 Problem Determine 2 X 2 matrices A and B such that

1 -2 4 2
—2A +6B =

0 1 6 0

109 Problem Let A =[aij] € Mn(R). Prove that

minmax aij > max min aij.
j i i j

110 Problem A person goes along the rows of a movie theater
and asks the tallest person of each row to stand up. Then

he selects the shortest of these people, who we will call the

2.2 Matrix Multiplication

shortest giant. Another person goes along the rows and asks
the shortest person to stand up and from these he selects the
tallest, which we will call the tallest midget. Who is taller,
the tallest midget or the shortest giant?

111 Problem (Putnam Exam, 1959) Choose five elements
from the matrix

_11 17 25 19 16_
24 10 13 15 3
12 5 14 2 18>
23 4 1 8 22

6 20 7 21 9

no two coming from the same row or column, so that the
minimum of these five elements is as large as possible.

112 Definition Let A = [ai] € Mmxn(F) and B = [bij] € Muxp(F). Then the matrix product AB is defined as
the matrix C = [cyj] € Mmxp(F) with entries cij = Z{; ai by:

a a2 Ain
azy az azn | | b1
b2y
Qaij Qaiz Qin
_bn1
_am1 am?2 amn_

C11 Cip
b1j bip c21 C2p
b2; b2p
byj bnp

Cmi1 Cmp

|:| Observe that we use juxtaposition rather than a special symbol to denote matriz multiplica-
tion. This will stmplify notation.In order to obtain the ij-th entry of the matriz AB we multiply
elementwise the i-th row of A by the j-th column of B. Observe that AB s a m X p matriz.

1 2 5 6
113 Example Let M = and N = be matrices over R. Then
3 4 7 8
1 2|5 6 1-542.-7 1-6+4+2-8 19 22
MN = = - ,
3 4] |7 8 3.54+44-7 3-6+4-8 43 50
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and

5 6| |1 2 5-14+6-3 5-2+6-4 23 34
NM = = =
7 8|3 4 7-14+8.3 7-24+8-4 31 46

Hence, in particular, matrix multiplication is not necessarily commutative.

114 Example We have

11 1| [-1 =1 2 000

over R. Observe then that the product of two non-zero matrices may be the zero matrix.

115 Example Consider the matrix

21 3
A=10 T 1
4 4 0
with entries over Zs. Then i i
21 31|21 3
A2 = 10T T||0T 7T

N
IN|
ol
IN
IN|
ol

102
- 707
337

|:| Even though matriz multiplication is not necessarily commutative, it 1s associative.
116 Theorem If (A, B,C) € My xn(F) X Muxr(F) X M;xs(F) we have
(AB)C =A(BC),

i.e., matrix multiplication is associative.

Proof: To shew this we only need to consider the ij-th entry of each side, appeal to the associa-
twity of the underlying field F and verify that both sides are indeed equal to

n T
Z Z ik bk Cij.

k=1 k’=1
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|:| By wvirtue of associativity, a square matriz commutes with its powers, that s, if A € My (F),
and (r,s) € N2, then (A")(AS%) = (AS)(A") = ATFS,

117 Example Let A € M3(R) be given by

111
A=11 11
111

Demonstrate, using induction, that A = 3" TA forn € N,n > 1.

Solution: The assertion is trivial for n = 1. Assume its truth for n — 1, that is, assume A™! = 3"~ 2A. Observe
that

Now

A" = AAMTT = A(3MPA) =3"MPAT =3 23A=3"TA,
and so the assertion is proved by induction.

118 Theorem Let A € M, (F). Then there is a unique identity matrix. That is, if E € M, (F) is such that
AE=EA =A,then E =1,.

Proof: It is clear that for any A € My (F), AL, = I,A = A. Now because E is an identity,
EIL, = I,,. Because I, is an identity, EI,, = E. Whence

I, =EI, =E,
demonstrating uniqueness. [
119 Example Let A =[a;ij] € M, (R) be such that a;; =0 for i >j and ai; = 1 if i < j. Find A2,
Solution: Let A2 = B = [byj]. Then
n
bij = Z aikak]-.
k=1

Observe that the i-th row of A hasi— 1 0’s followed by n — i + 1 1’s, and the j-th column of A has j 1’s followed
by n —j 0’s. Thereforeif i — 1> j, then by; = 0. If i <j + 1, then

)
bij :Zaikak,- =j—i+41.
k=i
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This means that

1 2 3 4
o1 2 3
001 2
A? =
0 0 0O
0 0 00
120 Problem Determine the product
1 -1 -2 1 1 1
1 1 0o -1 1 2
1 0 0 a b c
121 Problem Let A= |1 1 ¢o|, B=|¢ a b|- Find
1T 1 1 b ¢ a
AB and BA.
122 Problem Let
2 3 41 1111
12 3 14 1111
A = , B=
4 1 2 3 1111
341 2 1111

be matrices in M4 (Zs) . Find the products AB and BA.

123 Problem Solve the equation

over R.

124 Problem Prove or disprove! If (A, B) € (M, (F))? are
such that AB = Oy, then also BA = 0,.

125 Problem Prove or disprove! For all matrices (A,B) €

(Mn(F))?,
(A +B)(A—B)=A>—B>.

n—2 n—1

n—3 n—2
1 2
0 1
126 Problem Prove, using mathematical induction, that
n
1 1 1 n
01 0 1

127 Problem Let M =

128 Problem Let A = . Find, with proof, A20°3,

129 Problem Let (A,B,C) € Mixm(F) X Mmxn(F) X
Mmxn(F) and o € F. Prove that

A(B+ C)=AB + AC,

(A+B)C=AC+BC,
«(AB) = (x¢A)B = A(aB).

130 Problem Let A € M2 (R) be given by

cosx —sina

A=
sinx cosa

Demonstrate, using induction, that for n € N,n > 1.

cosnax —sinna

A" =

sinnax cos N«

131 Problem A matrix A = [aij] € Mn(R) is said to be
checkered if a;; = 0 when (j — i) is odd. Prove that the sum
and the product of two checkered matrices is checkered.
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132 Problem Let A € M3 (R),

134 Problem Let (A,B) € (M (F))? and k be a positive
integer such that A* = 0,. If AB = B prove that B = 0,,.

1T 1 1
A=1o0 1 1]|- a b
135 Problem Let A =
0 0 1 c d
Prove that 2
A — (a+ d)A + (ad — bce)I2 =02
1 n (n+1)

. Demonstrate that

0 0 1 136 Problem Let A € M, (F) and let k € Z,k > 2. Prove

133 Problem Prove, by means of induction that for the fol-
lowing n X n we have

that A* = 0 if and only if A?

137 Problem Find all matrices A € M3 (R) such that A% =

3 02
111 -1 13 6 - nnil)
138 Problem Find all matrices A € M (R) such that A% = I,
01T 1 v 1 o1 3 .. (lln
139 Problem Find a solution X € M3 (R) for
= (n—-2)(n—-1)
0 0 1 1 0 0 1 no—on
X? —2X =
0 0 0 1 0 0 0 1

2.3 Trace and Transpose

140 Definition Let A =[ai;] € My (F). Then the trace of A, denoted by tr (A) is the sum of the diagonal elements

of A, that is

tr (A) = Z Qkk.-
k=1

141 Theorem Let A = [ai]-] € M, (F),B = [bi]’] € M,,(F). Then
tr (A + B) =tr (A) + tr (B),

tr (AB) =tr (BA).

(2.10)

(2.11)

Proof: The first assertion is trivial. To prove the second, observe that AB = (22:1 aixbyj) and

BA = (ZE:] bikax;). Then

n

ik bii = Z Z byiaik = tr (BA),
1 k=1 i-1

M=

tr (AB) = i
i1

1

=
Il

whence the theorem follows. [

142 Example Let A € M, (R). Shew that A can be written as the sum of two matrices whose trace is different

from O.
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Solution: Write
A= (A—qal,) + al,.

tr (A
Now, tr (A — al) = tr (A) — n«x and tr («l;) = na. Thus it suffices to take o & &) o £ 0. Since R has
n

infinitely many elements, we can find such an «.

143 Example Let A, B be square matrices of the same size and over the same field of characteristic 0. Is it possible
that AB — BA =1,,? Prove or disprove!

Solution: This is impossible. For if, taking traces on both sides
O0=tr (AB) —tr (BA) =tr (AB—BA) =tr(I,)=n

a contradiction, since n > 0.

144 Definition The transpose of a matrix of a matrix A = [aij] € Mmxn(F) is the matrix AT =B = [by] €
My xm (F), where by; = ayi.

145 Example If

a b c
M=1d e 1|,
g h i
with entries in R, then
a d g

146 Theorem Let

A= [ai]’] € men(F)y B= [bij] S men(F)) C-= [Cij] S Mnxr(F), acF,ueN.

Then
ATT - A, (2.12)
(A+aB)T = AT + aBT, (2.13)
(AC)T = CTAT, (2.14)
(AT = (AT)v, (2.15)
Proof: The first two assertions are obuvious, and the fourth follows from the third by using

induction. To prove the third put AT = (o4j), aij = aji, CT = (vij), Vij = ¢i, AC = (wy;) and
CTAT = (Vij). Then
n n n
Uiy = Z AikCxj = Z KkiYjk = Z Yik&Xki = Vji,
k=1 k=1 k=1
whence the theorem follows. [

147 Definition A square matrix A € My, (F) is symmetric if AT = A. A matrix B € M, (F) is skew-symmetric
if BT = —B.
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148 Example Let A, B be square matrices of the same size, with A symmetric and B skew-symmetric. Prove that

the matrix A2BA? is skew-symmetric.

Solution: We have

(AZBAZJT _ (AZ)T(B)T(AZJT

= A%?(—B)A%? = —A’BAZ.

149 Theorem Let IF be a field of characteristic different from 2. Then any square matrix A can be written as the

sum of a symmetric and a skew-symmetric matrix.

Proof: Observe that

(A+ANHT=AT

and so A + AT is symmetric. Also,

(A_AT)T:AT_ATT:

+ATT=AT + A

—(A—AT),

and so A — AT is skew-symmetric. We only need to write A as

A=2"YA+ATH)+ 2 HA-AT

to prove the assertion. [

150 Problem Write

1T 2 3
A=12 3 1| € M3(R)
3 1 2

as the sum of two 3 X 3 matrices Eq1, E2, with tr (E2) = 10.
151 Problem Shew that there are no matrices (A, B, C,D) €
(Mn (R))* such that

AC+ DB =1,

CA + BD = 0,.

152 Problem Let (A,B) € (M2(R))? be symmetric matri-
ces. Must their product AB be symmetric? Prove or disprove!

153 Problem Given square matrices (A,B) € (M7 (R))?

such that tr (A?) = tr (B*) =1, and
(A —B)* =3Iy,
find tr (BA).

a b

154 Problem Consider the matrix A = € M;:(R).
c d

Find necessary and sufficient conditions on a, b, ¢, d so that
tr (AZ) = (tr (A))?.

2.4 Special Matrices

155 Problem Given a square matrix A € M4 (R) such that
tr (A?) = —4, and

(A —14)° = 3L,

find tr (A).

156 Problem Prove or disprove! If A B are square matri-
ces of the same size, then it is always true that tr (AB) =
tr (A) tr (B).

157 Problem Prove or disprove! If (A,B,C) € (Mj3(F))?
then tr (ABC) = tr (BAC).

158 Problem Let A be a square matrix. Prove that the matrix
AAT is symmetric.

159 Problem Let A, B be square matrices of the same size,
with A symmetric and B skew-symmetric. Prove that the
matrix AB — BA is symmetric.

160 Problem Let A € M, (F),A = Prove that

tr(AAT) = Y1, Y0 ad

[ai].

161 Problem Let X € My (R). Prove that if XXT = 0,, then
X =0,.

162 Problem Let m,n,p be positive integers and A €
Mmxn(R), B € Mnxp(R), C € Mpxm(R). Prove that
(BA)TA = (CA)TA = BA =CA.

163 Definition The main diagonal of a square matrix A = [ai;] € My (F) is the set {aii : i < n}. The counter
diagonal of a square matrix A = [ay;] € Mn(F) is the set {am_it1)i :1 < n}
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164 Example The main diagonal of the matrix

015
A=13 2 4
9 8 7

is the set {0, 2,7}. The counter diagonal of A is the set {5, 2, 9}.
165 Definition A square matrix is a diagonal matrix if every entry off its main diagonal is Op.

166 Example The matrix

100
A=10 2 0
0 0 3

is a diagonal matrix.
167 Definition A square matrix is a scalar matrix if it is of the form oI;, for some scalar «.

168 Example The matrix

is a scalar matrix.

169 Definition A € M, «xn (F) is said to be upper triangular if
(V(i,j) € {1,2,--+ ,n}?), (i>], @i =0r),

that is, every element below the main diagonal is Op. Similarly, A is lower triangular if
(V(i,j) € {1,2,--+ ,n}?), (i <j, ai; =0r),

that is, every element above the main diagonal is Op.

170 Example The matrix A € M3x4(R) shewn is upper triangular and B € M4(R) is lower triangular.

10 00
1 a b c
1 a 0 0
A=10 2 3 0 =
0 2 3 0
00 0 1
1T 1 t 1
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171 Definition The Kronecker delta &ij is defined by

Tp ifi=j

Op if ij

172 Definition The set of matrices Eyj € Mmxn(F), Eij = (ers) such that ei; = 1y and ey, = O, (i’,§") # (1,7)
is called the set of elementary matrices. Observe that in fact e,s = 8ir8s;.

Elementary matrices have interesting effects when we pre-multiply and post-multiply a matrix by them.

173 Example Let

0 00
1 2 3 4

0 0 1

A=|5 6 7 8|, Ez=

0 00
9 10 11 12

0 00

Then

0 0 0 0 00 2

ExA=19 10 11 12|, AE3=10 0 6

0 0 0 © 0 0 10

174 Theorem (Multiplication by Elementary Matrices) Let Ei; € Muyxn(F) be an elementary matrix, and let

A € Muxm(F). Then EijA has as its i-th row the j-th row of A and Op’s everywhere else. Similarly, AE;; has as
its j-th column the i-th column of A and Or’s everywhere else.

Proof: Put (oyy) = EijA. To obtain EyjA we multiply the rows of Ei; by the columns of A.
Now

n n
Kuyy = Z Cukxv = Z 6uiskj Axv = 6uiajv-
k=1 k=1

Therefore, for u #1i, oy = Of, t.e., off of the i-th row the entries of EyjA are O, and oy = &y,
that 1s, the i-th row of EijA s the j-th row of A. The case for AE;; 1s similarly argued.l]

The following corollary is immediate.
175 Corollary Let (Eij, Ex1) € (My(F))?, be square elementary matrices. Then
EijExq = 8k Eqr.

176 Example Let M € M, (F) be a matrix such that AM = MA for all matrices A € M, (F). Demonstrate that
M = al,, for some a € F, i.e. M is a scalar matrix.
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Solution: Assume (s,t) € {1,2,...,n}?. Let M = (my;) and Eg; € M;,(F). Since M commutes with Es; we have

_o 0 ... 0 _ _o 0 ... my ... 0
00 : mos 0
My Miz ... Min| = BstM =MEg =
00 : Mmuas : O
0 o ... 0 00 Mg C0

For arbitrary s =t we have shown that mg; = ms = 0, and that mgs = my. Thus the entries off the main diagonal

are zero and the diagonal entries are all equal to one another, whence M is a scalar matrix.

177 Definition Let A € F and E;; € My (F). A square matrix in My (F) of the form I,
transvection.

178 Example The matrix
1T 0 4

T=I3+4E13=1|0 1 0

0 0 1
is a transvection. Observe that if
1T 1 1
A=15 6 7
1 2 3

then
1T 0 41 (1 1 1 5 9 13

TA=10 1 0o|l|5 6 7|=1|5 6 7/,

00 1|1 2 3 1 2 3

that is, pre-multiplication by T adds 4 times the third row of A to the first row of A. Similarly,

that is, post-multiplication by T adds 4 times the first column of A to the third row of A.

In general, we have the following theorem.

+ AEy; is called a

179 Theorem (Multiplication by a Transvection Matrix) Let I, + AE;; € M, (F) be a transvection and let A €
Muxm(F). Then (I, + AE;;)A adds the j-th row of A to its i-th row and leaves the other rows unchanged.
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Similarly, if B € Mpxn(F), B(In + AEij) adds the i-th column of B to the j-th column and leaves the other
columns unchanged.

Proof: Simply observe that (I, + AEj;)A = A+ AE; ;A and A(I, + AE;;) = A +AAEy; and apply
Theorem 174. O

Observe that the particular transvection I,, + (A — 1g)Eiy; € My, (F) consists of a diagonal matrix with Tg's
everywhere on the diagonal, except on the ii-th position, where it has a A.

180 Definition If A = Op, we call the matrix I, + (A — 1g)Ei; a dilatation matriz.

181 Example The matrix

S=Ii+4—1DEn=10 1 0

is a dilatation matrix. Observe that if

111
A=15 6 7
1 2 3

then

that is, post-multiplication by S multiplies by 4 the first column of A.

182 Theorem (Multiplication by a Dilatation Matrix) Pre-multiplication of

the matrixA € My xm (F) by the dilatation matrix I, + (A — Tg)Eii € My (F) multiplies the i-th row of A by A
and leaves the other rows of A unchanged. Similarly, if B € My «n (F) post-multiplication of B by I, + (A — 1) Ej;
multiplies the i-th column of B by A and leaves the other columns of B unchanged.

Proof:  This follows by direct application of Theorem 179. [

183 Definition We write I for the matrix which permutes the i-th row with the j-th row of the identity matrix.
We call I a transposition matriz.
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184 Example We have

1T 0 0 O
0O 010
L(‘zs) _
01 00
0 0 01
If i i
1 2 3 4
5 6 7 8
A= ,
9 10 11 12
13 14 15 16
then i i
1 2 3 4
9 10 11 12
IE‘ZS)A: )
5 6 7 8
13 14 15 16
and i i
1 3 2 4
5 7 6 8
AL =
9 11 10 12
13 15 14 16

185 Theorem (Multiplication by a Transposition Matrix) If A € My xm(F), then IEA is the matrix obtained
from A permuting the the i-th row with the j-th row of A. Similarly, if B € Mpxn(F), then BILj is the matrix
obtained from B by permuting the i-th column with the j-th column of B.

Proof: We must prove that IHA exchanges the i-th and j-th rows but leaves the other rows
unchanged. But this follows upon observing that

IJ = I, + Eyj + Ej; — By — Ej
and appealing to Theorem 17}.
O

186 Definition A square matrix which is either a transvection matrix, a dilatation matrix or a transposition matrix
is called an elimination matriz.

|:| In a very loose way, we may associate pre-multiplication of a matrix A by another matriz
with an operation on the rows of A, and post-multiplication of a matriz A by another with an
operation on the columns of A.
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187 Problem Consider the matrices is transformed into the matrix
1 0 1 0 4 2 4 2 h—g g i
B = _
0 1T 0 1 0o 1 0o 1 e—d d f
A= , B-=
11 1 1T 1 -1 2b—2a Za Zc
1 101 1 1 1 1 1 by a series of row and column operations. Find explicit per-

J mutation matrices P, P’, an explicit dilatation matrix D, and
an explicit transvection matrix T such that

Find a specific dilatation matrix D, a specific transposition ,
matrix P, and a specific transvection matrix T such that B =DPAP'T
B = TDAP.
189 Problem Let A € My (IF). Prove that if

VX € Mn(F)), (tr (AX) = tr (BX)),
188 Problem The matrix ( n(E)), (or ) r (BX))

then A = B.
a b c
190 Problem Let A € My (R) be such that
A-ld e f (VX € Ma(R)), ((XA)? = 0y).
g h i Prove that A = On.

2.5 Matrix Inversion

191 Definition Let A € My, xn (FF). Then A is said to be left-invertible if IL € My, xm (F) such that LA =1,,. A
is said to be right-invertible if 3R € M, x m (IF) such that AR = I,;,. A matrix is said to be invertible if it possesses
a right and a left inverse. A matrix which is not invertible is said to be singular.

192 Example The matrix A € M23(R)

1 00
A =
010
has infinitely many right-inverses of the form
1 0
Rixy)y =10 1
Xy
For
1 0
1 0 0 10
0 1| = )
010 01
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regardless of the values of x and y. Observe, however, that A does not have a left inverse, for

a b a b O
1 00

c d =lc d 0>
010

f f 0

which will never give I3 regardless of the values of a, b, ¢, d,f, g.

193 Example If A /0, then the scalar matrix AI,, is invertible, for

(ALy) (A 'I) = Tn = (A ') (ALn) .
194 Example The zero matrix 0, is singular.

195 Theorem Let A € M,,(IF) a square matrix possessing a left inverse L and a right inverse R. Then L = R. Thus
an invertible square matrix possesses a unique inverse.

Proof: Observe that we have LA =1,, = AR. Then
L=LI,=L(AR)=(LA)R=I,R=R.

O

196 Definition The subset of My, (F) of all invertible n X n matrices is denoted by GLy, (F), read “the linear group
of rank n over F.”

197 Corollary Let (A, B) € (GL,(F))2. Then AB is also invertible and
(AB) '=B A"
Proof: Since AB is a square matriz, it suffices to notice that

B 'A '(AB)= (AB)B'A' =1,

and that since the inverse of a square matriz is unique, we must have B-"TA~1 = (AB)~'. O

198 Corollary If a square matrix S € M,, (F) is invertible, then S~ is also invertible and (S~')~! = S, in view of
the uniqueness of the inverses of square matrices.

199 Corollary If a square matrix A € My, (F) is invertible, then AT is also invertible and (AT)~1 = (A~1)T.
Proof: We claim that (A7)~ = (A—")T. For
AAT' =1, = (AA NT=1T! = (A HTAT=1,,
where we have used Theorem 146. [

The next few theorems will prove that elimination matrices are invertible matrices.

200 Theorem (Invertibility of Transvections) Let I, + AE;; € My (IF) be a transvection, and let i #/j. Then

(In + AEy) ' = I, — AEy;.
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Proof: Ezpanding the product
(I, + AEij)(In — )\Ei]‘) = I, +AEy — AEy — AZEi]‘Ei]‘
= I —A%5Ey
= ITU
stnce i #£j. O

201 Example By Theorem 200, we have

—_
o
w
—_
o
&
—
o
o

o
—_
o
o
—_
o

Il
o
—_
o

o
o
—_
o
o
—
o
o
—

202 Theorem (Invertibility of Dilatations) Let A ## Op. Then

(In + (A= T1p)Eu) ' =L, + (A" — 1p)Equ.

Proof: Ezpanding the product

(In+ A—=10)Ei)(In + (A" —=T1p)Ei) = In+ (A—Tp)Ey
+(AT = 1p)Ey
+(A—=15)(A"" —15)Eu
= Li+(A—1p)Ei
+(A"T —1p)Ey
+(A—15)(A"" — 1)) Eq
= ILn+A—Tg+A"—1p+ 15

—A—A"T"—18)Eu

proving the assertion. [

203 Example By Theorem 202, we have

N|=
o
Il
o
—
o
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Repeated applications of Theorem 202 gives the following corollary.

204 Corollary If A7A2A3 - -+ Ay  Op, then

A0 0 0 --e O
0 A2 0 O 0
0 0 A; O 0
0 0 0 0 An
is invertible and ) 1 -
Ay O 0 0 - O AT o 0 0 .- 0
0 A2 0 © 0 o Al 0 0 0
0 0 A3 O 0 =lo o0 A" 0 0
0 0 0 0 -+ Ay 0 0 0 0 - A

205 Theorem (Invertibility of Permutation Matrices) Let T € S;, be a permutation. Then
ijy—1 YT
(@) = (@)

Proof: By Theorem 185 pre-multiplication of IE by IH exchanges the i-th row with the j-th row,
meaning that they return to the original position in I,. Observe in particular that It} = (I}) )T, and
so I}E(IE)T =I,. O

206 Example By Theorem 205, we have

207 Corollary If a square matrix can be represented as the product of elimination matrices of the same size, then it
is invertible.

Proof: This follows from Corollary 197, and Theorems 200, 202, and 205. 0

208 Example Observe that
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is the transvection I3 + 4E;3 followed by the dilatation of the second column of this transvection by 3. Thus

0 3 4/=10 1 4] (0 3 0>

0 0 1 0 0 11|10 0 1

and so

1 00 1T 00 100
0 3 4 = 10 3 0 01 4
0 01 0 0 1 0 0 1

10 0
= 1 4
0 3 —3
0O 0 1

209 Example We have
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hence

1T 11 1 00 1 1 0
01 1 = 10 1 1 010
0 0 1 0 01 0 0 1

1 -1 0
= o 1
o 0 1

In the next section we will give a general method that will permit us to find the inverse of a square matrix when
it exists.

a b
210 Example Let T = € M2(R). Then

c d

a b d —b 1 0
= (ad — be)
c df|—c a 0 1
Thus if ad — bec /0 we see that
d b
T_1 _ ad—bc ad—bc
C a

211 Example If
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then A is invertible, for an easy computation shews that

A? = =414,

whence the inverse sought is

T 111 /4 1/4 14 1/4
1T 1 =1 =1 |1/4 14 —1/4 —1/4
1T -1 1 1| [1/4 —1/4 1/4 —1/4

1T -1 —1 1 1/4 —1/4 —1/4 1/4

212 Example A matrix A € M, (R) is said to be nilpotent of index k if satisfies A # 0y, AZ 40y, ..., A1 /0,
and AX = 0,, for integer k > 1. Prove that if A is nilpotent, then I,, — A is invertible and find its inverse.

Solution: To motivate the solution, think that instead of a matrix, we had a real number x with |x| < T. Then the
inverse of T — x is

]
(1—x)_1=1—=1+x+x2+x3+---.
—X

Notice now that since A* = 0,,, then AP = 0,, for p > k. We conjecture thus that
(In—A) " =TI, + A+ A% +... + AKT,

The conjecture is easily verified, as

(In —A)In+A+AZ+ ...+ A ) = L+ A+A?+ ...+ AF]

—(A+AZ+ A3+ ...+ AF)

and

(In +A+AZ2+ ... +ART)NI, —A) = I, -A+A A2+ A3 A% ...

‘..+Ak72_Ak71 +Ak—‘l _Ak

213 Example The inverse of A € M3(Zs),

NI

ol

98] ol

ol

ol ol

el
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is

>

L

I
ol o8]
Nl ol
ol ol

ol
ol
|

as

;
|
Il
ol NI
[oN)] ol
ol (o]
ol 9]
NI (o]
ol (o]
I
(o] =
bl (o]
ol (o]

ol
ol
|
ol
ol
|
ol
ol
=

214 Example (Putnam Exam, 1991) Let A and B be different n X n matrices with real entries. If A3 = B3 and
A’B = B2A, prove that A? + B? is not invertible.

Solution: Observe that
(A2 +B?)(A —B) =A% — A%B +B?A — B -0,.
If A% + B2 were invertible, then we would have
A—B=(A?2+B?) "(A2+B?)(A —B) =0,,

contradicting the fact that A and B are different matrices.

215 Lemma If A € M, (F) has a row or a column consisting all of Op’s, then A is singular.

Proof: If A were invertible, the (i,1)-th entry of the product of its inverse with A would be 1.
But if the i-th row of A is all Op’s, then ZE=1 aikbyki = Op, so the (i,1) entry of any matriz product
with A s Op, and never Tg. [

k a positive integer. Prove that if B = SAS™' then B* =
SAkS.

216 Problem The inverse of the matrix A = |1 1 2] is
220 Problem Let A € My (F) and let k be a positive integer.

1 2 3 Prove that A is invertible if and only if A¥ is invertible.
a 1 -1 221 Problem Let S € GLn(C), A € My (C) with A* = 0,
. ; . for some positive integer k. Prove that both I, — SAS™! and
the matrix A~" = | 1 p 1 |. Determine a and b. I, — S TAS are invertible and find their inverses.

222 Problem Let A and B be square matrices of the same
size such that both A — B and A + B are invertible. Put

C=(A—B) '+ (A+B) . Prove that
217 Problem A square matrix A satisfiess A® + 0, but

A% = 0n. Demonstrate that I, + A is invertible and find, ACA —ACB +BCA — BCB =2A.
with proof, its inverse.

223 Problem Let A, B, C be non-zero square matrices of the
same size over the same field and such that ABC = 0,,. Prove
218 Problem Prove or disprove! If (A,B,A + B) ¢ [ that at least two of these three matrices are not invertible.

(GLn(R))® then (A+B) ' =A"" +B .

224 Problem Let (A,B) € (Mn(F))? be such that A? =
219 Problem Let S € GLn(F), (A,B) € (M (F))?, and | B* = (AB)? = I.. Prove that AB = BA.
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a b b b
b a b b

225 Problem Let A = | b q ... b| € Mn(F),
b b b - a

n> 1, (a,b) € F2. De_termine when A is invertible and
find this inverse when it exists.

226 Problem Let (A,B) € (Mn(F))? be matrices such that

2.6 Block Matrices

A + B = AB. Demonstrate that A — I, is invertible and find
this inverse.

227 Problem Let S € GLn(F) and A € My (F). Prove that
tr (A) =tr (SAS™').

228 Problem Let A € M, (R) be a skew-symmetric ma-
trix. Prove that I, + A is invertible. Furthermore, if
B= (I, —A)(I, +A)"", prove that B~' = BT.

229 Problem A matrix A € Mpqy(F) is said to be a magic
square if the sum of each individual row equals the sum of
each individual column. Assume that A is a magic square
and invertible. Prove that A~ is also a magic square.

230 Definition Let A € My xn(F), B € Mwxs(F), C € My xn(F), D € M, xs(F). We use the notation

for the block matriz L € M(m4r)x (n+s) (F).

[] If (A,A7) € (Mm(F))?, (B,B’) € (Mmxn(F))?, (C,C’) € (Mnxm(F))?, (D,D’) €

(M (F))?, and

A|B
S= , )
C|D
then it is easy to verify that
AA’ +BC’ | AB’ + BD’
ST =
CA’+DC’ | CB’ + DD’

231 Lemma Let L € M(m4+)x (m+r) (F) be the square block matrix

with square matrices A € M, (F) and B € M,.(F), and a matrix C € My, x(F). Then L is invertible if and only

if A and B are, in which case

L' -

AT ‘ —A~'CB™!

Orxm ‘ B!
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Proof: Assume first that A, and B are invertible. Direct calculation yields

A ‘C Al ‘A‘CB1 AA ' | —AA'CB '+ CB!

Orxm ‘ B| [Orxm ‘ B! Orxm ‘ BB~!

= Lngr.
E|H
Assume now that L is invertible, L~ = , with B € My, (F) and K € M, (F), but that, say,
J I K
B s singular. Then
Im Oer
- LL?!
Orxm L.
A ‘ C| |E ‘ H
Orxm ‘ Bl |J ‘ K

BJ BK

which gives BK =1;, i.e., B s invertible, a contradiction. O

2.7 Rank of a Matrix

232 Definition Let (A,B) € (Myxn(F))2. We say that A is row-equivalent to B if there exists a matrix R €
GL, (F) such that B = RA. Similarly, we say that A is column-equivalent to B if there exists a matrix C € GLy, (F)
such that B = AC. We say that A and B are equivalent if 3(P, Q) € GL, (F) X GL,(F) such that B = PAQ.

233 Theorem Row equivalence, column equivalence, and equivalence are equivalence relations.

Proof:  We prove the result for row equivalence. The result for column equivalence, and equiva-
lence are analogously proved.

Since Iy, € GL(F) and A = IILZA, row equivalence is a reflexive relation. Assume (A,B) €
(Mmxn(F))? and that AP € GL(F) such that B = PA. Then A = P 'B and since P! €
GL (F), we see that row equivalence is a symmetric relation. Finally assume (A,B,C) €
(Mmxn(F))? and that AP € GLy,(F), 3P’ € GLw(F) such that A = PB,B = P'C. Then
A =PP’C. But PP’ € GLn(F) in view of Corollary 197. This completes the proof. [

234 Theorem Let A € My, xn(F). Then A can be reduced, by means of pre-multiplication and post-multiplication
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by elimination matrices, to a unique matrix of the form

Ir ‘ Orx(n—r)

Dmnr= , (2.16)

)

Om—r)xr | Om—r)x(n—1)
called the Hermite normal form of A. Thus there exist P € GL (F), Q € GL(F) such that Dy n» = PAQ.
The integer r > 0 is called the rank of the matrix A which we denote by rank (A).

Proof: If A is the m X n zero matriz, then the theorem 1is obvious, taking r = 0. Assume hence
that A 1s not the zero matriz. We proceed as follows using the Gauf-Jordan Algorithm.

GJ-1 Since A 1s a non-zero matriz, it has a non-zero column. By means of permutation matrices
we move this column to the first column.

GJ-2 Since this column is a non-zero column, it must have an entry a  Op. Again, by means of
permutation matrices, we move the row on which this entry s to the first row.

1

GJ-3 By means of a dilatation matriz with scale factor a=', we make this new (1,1) entry into a

Tr.

GJ-4 By means of transvections (adding various multiples of row 1 to the other rows) we now
annthilate every entry below the entry (1,1).

This process ends up tn a matriz of the form

_111«“ * * e * |
Or | b2z bz .-+ bag
Pi1AQ1 = |05 | b32 bzz --- bin|- (2.17)
Op
_O]F bm2 bmz .- bmn—

Here the asterisks represent unknown entries. Observe that the b’s form a (m —1) X (n — 1)
matriz.

GJ-5 Apply GJ-1 through GJ-4 to the matriz of the b's.

Observe that this results in a matriz of the form

_1F * * ce * _
Op 1p| * - *
P2AQ2= |0y O¢| c33 --- e3n|- (2.18)
Or
_OF Or | Cm3 -+ cmn—

GJ-6 Add the appropriate multiple of column 1 to column 2, that is, apply a transvection, in order
to make the entry in the (1,2) position Op.
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This now gwes a matriz of the form

_1]F Op * oo * |
Op 1p| * - *
P3AQs= |0 Op| c33 -+ c3n - (2.19)
O
_OF Or | Crnz -~ cmn—

The matriz of the ¢’s has size (m — 2) X (n— 2).

GJ-7 Apply GJ-1 through GJ-6 to the matriz of the c’s, etc.
Observe that this process eventually stops, and in fact, it is clear that rank (A) < min(m,n).
Suppose now that A were equivalent to a matriz Dm n,s with s > r. Since matriz equivalence is an

equiwvalence relation, Dm n s and Dy o+ would be equivalent, and so there would be R € GLm (F),
S € GL(F), such that RDm n+S = Dmns, that ts, RDmnr = Dm,n,sSq. Partition R and S~

as follows
$11 | S12 Si3
R11 | Re2 —
R= , STT= S21 | S22 Sa3f >
R21 | R22
S31 | S32 Ss33

with (R11,811)% € (M (F))?, S22 € M(s_r)x(s—r)(F). We have

Ri2 L. ‘ Om—r)xr R11 ‘ Om—r)xr

R11
RDm,n,r= = ’
R21 | R22| [O(m—r)xr | Orx(m—r) RN‘OfX(m—f)
and _ -
I, O (s 1) Orx (ns) S$11 | S12 Si3
-1 _

Dmon,sS - O(s—r)xr | - O(s—r)x (n—s) S21 | S22 Sz3
_O(m—s)xr O(m—s)x(s—1) O(m—S)X(n—S)_ S31|Ss2 Ss3

S11 Si2 S13

= S5 S22 S23

O(m—s)xr O(m—s)x(s—r) O(m—s)x(n—s)_

Since we are assuming

S11 Si2 S13

= S>; Soo S23 ’

O(mfs)xr O(mfs)x(sfr) O(mfs)x(nfs)
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we must have S12 = Orx(s—r); S13 = Orx(n—s); Szz = O(s—r)x(s—r): 523 = O(s—r)x(n—s)~ Hence

S11 Orx(sfr) Orx(nfs)
s =

SZ1 0(571'))((571') 0(571‘))((1175)

S31 S32 S33

The matriz

is non-invertible, by virtue of Lemma 215. This entails that S~ is non-invertible by virtue of
Lemma 231. This is a contradiction, since S is assumed invertible, and hence S~' must also be
invertible. U

|:| Albeit the rank of a matriz s unique, the matrices P and Q appearing in Theorem 23/ are
not necessarily unique. For example, the matrix

has rank 2, the matriz

10 x| |10 10
10

01 yl|lo 1 =10 1/,
0 1

00 1|00 0 0

regardless of the values of x and y.

235 Corollary Let A € My, xn(F). Then rank (A) = rank (AT).

Proof: Let P,Q,Dmn,r as in Theorem 234. Observe that PT, Q" are invertible. Then

PAQ = Dm,n,r - QTATPT = DT = Dn,m,r,

m,n,r

and since this last matriz has the same number of 1r’s as D n,r, the corollary is proven. [
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236 Example Shew that

has rank (A) = 2 and find invertible matrices P € GLz(R) and Q € GL3(R) such that

PAQ -

Solution: We first transpose the first and third columns by effecting

0 0 1
0 2 3 320
01 0| =
010 010
1 00

We now subtract twice the second row from the first, by effecting

1 2113 2 0 300

Finally, we divide the first row by 3,

We conclude that

0 0 1
1/3 0 (1 =210 2 3 1 00
01 0| = )
0O 1110 1110 1 O 010
1 00

from where we may take
1/3 0Of |1 —2 1/3 —2/3

0o 1710 1 o 1

and
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In practice it is easier to do away with the multiplication by elimination matrices and perform row and column
operations on the augmented (m +n) X (M + n) matric

237 Definition Denote the rows of a matrix A € My, xn(F) by R1, Rz, ..., Ry, and its columns by C1, Ca, ..., Cy.
The elimination operations will be denoted as follows.

e Exchanging the i-th row with the j-th row, which we denote by R; < Rj, and the s-th column by the t-th
column by Cg & Cq.

e A dilatation of the i-th row by a non-zero scalar « € F \ {Or}, we will denote by «R; — R;. Similarly,
BC; — C; denotes the dilatation of the j-th column by the non-zero scalar 3.

e A transvection on the rows will be denoted by R; + aR; — Rj, and one on the columns by Cs + fC¢ — Cs.

238 Example Find the Hermite normal form of

-1 0

0 0
A=

1 1

1 2

Solution: First observe that rank (A) < min(4,2) = 2, so the rank can be either 1 or 2 (why not 0?). Form the
augmented matrix

1 10 0 1 0

1 2(0 0 0 1

Perform R5 + R3 — Rs and Rg + R3 — Rg successively, obtaining

1 0/(0 0 0 O

0 1|10 0 0 O
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Perform Rg — 2R5 — Rg

_ 1T 0] 0 0 0_
0o 1|0 0 0
-1 0] 1 0 0
0 0] 0 0 0
0 1|1 1 0
0 01 —2 1
Perform R4 < Rjs ) ;
1 0| O 0 0
0o 1|0 0 0
-1 0] 1 0 0
0 1|1 1 0
0 0] 0 0 0
0 0f-—1 —2 1
Finally, perform —R3 — R3 i .
10,0 0 0 O
o1,0 0 0 O
1 0/—1T 0 0 O
o1, 1 0 1 0
0 0| 0 (VY
0O 0|—1 0 —2 1
We conclude that i o
-1 0 0 0] |1
1T 0 1 0 0 10
o 1 0 0 1 01

239 Theorem Let A € Muyuxn(F), B € Muxp(F). Then

rank (AB) < min(rank (A),rank (B)).
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Proof:  We prove that rank (A) > rank (AB). The proof that rank (B) > rank (AB) s similar
and left to the reader. Put r = rank (A),s = rank (AB). There exist matrices P € GL(F),
Q € GL,(F), S € GL(F), T € GLy(F) such that

PAQ=Dmnr, SABT=Dmyps.
Now

Dmps=SABT =SP 'D,,, »,Q 'BT,

from where it follows that

PS?1 Dm,p,s = ])Tn,n,r(zi1 BT.

Now the proof is analogous to the uniqueness proof of Theorem 234. Put U = PS™! € GLn,(R)
and V=Q 'BT € Muxp (F), and partition U and V as follows:

Uqq | Uy2 Vi1 | Viz
u- v

U.21 U22 v21 v22

with Uq1 € Mg (F), Vi1 € M (F). Then

Uy | Uy I ‘ Osx(p—s)
UDm,p,s = € Mmnxp(F),
Uz | U2z | [O(m—s)xs | Opm—s)x (p—s)
and
I, Orx(n—r) VH V12
Dm,p,sv = S mep(F)-
Om—r)xr | Om—r)x(n—r)| | V21 | V22

From the equality of these two m X p matrices, it follows that

Uy Osx(p—s) Vi1 ‘ Vi2

u21 O(m—s)x(p—s) O(m—r)xr O(m—r)x(n—r)

If s > v then (i) Uy would have at least one row of Op’s meaning that Uy1 is mon-invertible

by Lemma 215. (1) Uz1 = O(m_s)xs. Thus from (i) and (i) and from Lemma 231, U s not
tnvertible, which s a contradiction. [

240 Corollary Let A € My xn(F), B € Muxp(F). If A is invertible then rank (AB) = rank (B). If B is invertible
then rank (AB) = rank (A).

Proof: Using Theorem 239, if A is tnvertible
rank (AB) < rank (B) = rank (A_1AB) < rank (AB),

and so rank (B) = rank (AB). A similar argument works when B is invertible.

O
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241 Example Study the various possibilities for the rank of the matrix

A=lb+c c+a a+b

bc ca ab

Solution: Performing R; — (b + ¢)R; — Rz and R3 — bcRy — R3, we find

0 a—> a—c
0 0 (b—c)(a—rc)

Performing C; — C; — C3 and C3 — C; — C3, we find

0 a—D> a—c

0 0 (b——c)(a—=c)

We now examine the various ways of getting rows consisting only of 0’s. If a = b = ¢, the last two rows are O-rows
and so rank (A) = 1. If exactly two of a, b, ¢ are equal, the last row is a O-row, but the middle one is not, and so

rank (A) = 2 in this case. If none of a, b, ¢ are equal, then the rank is clearly 3.

242 Problem On a symmetric matrix A € My (R) with | the matrix
n > 3,

R3 — 3R1 — R3 1 a
successively followed by
a 1
C3—3C; = C
3 1 3 1 b
are performed. Is the resulting matrix still symmetric? b 1

243 Problem Find the rank of when (a,b) € B2,

a+1 a+2 a+3 a+4 a+5

a+2 a+3 a+4 a+5 a+6
€ Ms(R).

a+3 a+4 a+5 a+6 a+7
246 Problem Find the rank of

a+4 a+5 a+6 a+7 a—+8

244 Problem Let A,B be arbitrary n X n matrices over R. | fynction of m € C.
Prove or disprove! rank (AB) = rank (BA) .

245 Problem Study the various possibilities for the rank of | 247 Problem Determine  the

rank

of

the

as a

matrix
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a’ ab ab b? 1 1 2
ab a2 b? ab Mz x3(R) be such that ABC=|_2 5 1|. Findx.
ab b?> a? ab 1 -2 1
b2 ab ab d?

248 Problem Determine the rank of the matrix

ac bc ad bd

249 Problem Let A € M3x2(R), B € M;(R), and C €

2.8 Rank and Invertibility

250 Problem Let A, B be matrices of the same size. Prove

that rank (A + B) < rank (A) + rank (B).

251 Problem Let B be the matrix obtained by adjoining a
row (or column) to a matrix A. Prove that either rank (B) =
rank (A) or rank (B) = rank (A) + 1.

252 Problem Let A € My, (R). Prove that rank (A) =
rank (AAT). Find a counterexample in the case A €
M, (C).

253 Problem Prove that the rank of a skew-symmetric matrix
is an even number.

254 Theorem A matrix A € My, xn (F) is left-invertible if and only if rank (A) = n. A matrix A € My, xn(F) is

right-invertible if and only if rank (A) = m.

Proof:
such that LA =1,,. By Theorem 239,

Observe that we always have rank (A) < n. If A 1s left tnvertible, then AL € My xm (F)

n =rank (I;) = rank (LA) < rank (A),

whence the two inequalities give rank (A) =n.

Conversely, assume that rank (A)

Then rank (AT) =mn by Corollary 235, and so by Theorem

=n.
23/ there exist P € GL (F), Q € GL,(F), such that

PAQ -

O(mfn)xn
This gives
QTATPTPAQ =1,

=

, QTATPT - [1

n Onx(m—n):| :

- ATPTPA= (QT)—1Q—1

(QNH'Q ) 'ATPTPA =1,

and so ((QT)"'Q 1) TATPTP is a left inverse for A.

The right-invertibility case s argued similarly. [

By combining Theorem 254 and Theorem 195, the following corollary is thus immediate.

255 Corollary If A € My, xn (F) possesses a left inverse L and a right inverse R then m =n and L = R.
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We use Gau®-Jordan Reduction to find the inverse of A € GL;, (F). We form the augmented matriz T = [A|1},]
which is obtained by putting A side by side with the identity matrix I,,. We perform permissible row operations
on T until instead of A we obtain I,,, which will appear if the matrix is invertible. The matrix on the right will be
A~'. We finish with [I,|A~"].

|:| If A € M, (R) s non-tnvertible, then the left hand side in the procedure above will not reduce
to I,,.

256 Example Find the inverse of the matrix B € M3(Z7),

6 0 1
B-|3 20
101
Solution: We have
6 0 1|1 0 0 10 1|0 0 1
o = - R1=R3 o = - _
32 0/0 1 0 ~ 32 0/0 1 0
10 1|0 01 6 0 1|1 0 O
10 1|0 01
R3—€R1—>R3 - — | = =
g 0 2 40 1 4
R2—3R1—>R2
00 2|1 01
50 0|1 0 6
R2—2R3—>R2 - o | = = _—
5R;+R3—-R; 0 20|51 2
00 2(1T 01
10 0[(3 0 4
gR]HR]}ZR3*)R3 _ _ _ _ _ _
_ 01 0]6 4 1
4R2~>R2
00 1|4 0 4
We conclude that
—1
6 0 1 30 4
320 -l631

=
(o]
=
L
ol
L
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01 —1
257 Example Use Gauf®-Jordan reduction to find the inverse of the matrix A= | 4 —3 4 . Also, find A2007,
3 -3 4
Solution: Operating on the augmented matrix
o 1 —1|1T 0 O o 1 —1{1 0 O

R373R24}R3
Y

0O -3 4|0 -3
o1 —-1]1 0 0
R3+3R;1—R3
~ T 0 0 (0 1 —1
O 0 1|3 -3 4
01 0|4 —3 4
R1+R3—5R;
~ 1 0 0/0 1 —1
0O 0 1|3 -3 4
1 0 0/0 1 —1
R14—>R2
~ 01 0|4 -3 4
0O 0 1|3 -3 4
Thus we deduce that
0 1 —1

From A~! = A we deduce A? = I,,. Hence A2000 — (A2)7000 _ I:IOOO =1, and A2007

= A(A%900) — AL, = A.
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258 Example Find the inverse of the triangular matrix A € My, (R),

T1 1 ... 1
011 1
A=10 0 1 1
0 00 1
Solution: Form the augmented matrix
1T 1 1 111 0 O 0
01 1 110 1 0 0
0 0 1 110 0 1 0>
oo0o0 -« 1T/000O0 .-+ 1
and perform Ry — Ryx41 — Ry successively for k=1,2,...,n— 1, obtaining
1T 00 o1 —1 0 0
010 oj0 1 -1 0
0 0 1 00 O 1 0>
0 00 110 O 0 1
whence _ -
1T —1 0 0
o 1 -1 0
Al=1o 0 1 ol
0 0 o ... 1

that is, the inverse of A has 1’s on the diagonal and —1’s on the superdiagonal.

259 Theorem Let A € M, (F) be a triangular matrix such that aj1az2 -+« ann 5 Or. Then A is invertible.

Proof:  Since the entry axx # O we multiply the k-th row by a;ll and then proceed to subtract
the appropriate multiples of the preceding k — 1 rows at each stage. [




54 Chapter 2

260 Example (Putnam Exam, 1969) Let A and B be matrices of size 3 X 2 and 2 X 3 respectively. Suppose that
their product AB is given by

—2 4 5
Demonstrate that the product BA is given by
2 0
BA =
0o 9
Solution: Observe that
8§ 2 -2 8§ 2 -2 72 18 —18
(AB?=|2 5 4||2 5 4|=|18 45 36 |=9AB.
—2 4 5 —2 4 5 —18 36 45

and so rank (AB) = 2. This entails that rank ((AB)?) = 2. Now, since BA is a 2 X 2 matrix, rank (BA) < 2.
Also
2 =rank ((AB)Z) =rank (ABAB) < rank (ABA) < rank (BA),

and we must conclude that rank (BA) = 2. This means that BA is invertible and so

(AB)Z = 9AB A(BA —91,)B = 03
BA(BA — 91,)BA = B0O3A
BA(BA — 91,)BA =0,

(BA) "BA(BA — 91,)BA(BA)~' = (BA) 10,(BA) !

L1l

BA — 91, =0,

261 Problem Find the inverse of the matrix

(9]

2

=

€ M3 (Z7).

=

3

Nl

W
—_
N
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262 Problem Let (A,B) € M3(R) be given by

a b ¢ 0 0 -1
A=11 0 o/, B=|l0 -1 a
01 0 -1 a b

Find B~ and prove that AT = BAB™'.

263 Problem Find all the values of the parameter a for which
the matrix B given below is not invertible.

-1 a+2 2
B=10 a 1
2 1 a

264 Problem Find the inverse of the triangular matrix

a 2a 3a

0 b 2b| €M;s(R)

assuming that abc #0.

265 Problem Under what conditions is the matrix

invertible? Find the inverse under these conditions.

266 Problem Find the inverse of the matrix

1+a 1 1

1 1+b 1

267 Problem Prove that for the n X n (n > 1) matrix
_ o -1 _

01 1 1 2-m 11
1.0 1 1 2-m 11
R
110 1| =5g=3| 1 1 2-n
111 0 111

268 Problem Prove that the n X n (n > 1) matrix

T+ a 1 1 1
1 T+a 1 1
1 1 T+a 1
1 1 1 T+a
has inverse
T—n—a 1 1 1
T—n—a 1 1 1
N
a(n+a) 1 1 1—m—a 1
1 1 1 1—mn—a
269 Problem Prove that
1 3 5 7 2n—1)
2n—1) 1 3 5 (2n —3)
2n—-3) 2n—1) 1 3 (2n —5)
3 5 7 1
has inverse
2—n? 2+4n? 2 2
2 2—n? 2+4n? 2
1
e | 2 2 2—n? 2
2+n? 2 2 2—n?
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270 Problem Prove that the n X n (n > 1) matrix

T4+ aq

has inverse

1 1+ a2

1+ as

1T—ars 1 1

a? ajaz aias
1 1 — azs 1
azai a’ azas
1 1 1 1— aszs
§ asaq azaz a?

1 1 1

L an anQaz anas

1

14+ an

az0an

1 — ans

a1 an

azam

a?

Wheres:1+a1—1+a1—2+...+a1_‘

n

271 Problem Let A € Ms5(R). Shew that if rank (A%) <5,
then rank (A) < 5.

272 Problem Let A € M3 2(R) and B € M 3(R) be matri-
o -1 —1

ces suchthat AB=|_1 (o _1|. Prove that BA =15.

1 1 2
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Linear Equations

3.1 Definitions

We can write a system of m linear equations in n variables over a field F

arixy + a12x2 + a13x3 + -+ - + A1nXn = Y1,

a21X71 + az22X2 + Q23X3 + -+« + Q2nXn = Y2,

Am1X1 + Am2X2 + Qm3X3 + +++ + AmnXn = Ym,

in matrix form as

a a2z
azq az2z
am1 aAm2

Ain

a2n

amn

We write the above matrix relation in the abbreviated form

AX =Y,

X1

X2

Xn

Ui

Y2

Ym

(3.1)

(3.2)

where A is the matrix of coefficients, X is the matrix of variables and Y is the matrix of constants. Most often we

will dispense with the matrix of variables X and will simply write the augmented matriz of the system as

an

azq
[AlY] =

Ami

a2

azz

am2

Ain

a2n

Omn

Y1

Y2

Ym

273 Definition Let AX = Ybeasin 3.1. If Y = 01,1, then the system is called homogeneous, otherwise it is called

inhomogeneous. The set

X € Muxi1(F) : AX =0mx1}

is called the kernel or nullspace of A and it is denoted by ker (A).

57
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|:| Observe that we always have O0nx1 € ker (A) € My xn (F).

274 Definition A system of linear equations is consistent if it has a solution. If the system does not have a solution
then we say that it is tnconsistent.

275 Definition If a row of a matrix is non-zero, we call the first non-zero entry of this row a pivot for this row.

276 Definition A matrix M € My, xn (FF) is a row-echelon matrix if
e All the zero rows of M, if any, are at the bottom of M.

e For any two consecutive rows R; and Rj1, either R 1 is all Op’s or the pivot of Ri 1 is immediately to the
right of the pivot of Rj.

The variables accompanying these pivots are called the leading variables. Those variables which are not leading
variables are the free parameters.

277 Example The matrices

0o 1 1 o1 1
0 0 2
0 0 o0 0o 00 ©

0o o0 o 0 0 00 O

are in row-echelon form, with the pivots circled, but the matrices

_1 01 1_ _1 011 |
001 2 00 0O
0 0 11 | 0 0 01 |
0 0 0 0] 0 0 0 0]

are not in row-echelon form.

|:| Observe that given a matric A € My xn(F), by following Gaufs-Jordan reduction a la Theorem
234, we can find a matric P € GL, (F) such that PA = B s in row-echelon form.

278 Example Solve the system of linear equations

_1 11 1 - _x_ _—3_
021 0 Y —1
00 1 —1 z i 4

000 2| |w |—6
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Solution: Observe that the matrix of coefficients is already in row-echelon form. Clearly every variable is a leading
variable, and by back substitution

2Zw=—6 = w=—-=-3,

6
2
z—w=4 — z=44+w=4—-3=1,

1 1
2 =—1 =—— — —z=-—1
Yy+z == 3 22 ,

x+y+z4+w=—-3 = x=—3—-—y—z—w=0.

The (unique) solution is thus

X 0
Y —1
z 1
w —3
279 Example Solve the system of linear equations

X

1T 1 1 1 -3
y

021 0 = -1
z

001 —1 4
w

Solution: The system is already in row-echelon form, and we see that x, y, z are leading variables while w is a free
parameter. We put w = t. Using back substitution, and operating from the bottom up, we find

z—w=4 = z=4+w=4+1t,

2y + 1 — L L S L
z=— = ——z=—— —2— —t=—= — —
Y v="37"3 2 2 2 2%

5 1 9 3
=—3 5 x=-3—y—z—w=-3+4+ - —t—4—-t—t=—-——t.
X+yYy+z+w X y—z—w +2+2 3 2

The solution is thus

9 3
X —i—zt
5 1
Y —2 2t
- ,tEeR.
z 4+t
w t
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280 Example Solve the system of linear equations

]

111 1| |y| |-3

021 oz |-
_W_

Solution: We see that x,y are leading variables, while z, w are free parameters. We put z = s, w = t. Operating
from the bottom up, we find

2y + 1 = ! ! ! !
zZ=— =—— ——z=——— —§,
Y V=733 2 2
5 3
x+y—|—z—|—w:—3:>x=—3—y—z—w=—z—zs—t.

The solution is thus

X —g—%s—t

1 1
Yy —5 — =8
_ 22| (s,1) € R
z S
w t

281 Example Find all the solutions of the system

x+2y+2z=0,

y+2z=1,
working in Z3.
Solution: The augmented matrix of the system is
12 2(0
01 2(1

The system is already in row-echelon form and x,y are leading variables while z is a free parameter. We find

y=1—-2z=1+1z,

and
x=-—2y—2z=1+42z.
Thus
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Letting z = 0, 1, 2 successively, we find the three solutions

X 1

y| = |T|>

z 0

X 0

y| = |2]>

z 1
and o -

X 2

y| = |0

z 2
282 Problem Find all the solutions in Z3 of the system find all solutions of the system

X+U+Z+W:6, 1x—|—2y—|—3z=5;

2y +w=2.

283 Problem In Z7, given that
-1

123 720
237 -|20 3,
372 032

3.2 Existence of Solutions

We now answer the question of deciding when a system of linear equations is solvable.

284 Lemma Let A € My xn(F) be in row-echelon form, and let X € M, x1(F) be a matrix of variables. The
homogeneous system AX = Omx1 of m linear equations in n variables has (i) a unique solution if m = n, (ii)
multiple solutions if m < n.

Proof: If m = n then A is a square triangular matriz whose diagonal elements are different
from Op. As such, it is invertible by virtue of Theorem 259. Thus

AXZOnX1 = X:A_10n><1 :0n><1

so there is only the unique solution X = O, %1, called the trivial solution.

If m < n then there are n — m free vartables. Letting these variables run through the elements of
the field, we obtain multiple solutions. Thus if the field has infinitely many elements, we obtain
nfinitely many solutions, and if the field has k elements, we obtain k"~ ™ solutions. Observe that
wn this case there 1s always a non-trivial solution.

O
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285 Theorem Let A € My, «n(F), and let X € My x1(F) be a matrix of variables. The homogeneous system
AX = 0 x1 of m linear equations in n variables always has a non-trivial solution if m < n.

Proof: We can find a matriz P € GL, (F) such that B = PA s in row-echelon form. Now
AX =0mx1 &= PAX=0mx1 & BX=0mx1.

That 1s, the systems AX = Omx1 and BX = 0,1 have the same set of solutions. But by Lemma
28/ there is a non-trivial solution. O

286 Theorem (Kronecker-Capelli) Let A € My xn(F),Y € Mupx1(F) be constant matrices and X € My x1(F)
be a matrix of variables. The matrix equation AX =Y is solvable if and only if

rank (A) = rank ([A|Y]).

Proof: Assume first that AX =Y,

X1

X2

Xn

Let the columns of [A[X] be denoted by Ci,1 < i < n. Observe that that [AIX] € My x (nt+1)(F)
and that the (n + 1)-th column of [A|X] s

X1Q11 +X2Q12 + + -+ + XnQin

X1Q21 +X2022 + -+ +XnQ2n n
Cn+1 =AX = = inci-
. i=1

X10An1 +X20n2 + ¢+ * +XnOnn

By performing Cn1 —Z;; x;Cj = Cny1 on[A]Y] = [A|AX] we obtain [A|Onx1]. Thusrank ([A]Y]) =
rank ([A|Onx1]) = rank (A).

Now assume that r = rank (A) = rank ([A|Y]). This means that adding an extra column to A does
not change the rank, and hence, by a sequence column operations [A]Y] is equivalent to [A|Onx1].
Observe that none of these operations 1s a permutation of the columns, since the first n columns of
[A]Y] and [A|Onx1] are the same. This means thatY can be obtained from the columns C;,1 <i<mn
of A by means of transvections and dilatations. But then

n
Y = inCi.
i=1

The solutions sought is thus

X1

X2

Xn
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287 Problem Let A € Munxp(F), B € Mnxq(F) and put | rank (C) < 3P € My (q) such that B = AP.
C = [A B] € Mux(p+q)(F) Prove that rank (A) =

3.3 Examples of Linear Systems

288 Example Use row reduction to solve the system

x 4+ 2y + 3z + 4w 8

x + 2y + 4z + Tw = 12

2x + 4y + 6z + 8w = 16

Solutions: Form the expanded matrix of coefficients and apply row operations to obtain

1 2 3 4,8 1 2 3 48
R372R]4}R3

124 7012 2. o071 3[4

2 4 6 8|16 0 0 0 0(0

The matrix is now in row-echelon form. The variables x and z are the pivots, so w and y are free. Setting
w =35,y =t we have
z =4 —3s,

x=8—4w —3z—2y=8—4s —3(4—3s) — 2t = —4 + 5s — 2t.

Hence the solution is given by

_x_ _—4+53—2t_
Y t
z i 4 —3s

_W_ L § J

289 Example Find « € R such that the system
x+y—z=1,

2x+ 3y + oz =3,
X+ ay + 3z =2,

posses (1) no solution, (ii) infinitely many solutions, (iii) a unique solution.

Solution: The augmented matrix of the system is
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By performing R, — 2R; — R, and R3 — R; — R3 we obtain
1 1 —1 1
~ 10 1 ax+2]|1

0 ax—1 4 1

By performing R3 — (& — 1)R2 — R3 on this last matrix we obtain
11 —1 1
~ 10 1 o+ 2 1

0 0 (a—2)(x+3)|x—2

If @« = —3, we obtain no solution. If & = 2, there is an infinity of solutions

If « 2 and « 3, there is a unique solution

x 1
_ 1
Y x4+ 3
1
z
L+ 3
290 Example Solve the system
6 0 1| |x 1
3 2 0f|y|=|0]>
10 1| |z 2

for (X,y,Z) € (Z7)3'

Solution: Performing operations on the augmented matrix we have

6 0 1|1 10 1|2
- = | = RieR3 - = | =
32 0]0 ~ 32 0]0
10 1|2 6 0 1|1
10 1|2
Rg—gR1—>R3____
g 0 2 4|1

R2—3R1—>R2

ol
ol
NI
(9]
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This gives _ _ _
2z=3 — z =175,
2y=1—4z-=-2 y=1,
x=2—z=4
The solution is thus _
(x,y,2z) = (4,1,5).

291 Problem Find the general solution to the system

_1 1 1 1 1_ _a_ _ 1 |
1 01 0 1| |b —1
21 2 1 2| |c[=]0
4 2 4 2 4| |d 0
1 0 0 0 1 f 0

or shew that there is no solution.

292 Problem Find all solutions of the system

T 1 1 1 1| |afl |3

11 1 1 2| |b| |4

if any.

293 Problem Study the system
X+ 2my + z =4m;

2mx +y +z =2;
x—|—y—|—2mz=2m2,

with real parameter m. You must determine, with proof, for
which m this system has (i) no solution, (ii) exactly one so-
lution, and (iii) infinitely many solutions.

294 Problem Study the following system of linear equations
with parameter a.
2a—T)x4+ay—(a+1z=1,
ax +y —2z=1,

2x+ (3 —a)y+(2a—6)z=1.

You must determine for which a there is: (i) no solution, (ii)
a unique solution, (iii) infinitely many solutions.

295 Problem Determine the values of the parameter m for
which the system

X + vy + (1—m)z = m+2
T+mx — vy + 2z = 0
2x — my + 3z = m+2

is solvable.

296 Problem Determine the values of the parameter m for
which the system

X + vy + z + t = 4da
X -y — z 4+ t = 4b
—-Xx — Yy + z 4+ t = 4c
X -y + z — t = 4d

is solvable.

297 Problem It is known that the system

ay + bx =¢;
cx +az =b;
bz+cy=a

possesses a unique solution. What conditions must
(a,b,c) € R? fulfill in this case? Find this unique solution.

298 Problem Find strictly positive real numbers x,y, z such
that

x*y?z® = 1
x4ySz12 2
xzyzzs - 3

299 Problem (Leningrad Mathematical Olympiad, 1987, Grade 5)
The numbers 1, 2, ..., 16 are arranged in a 4 X 4 matrix A
as shewn below. We may add 1 to all the numbers of any row
or subtract 1 from all numbers of any column. Using only the
allowed operations, how can we obtain AT?
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13

11

15

300 Problem (International Mathematics Olympiad, 1963)
Find all solutions x1,%2,X3, X4, X5 of the system

X5 + X2 = YX1;

X1 + X3 = Yx2;
X2 + X4 = YX3;
X3 + X5 = YX4;
X4 + X1 = YXs,

where y is a parameter.
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R% R3 and R™

4.1 Points and Bi-points in R?

aq
with real number coordinates on the plane, as in figure 4.1. We use the

R? is the set of all points A =
az

0
notation O = to denote the origin.
0
Yy a
A =
az
————9®
I
I
O |
® ! X
Figure 4.1: Rectangular coordinates in RZ.
aq b1
Given A = € R? and B = € R? we define their addition as
az bZ
a; b, a; + by
A+B-= + = (4.1)
az b> a; + by
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Similarly, we define the scalar multiplication of a point of R? by the scalar & € R as

oA = o = . (4.2)

|:| Throughout this chapter, unless otherwise moted, we will use the convention that a point
A € R? will have its coordinates named after its letter, thus

aq
A =

az

301 Definition Consider the points A € R?, B € R2. By the bi-point starting at A and ending at B, denoted by
[A, B], we mean the directed line segment from A to B. We define

0
[A,A]=0 =

0

|:| The bi-point [A, B] can be thus interpreted as an arrow starting at A and finishing, with the
arrow tip, at B. We say that A 1is the tail of the bi-point [A, B] and that B is its head. Some
authors use the terminology “fixed vector” instead of “bi-point.”

302 Definition Let A =/ B be points on the plane and let L be the line passing through A and B. The direction
of the bi-point [A, B] is the direction of the line L, that is, the angle 0 € ]—7—2‘; %] that the line L makes with the
horizontal. See figure 4.2.

303 Definition Let A, B lie on line L, and let C,D lie on line L’. If L||L’ then we say that [A, B] has the same
direction as [C, D]. We say that the bi-points [A, B] and [C, D] have the same sense if they have the same direction
and if both their heads lie on the same half-plane made by the line joining their tails. They have opposite sense
if they have the same direction and if both their heads lie on alternative half-planes made by the line joining their
tails. See figures 4.3 and 4.4 .

B B B
D
A A A
5) C C
Figure 4.2: Direction of Figure 4.3: Bi-points Figure 4.4: Bi-points

a bi-point with the same sense. with opposite sense.
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|:| Bi-point [B, A] has the opposite sense of [A, B] and so we write

[B,A]=—[A,B].

304 Definition Let A &/ B. The Fuclidean length or norm of bi-point [A, B] is simply the distance between A and
B and it is denoted by

A, BII = /(a1 —b1)2 + (a2 — b2)2.

We define
LA, Al = [|O]| = 0.

A bi-point is said to have unit length if it has norm 1.

|:| A bi-point is completely determined by three things: (i) its norm, (i) its direction, and (i)
its sense.

305 Definition (Chasles’ Rule) Two bi-points are said to be contiguous if one has as tail the head of the other. In
such case we define the sum of contiguous bi-points [A, B] and [B, C] by Chasles’ Rule

[A,B]+[B,C]=[A,Cl.

See figure 4.5.

306 Definition (Scalar Multiplication of Bi-points) Let A € R\ {0} and A &/ B. We define
0A,B]=0

and
AA,A]l= 0.

We define A[A, B] as follows.
1. A[A, B] has the direction of [A, B].
2. A[A, B] has the sense of [A, B] if A > 0 and sense opposite [A, B] if A < 0.
3. A[A, B] has norm |A|||[[A, B]|| which is a contraction of [A, B] if O < |A| < 1 or a dilatation of [A, B]if [A| > 1.

See figure 4.6 for some examples.

_2(A, B]
B ‘/[A, B]

(A, B]

Figure 4.5: Chasles’ Rule. Figure 4.6: Scalar multiplication of bi-points.
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4.2 Vectors in R?

307 Definition (Midpoint) Let A, B be points in R2. We define the midpoint of the bi-point [A, B] as

A+B @iby

2

ar+b,

308 Definition (Equipollence) Two bi-points [X, Y] and [A, B] are said to be equipollent written [X, Y] ~ [A, B] if
the midpoints of the bi-points [X, B] and [Y, A] coincide, that is,

X+B Y+A

X, Y]~ [A,B] & > >

See figure 4.7.

Geometrically, equipollence means that the quadrilateral XYBA is a parallelogram. Thus the bi-points [X, Y] and
[A, B] have the same norm, sense, and direction.

Figure 4.7: Equipollent bi-points.

309 Lemma Two bi-points [X, Y] and [A, B] are equipollent if and only if

Y1 —x1 b1 — a4
Yz — X2 bz —az
Proof: This 1s immediate, since
ag 391 b; ;X]
X, YI~[AB] =
ax+y; badxs
> 2
Y1 — X1 b1 —aq
— = )
Yz —x2 b, —az

as desired. [

|:| From Lemma 309, equipollent bi-points have the same norm, the same direction, and the
same sense.

310 Theorem Equipollence is an equivalence relation.




Vectors in R? 71

Y — X1
Proof: Write[X, Y]~ [A, B] if [X, Y] if equipollent to [A, B]. Now[X, Y]~ [X, Y] since =
Y2 — X2
Y1 — X1
and so the relation 1s reflexive. Also
Y2 — X2

Y1 —xq b1 —
X, YI~[AB] =
Y2 — X2 b, —az
b1 —ay Y1 — X1
= -
by —ay Y2 — X2

— [A,B]~[X)Y],

and the relation is symmetric. Finally

Y1 — X1 b1 —a;
X, Y]~ [A,BIN[A,B]~[U,V] & =
Y2 — X2 b, —az
b1 —ay v — W
A -
b, —az v — auy
Y1 — X1 v — Wy
— =
Y2 — X2 V2 —Uuz

= X YI~[U,V]

and the relation 1s transitive.

311 Definition (Vectors on the Plane) The equi_va}lence class in which the bi-point [X, Y] falls is called the vector
(or free vector) from X to Y, and is denoted by XY. Thus we write

Y1 — X1
X, Y] € XY =

Y2 — X2

If we desire to talk about a vector without mentioning a bi-point representative, we write, say, v, thus denoting
vectors with boldface lowercase letters. If it is necessary to mention the coordinates of v we will write

Vi
V:

V2
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=
|:| For any point X on the plane, we have XX = 0, the zero vector. If[X,Y] € v then[Y,X] € —v.

P1 P
312 Definition (Position Vector) For any particular point P = € R? we may form the vector 07 =
P2 P2
We call (W the position vector of P and we use boldface lowercase letters to denote the equality (W =p.
—1 3
313 Example The vector into which the bi-point with tail at A = and head at B = falls is
2 4
3—(—1) 4
B - _

4—2 2

314 Example The bi-points [A, B] and [X, Y] with
—1 3
A= ,B = ;
2 4
3 7
X = Y =

7 9

represent the same vector
3—(—1) 4 7—3
AB - ~ | = - XY
4—2 2 9—-7
—1+n 34+n
In fact, if S = , T = then the infinite number of bi-points [S, T] are representatives of of the
2+4+m 4+m

vectors /ﬁ = )W = HT

Given two vectors u, v we define their sum u + v as follows. Find a bi-point representative /—\—B) € uand a
contiguous bi-point representative l?: € v. Then by Chasles’ Rule

u+v—AB+ BC - AC.

Again, by virtue of Chasles’ Rule we then have

AB-AO+OB=_OA+OB=b—a (4.3)

Similarly we define scalar multiplication of a vector by scaling one of its bi-point representatives.We define the
norm of a vector v € R? to be the norm of any of its bi-point representatives.
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Componentwise we may see that given vectors u = " , V = v , and a scalar A € R then their sum and
uz V2
scalar multiplication take the form
uq A% 7\111
u-+v= + , Au=
uz A% 7\112

—2u

B /
A“/’\C —

u-+v

Figure 4.8: Addition of Vectors. Figure 4.9: Scalar multiplication of vectors.

E:) Example Diagonals are drawn in a rectangle ABCD. If /ﬁ = x and E =y, then l?l =y — X, ﬁ = —X,

DA =x—y, andﬁ:y—ZX.

316 Definition (Parallel Vectors) Two vectors u and v are said to be parallelif there is a scalar A such that u = Av.
If u is parallel to v we write u||lv. We denote by Rv = {xv : « € R}, the set of all vectors parallel to v.

|:| 0 s parallel to every vector.

uq
317 Definition If u = , then we define its norm as ||ul| = \/u% + u%. The distance between two vectors u and

uz

visd(u,v) = [Jlu—v||.
318 Example Let a € R, a > 0 and let v &/ 0. Find a vector with norm a and parallel to v.

v
Solution: Observe that \—H has norm 1 as
v

v

Il

‘ vl
I

v v
Hence the vector am has norm a and it is in the direction of v. One may also take —aH—H.
v v

—

319 Example If M is the midpoint of the bi-point [X, Y] then N = WY from where W = > XY. Moreover, if T

1
2
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is any point, by Chasles’ Rule

X+TY = T™M + MX+T™M + MY
~ 2TM — XM + MY
~ 2TM.

320 Example Let AABC be a triangle on the plane. Prove that the line joining the midpoints of two sides of the
triangle is parallel to the third side and measures half its length.

———
Solution: Let he_) 1dp01nts of [A, B] and [A, C] be M and Mg, respectively. We shew that lﬁ 2McMg. We
have 2AM¢ = AB and ZA 7) Thus

B¢ - ER4Ac
. _AB+AC

= —2AMc + 2AMpg

— 2MCA + 2AM3g
= 2(McA + AMg)
- 2McMs,

as we wanted to shew.

321 Example In AABC, let M be the midpoint of side AB. Shew that

C—Mc)=%(c7t+(:?).

Solution: Since AMc = Mcg, we have

CA + CB CMc + McA + CM¢ + McB

2CMc — AMc¢ + McB
= 2CMc,
which yields the desired result.

322 Theorem (Section Formula) Let APB be a straight line and A and p be real numbers such that

AP A
IP,BIl u
With a = OA, b = OB, and p = OP, then
Ab + pa
p-2TH2 (4.4)

At p
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Proof: Using Chasles’ Rule for vectors,

AB - AG + OB - —a+b,
/ﬁ=/ﬁ+(ﬁ’)=—a+p.

Also, using Chasles’ Rule for bi-points,

[A, Plu = A([P, B]) = A([P,A] + [A, B]) = A(—[A, P] + [A, B]),

whence

AP =" [AB — AP " AB — p_a- > (b_a).

Atu

On combining these formule

Atu

Atu

A+u)(p—a)=A(b—a) = (A+u)p=Ab+ ua,

from where the result follows. [

Figure 4.10: [A]. Problem 328.

Figure 4.13: [D]. Problem 328.

323 Problem Let a be a real number. Find the distance be-

1 1—a
tween and
a 1
324 Problem Find all scalars A for which |[Av]| = %, where
1
VvV =
—1

Iﬁ} Problem %ren a pentagon ABCDE, find /ﬁ + B—C> +
CD + DE + EA.

Figure 4.11: [B]. Problem 328.

Figure 4.14: [E]. Problem 328.

a
c d
b
b
Figure 4.12: [C]. Problem 328.
b c
d a d
f e

Figure 4.15: [F]. Problem 328.

326 Problem For which values of a will the vectors

2a+5
a?—4a+3

will be parallel?

327 Problem In AABC let the midpoints of [A, B] and [A, C]
be Mc and Mg, respectively. Put m = X, m =
y, and CA - z Express [A] AB + BC + McMsg, [B]
AMc + McMp + M5G, [C] AC + McA — BMp in terms
of x, y, and z.




76

Chapter 4

328 Problem A circle is divided into three, four equal, or six
equal parts (figures 4.10 through 4.15). Find the sum of the
vectors. Assume that the divisions start or stop at the centre
of the circle, as suggested in the figures.

329 Problem Diagonals are drawn in a square (figures ?7
through ?7?). Find the vectorial sum a + b + c¢. Assume that
the diagonals either start, stop, or pass through the centre of
the square, as suggested by the figures.

330 Problem Prove that the mid-points of the sides of a skew
quadrilateral form the vertices of a parallelogram.

331 Problem ABCD is a parallelogram. E is the midpoint of
[B, C] and F is the midpoint of [D, C]. Prove that

AC +BD - 2BC.

4.3 Dot Product in R?

332 Problem Let A, B be two points on the plane. Construct
two points I and J such that

A - —3IB,

and then demonstrate that for any arbitrary point M on the
plane

A

lﬁ)

3

MA + 3MB - 4Ml

3MA + MB - 4MJ.

and

333 Problem You find an ancient treasure map in your great-
grandfather’s sea-chest. The sketch indicates that from the
gallows you should walk to the oak tree, turn right 90° and
walk a like distance, putting and x at the point where you
stop; then go back to the gallows, walk to the pine tree, turn
left 90°, walk the same distance, mark point Y. Then you
will find the treasure at the midpoint of the segment XY. So
you charter a sailing vessel and go to the remote south-seas
island. On arrival, you readily locate the oak and pine trees,
but unfortunately, the gallows was struck by lightning, burned
to dust and dispersed to the winds. No trace of it remains.
What do you do?

334 Definition Let (a,b) € (R?)?. The dot product asb of a and b is defined by

a1 b1

b2

=ai;b; + azb,.

The following properties of the dot product are easy to deduce from the definition.

DP1 Bilinearity

(x+y)ez=xz+ yoz, x°(y+ z) =Xy + X°Z (4.5)
DP2 Scalar Homogeneity
(ax)ey = x*(ay) = a(x°y), « € R. (4.6)
DP3 Commutativity
Xy = y*X (4.7)
DP4
xex > 0 (4.8)
DP5
xx=0&5x=0 (4.9)
DP6
[|x]| = vVxox (4.10)
335 Example If we put
1 0
i= y J= )
0 1
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aq
then we can write any vector a = as a sum

az

a=aii—+ azj.

The vectors

satisfy iej = 0, and [[il| = [|jI| = 1.

—

336 Definition Given vectors a and b, we define the angle between them, denoted by (a, b), as the angle between
any two contiguous bi-point representatives of a and b.

337 Theorem .
asb = [[all||bl| cos (a, b).

Proof: Using Al-Kasht’s Law of Cosines on the length of the vectors, we have

—

b — all? = [|al|* + [[bl|> — 2|[al[|bl| cos (a, b)

—

& (b—a)e(b—a) = [lall* +[[bl|> — 2/lall|[bl| cos (a, b)

o —

& beb — 2asb + aca = [lal|* + ||bl|* — 2||all[[b]| cos (a, b)

—

& ||bl[2 — 2asb + [|b]|? = [|al* + ||bl[? — 2||all/|bl| cos (a, b)
& asb = [[all||b]| cos (a, b),
as we wanted to shew. U
PR

Putting (a,b) = 5 in Theorem 337 we obtain the following corollary.

338 Corollary Two vectors in R? are perpendicular if and only if their dot product is 0.

/ boa
a

Figure 4.19: Theorem 337.

339 Definition Two vectors are said to be orthogonal if they are perpendicular. If a is orthogonal to b, we write
a_l b.
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340 Definition If a L b and ||al| = ||b|| = 1 we say that a and b are orthonormal.

|:| It follows that the vector 0 is stmultaneously parallel and perpendicular to any vector!
341 Definition Let a € R? be fixed. Then the orthogonal space to a is defined and denoted by
at ={xeR?:x L al.
Since | cos 0] < 1 we also have

342 Corollary (Cauchy-Bunyakovsky-Schwarz Inequality)

lasb| < [la[|[bl|.

343 Corollary (Triangle Inequality)
lla + bl < [lall + |bll.

Proof:

la + bl|? (a4 b)e(a+b)

a*a + 2a*b + beb
< llall* + 2llalllbl| + [b]?
= (llall + b2,

from where the desired result follows. [

344 Corollary (Pythagorean Theorem) If a | b then

lla + blI? = [lall* + [Ibl|%.

Proof: Since asb =0, we have

la+bl*> = (a+b)e(a+b)
= aea + 2a*b + beb
= asa+ 0+ beb
= llall® + [[bll?,
from where the desired result follows. [

345 Definition The projection of t onto v (or the v-component of t) is the vector

projy, = (cos (t, V))Htllmv,

where (/V:t\) € [0; 7] is the convex angle between v and t read in the positive sense.
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|:| Gwven two vectors t and vector v # 0, find bi-point representatives of them having a common
tail and join them together at their tails. The projection of t onto v is the “shadow” of t in the

. . . ot . . . .
direction of v. To obta?n proj, we prolqng v if necessary and drop a perpendicular line to it frqm
the head of t. The projection is the portion between the common tails of the vectors and the point
where this perpendicular meets t. See figure 4.20.

s
|

Figure 4.20: Vector Projections.
346 Corollary Let a ¥ 0. Then
. — 1 xea
proj; = cos (x,a)[|x|[—a = —5a.
lall - lall
347 Theorem Let a € R? \ {0}. Then any x € R? can be decomposed as
X=Uu-+vV,
where u € Ra and v € a*t.
Proof: We know that proj) is parallel to a, so we take u = proj,. This means that we must
then take v = x — proj,. We must demonstrate that v is indeed perpendicular to a. But this s
clear, as
asv = ae*x — a*proj,
_ v __ ne X%a
= asx —asgoha
= a*x — Xx*a
- 0,

completing the proof. U

348 Corollary Let v L w be non-zero vectors in R2. Then any vector a € R? has a unique representation as a
linear combination of v, w ,
a=sv+tw, (s,t)eR%

Proof: By Theorem 347, there exists a decomposition
a=sv+s'v’/,

where v’ is orthogonal to v. But then v’||lw and hence there ezists &« € R with v/ = aw. Taking
t = s’ we achieve the decomposition
a=S8sv -+ tw.

To prove uniqueness, assume
Sv+tw=a=pv+ gqw.

Then (s —p)v = (q — t)w. We must have s = p and q = t since otherwise v would be parallel to
w. This completes the proof. [
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349 Corollary Let p, q be non-zero, non-parallel vectors in R2. Then any vector a € R? has a unique representation
as a linear combination of p, q ,
a=1lp+mq, (I,m)eR>

Proof: Consider z = q — projg. Clearly p L z and so by Corollary 348, there exists unique
(s,t) € R? such that

a = Sp+tz

= sp — tproj] +tq

(s—t&%)p+tq

establishing the result upon choosingl=s — tlfgﬁ’z and m=t. [

1 1
350 Example Let p = ,q = . Write p as the sum of two vectors, one parallel to q and the other perpendicular

1 2
to q.

Solution: We use Theorem 347. We know that proj(‘]’l is parallel to q, and we find

3
a5 |
5
We also compute
3 2
o |15 5
p — projg = =
18 _1
5 5
Observe that )
3 2
5 5| 6 6
6 1 25 25 '
5 L 5
and the desired decomposition is
3 2
L 5 5
= +
6 1
1 |s -5

Figure 4.21: Orthocentre.
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351 Example Prove that the altitudes of a triangle AABC on the plane are concurrent. This point is called the

orthocentre of the triangle.

—
Solution: Put a = OA,b = O?, c= O? First observe that for any x, we have, upon expanding,

(x —a)e(b—c)+ (x—Db)e(c—a)+ (x—c)e(a—b) =0.

(4.11)

Let H be the point of intersection of the altitude from A and the altitude from B. Then

0 = AH+CB = (OH — OA)+(OB — OC) = (OH — a)*(b — ¢),

and

0 — BH'AC = (OH — OB)+(OC — OA) = (OH — b)s(c —a).

(4.12)

(4.13)

Putting x = OH in (4.11) and subtracting from it (4.12) and (4.13), we gather that

0 — (OH — c)*(a — b) = CHeAB,

which gives the result.

352 Problem Determine the value of a so that be

perpendicular to
—1

353 Problem Demonstrate that
(b+c=0)A(lall=]bl) & (a—Db)e(a—c)=0.

4 —1 2
354 Problem Let p = , T = S =

5 1 1

the sum of two vectors, one parallel to r and the other parallel
to s.

. Write p as

355 Problem Prove that

lall”> = (asi)® + (a%j)”.

356 Problem Let a 0 + b be vectors in R? such that
a*b = 0. Prove that

aa+Bb=0 = a=p=0.

357 Problem Let (x, y) € (R*)? with [|x|| = 3[lyll. Shew
that 2x 4+ 3y and 2x — 3y are perpendicular.

4.4 Lines on the Plane

358 Problem Let a, b be fixed vectors in R%. Prove that if
Vv € ]Rz,v'a = veb,

then a = b.

359 Problem Let (a,b) € (R?)?. Prove that

lla + bl*> + [la — bl|* = 2[[al|* + 2||b]|*.

360 Problem Let u, v be vectors in R%. Prove the polarisa-
tion identity:

uev = (llut vl —llu—vl?).

FN

361 Problem Let x, a be non-zero vectors in R*. Prove that

projg
proj = xa,

a

with0 < ax < 1.

362 Problem Let (A, a) € RxR? be fixed. Solve the equation
a*x = A

for x € R?.

363 Definition Three points A, B, and C are collinear if they lie on the same line.

It is clear that the points A, B, and C are collinear if and only if /ﬁ is parallel to E Thus we have the following

definition.
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364 Definition The parametric equation with parameter t € R of the straight line passing through the point

P1
P= in the direction of the vector v 40 is
P2
X—P1
= tv.
Yy—p2
X
Ifr= , then the equation of the line can be written in the form
y
r—p=tv. (4.14)

The Cartesian equation of a line is an equation of the form ax + by = ¢, where a? 4+ b2 0. We write (AB) for
the line passing through the points A and B.

365 Theorem Let v /0 and let n L v. An alternative form for the equation of the liner — p = tv is

(r —p)en=0.

a
Moreover, the vector is perpendicular to the line with Cartesian equation ax + by = c.

b

Proof:  The first part follows at once by observing that ven = 0 and taking dot products to both
stdes of 4.14. For the second part observe that at least one of a and b 1s 0. First assume that
a0. Then we can puty =t and x = —%t + ﬁ and the parametric equation of this line s

and we have

_% a
. =——.a+b=0.
1 b
Stmalarly if b /0 we can put x =t and y = —%t + ¢ and the parametric equation of this line is
X 1
-t ,
Ll ~®
and we have
1 a a
. =a— 5 b =0,
—a b

proving the theorem in this case. [




Lines on the Plane 83

a

|:| The vector | V7% | has norm 1 and is orthogonal to the line ax + by = c.

b
Vazib2
2 —4
366 Example The equation of the line passing through A = and in the direction of v = is
3 5
x—2 —4
=A
y—3 5
—1 —2
367 Example Find the equation of the line passing through A = and B =
1 3
Solution: The direction of this line is that of
—2—(-1) —1
AB - -
3—1 2
The equation is thus
x+1 —1
= A ) A e R.
y—1 2

368 Example Suppose that (m,b) € R?. Write the Cartesian equation of the line y = mx + b in parametric form.

Solution: Here is a way. Put x = t. Then y = mt + b and so the desired parametric form is

369 Example Let (m;, m>,by,bz) € R* mym, + 0. Consider the lines L; : y = myx +byand L, : y =
myx + b,. By translating this problem in the language of vectors in R?, shew that Ly L L, if and only if
mim; = —1.

Solution: The parametric equations of the lines are
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Put v = and w = . Since the lines are perpendicular we must have vew = 0, which yields
my my

O=vew=1(1) +my(mz) = mim, =—1.
370 Theorem (Distance Between a Point and a Line) Let (r — a)en = 0 be a line passing through the point A

and perpendicular to vector n. If B is not a point on the line, then the distance from B to the line is

|(a — b)en|

Il

If the line has Cartesian equation ax + by = c, then this distance is

laby + bb, — ¢
VaZ bz

==
Proof: Let Ry be the point on the line that is nearest to B. Then BRg = rg — b is orthogonal to
the line, and the distance we seek 1s

_ (ro — b)en |(ro — b)en|
Iproje || = =
! |In||? [n]]
Since Ro ts on the line, rgen = a*n, and so
o roen — ben| |aen — ben| [(a — b)en|
lproji° || = = = :
|| || |l

as we wanted to shew.

If the line has Cartesian equation ax + by = c, then at least one of a and b is /0. Let us suppose
a 0, as the argument when a =0 and b 0 is similar. Then ax + by = ¢ is equivalent to

X B = . a ol
Y 0 b
ﬁ a b1
We use the result obtained above with a = , n= , and B = . Then ||n|| = v a2 + b2
0 b b,
and
ﬁf b1 a
[(a— b)en| = . =|c — aby; — bby| =|ab; + bby — ¢|,
—b3 b

guving the result.

371 Example Recall that the medians of AABC are lines joining the vertices of AABC with the midpoints of the

side opposite the vertex. Prove that the medians of a triangle are concurrent, that is, that they pass through a
common point.

|:| Thas point of concurrency is called, alternatively, the isobarycentre, centroid, or centre of gravity
of the triangle.
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Solution: Let M a, Mp, and M ¢ denote the midpoints of the lines opposite A, B, and C, respectively. The equation

. x
of the line passing through A and in the direction of AM 4 is (with r = )

Yy

r - OA + rAMa.

Similarly, the equation of the line passing through B and in the direction of BMy is
—
r= OB -+ sBMa.

B
These two lines must intersect at a point G inside the triangle. We will shew that @ is parallel to CM ¢, which
means that the three points G, C, M ¢ are collinear.
Now, 3(ro,s0) € R? such that

OA + 1oAMa — OC — OB + soBMap,
that is
roAMa — soBMp — OB — OA,
or

ro(AB + BMAa) — so(BA + AMg) — AB.

Since M a4 and Mp are the midpoints of [B, C] and [C, A] respectively, we have 2BMa = ]ﬁ and 2AMp = E =
/ﬁ + l?l The relationship becomes

1 1 1
ro(AB + Eﬁ) — so(—AB + Eﬂs’ + Eﬁ) _AB,

So To So
(ro+ 5 _1)AB - (—5 + 7)1??.

We must have s
0

To+——1=0,
)

To So
—— 4+ =0,
2 + 2

since otherwise the vectors /ﬁ and l?l would be parallel, and the triangle would be degenerate. Solving, we find

So =T = % Thus we have O—/>Z\ + %AMA = O?, or 11\73) = %AMA, and similarly, B—G) = %BMB.

From /ﬁ = %AMA, we deduce /ﬁ = 2GM4. Since M is the midpoint of [B, C], we have Cﬁ) + @ =

2GMA = /ﬁ , which is equivalent to _
GA + GB + GC =0.

As Mc is the midpoint of [A, B] we have G—/>Z\ + ﬁ =2GMc. Thus
0= GA + GB + GC = 2GM¢ + GC.

—
This means that @ = —2GMc, that is, that they are parallel, and so the points G, C and Mc all lie on the same
line. This achieves the desired result.

|:| The centroid of AABC satisfies thus
GA +GB + GC -0,

and divides the medians on the ratio 2 : 1, reckoning from a vertex.
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372 Problem Find the angle between the lines 2x —y = 1 and
x—3y=1.

373 Problem Find the equation of the line passing through

1 2
and in a direction perpendicular to

—1 1

374 Problem AABC has centroid G, and AA’B’C’ satisfies
[ — [
AA"+BB 4+ CC’ =0.

Prove that G is also the centroid of AA’B’C’.

375 Problem Let ABCD be a trapezoid, with bases [A, B]
and [C,D]. The lines (AC) and (BD) meet at E and the
lines (AD) and (BC) meet at F. Prove that the line (EF)
passes through the midpoints of [A, B] and [C, D] by proving
the following steps.

O Let I be the midpoint of [A, B] and let J be the point of
intersection of the lines (FI) and (DC). Prove that J is
the midpoint of [C, D]. Deduce that F, I, J are collinear.

O Prove that E, I, ] are collinear.

376 Problem Let ABCD be a parallelogram.

4.5 Vectors in R3

0 Let E and F be points such that
AE- JAC and AF-2AC.

Demonstrate that the lines (BE) and (DF) are parallel.

O Let I be the midpoint of [A, D] and J be the midpoint
of [B, C]. Demonstrate that the lines (AB) and (IJ) are
parallel. What type of quadrilateral is IEJF?

377 Problem ABCD is a parallelogram; point I is the mg—
point of [A, B]. Point E is defined by the relation ﬁ = %ID.

Prove that ]

and prove that the points A, C, E are collinear.

378 Problem Put (T\) = a, (ﬁ) = b, (Yf = c¢. Prove that
A, B, C are collinear if and only if there exist real numbers
«, 3,7, not all zero, such that

axa+pBb+yc=0, oa+p+y=0.

379 Problem Prove Desargues’ Theorem: If AABC and
AA'B’C’ (not necessarily in the same plane) are so posi-
tioned that (AA’), (BB’), (CC’) all pass through the same
point V and if (BC) and (B’C’) meet at L, (CA) and (C’A’)
meet at M, and (AB) and (A’B’) meet at N, then L, M, N
are collinear.

We now extend the notions studied for R? to R3. The rectangular coordinate form of a vector in R3 is

a =
In particular, if
1
i= o], =
0
ar
then we can write any vector a = | g, | as a sum
as

aq
az
as
0 0
11,k=1o0
0 1

a=aqai+ azj+ ask.
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aq b,

Givena= |g,| and b = |y, [, their dot product is

as b3

a*b = a;by + ab, 4+ azbs,

llal| = y/a% + a3 + a2.

jej = jek = kei = 0,

and

We also have

and
il = 1ljll = [Ikl| = T.

380 Definition A system of unit vectors i, j, k is right-handed if the shortest-route rotation which brings i to coincide
with j is performed in a counter-clockwise manner. It is left-handed if the rotation is done in a clockwise manner.

To study points in space we must first agree on the orientation that we will give our coordinate system. We will use,
unless otherwise noted, a right-handed orientation, as in figure 4.22.
k k

Figure 4.22: Right-handed system. Figure 4.23: Left-handed system.

|:| The analogues of the Cauchy-Bunyakovsky-Schwarz and the Triangle Inequality also hold in
R3.

We now define the (standard) cross (wedge) product in R3 as a product satisfying the following properties.

381 Definition Let (x,y,z, &) € R® x R3 x R3 x R. The wedge product x : R3 x R3> — R3 is a closed binary
operation satisfying

CP1 Anti-commutativity:

xXy = —(yXxXx) (4.15)
CP2 Bilinearity:
(x +z)Xy =xXy +2zXy, xX(z—+Yy)=xXz-+xXy (4.16)
CP3 Scalar homogeneity:
(ax)Xy =xX(ay) = a(xXy) (4.17)
CP4
xXx =0 (4.18)

CP5 Right-hand Rule:
ixj=k, jxk=1i, kxi=j (4.19)
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X1 Y1

382 Theorem Let x = |x, | andy = |y, | be vectors in R3. Then

X3 Ys
xXy = (x2y3 —x3Y2)i+ (x3y1 —x1Y3)j + (x1y2 —x2y1)k.

Proof: Since iXi=jxj=kxk=0 we have

(x11 +x2j + x3k) X (y1i +y2j + ysk) = x1yY2iXj+x1ysixk
+x2y1jXi+ x2y3jxk
+x3y1kXxi+ x3y2kXj

= x1Yyzk —x1y3j — x2y1k

+x2yY3i+ x3Y1j — x3Y2i,
from where the theorem follows. [

383 Example Find

1 0
0| X1
-3 2

Solution: We have

(i—3k)x(j + 2k) ixj + 2ixk — 3kxj — 6kxk

k — 2j — 3i+ 60

= 3i—2j+k
Hence
1 0 -3
0| X |[1|=1]-2
-3 2 1

384 Theorem The cross product vector x Xy is simultaneously perpendicular to x and y.
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Proof:  We wnll only check the first assertion, the second verification s analogous.

x*(xXy) (x11+ x2j + x3k)*((x2y3 — x3Y2)i
+(x3Yy1 —x1Y3)j + (x1y2 — x2y1)k)
= X1X2Y3 — X1X3Y2 + X2X3Y1 — X2X1Y3 + X3X1Y2 — X3X2Y1
= 0,
completing the proof. [
385 Theorem ax (bxc) = (asc)b — (a*b)c.
Proof:
ax(bxc) = (ai+ azj+ azk)x((bzcz —bzcz)it+
+(bzc1 —bicz)j+ (brca —bacy)k)
= ai(bszcr —bicz)k—ar(bicz — bacr)j
—az(bzez —bzcz )k + az(brcz — baeq)i

+asz(bzcz —bscz)j — az(bzecr —byes)i

(a1c1 + azez2 + azez)(bii+ baj + bsi)
+(—ai;by —azbz —azbz)(cii + c2j + c3i)

(asc)b — (a*b)c,

completing the proof. [
386 Theorem (Jacobi’s Identity)
ax(bxc) +bx(cxa) + cx(axb) =0.
Proof: From Theorem 385 we have
axX(bxc) = (a*c)b — (a*b)c,
bXx(cxa) = (bea)c — (bec)a,

cxX(axb) = (ceb)a — (cea)b,

and adding yields the result. [

387 Theorem Let (x,/?) € [0; 7l be the convex angle between two vectors x and y. Then

Xyl = [Ixllllyll sin (x, y).
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Proof: We have

lIxx yl|? (x2y3 —x3Y2)% + (x3y1 —x1Y3)? + (x1y2 — x2y1)?

= X3U3 — 2X2Y3X3Y2 + X3Y35 + X3y — 2x3y1X1Y3+
+x3y3 + x3Y3 — 2x1y2x2y1 + x3y?

= (] +x3 +x3) (Y7 +y3+vy3) — (x1y1 +x2y2 +x3y3)°

= |xIPlyll* — (x2y)?

= [xIPllyll> — lIx[[*[lyll* cos® (x, ¥)

L —

. 2
= [xI2llyll* sin” (x, ),

whence the theorem follows. The Theorem 1s tllustrated in Figure 4.24. Geometrically it means
that the area of the parallelogram generated by joining x and y at their heads is ||xXy||. O

Xxy

ke

Figure 4.24: Theorem 387.

The following corollaries are now obvious.
388 Corollary Two non-zero vectors x,y satisfy xxXy = 0 if and only if they are parallel.
389 Corollary (Lagrange’s Identity)
[exyll? =[xl lylI* — (xey)?.

390 Example Let x € R3,[|x|| = 1. Find

3117+ el + llxx k|2,

Solution: By Lagrange’s Identity,
[xxill? = [[x|P[lil]* — (x0i)% = 1 — (xoi)?,
xxkl12 = [Ix][[[jl1* — (x§)% =1 — (x2j)?,
lIxxjII% = [1x/1k]|* — (xsk)? = 1 — (xok)?,
and since (x*i)? + (x*j)? + (x°k)? = HXHZ =1, the desired sum equals 3 — 1 = 2.

391 Problem Consider a tetrahedron ABCS. [A] Find /ﬁ} + | 392 Problem Find a vector simultaneously perpendicular to

BC + CS. [B] Find AC + CS + SA + AB.
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395 Problem Prove that xxx = 0 follows from the anti-
commutativity of the cross product.
1| and |1 | and having norm 3.

396 Problem Expand the product (a — b)Xx (a + b).
1 0

397 Problem The vectors a, b are constant vectors. Solve the
393 Problem Find the area of the triangle whose vertices are | equation ax (xxb) =bx (xxa).

0 0 1
398 Problem The vectors a, b, ¢ are constant vectors. Solve
atP=109[,Q=]1],andR=]9|. the system of equations
1 0 0 2x +yxa=b, 3y+xXa=c,

394 Problem Prove or disprove! The cross product is associa- 399 Problem Prove that there do not exist three unit vectors

tive. in R® such that the angle between any two of them be » ?T[

4.6 Planes and Lines in R3

400 Definition If bi-point representatives of a family of vectors in R3 lie on the same plane, we will say that the
vectors are coplanar or parallel to the plane.

401 Lemma Let v, w in R3 be non-parallel vectors. Then every vector u of the form
u=av + bw,

((a,b) € R? arbitrary) is coplanar with both v and w. Conversely, any vector t coplanar with both v and w can
be uniquely expressed in the form

t=pv-+gw.

Proof: This follows at once from Corollary 349, since the operations occur on a plane, which
can be identified with R%. O

A plane is determined by three non-collinear points. Suppose that A, B, and C are non-collinear points on the

X

same plane and that R = Y is another arbitrary point on this plane. Since A, B, and C are non-collinear, /ﬁ

z

and /ﬁf, which are coplanar, are non-parallel. Since /ﬁ also lies on the plane, we have by Lemma 401, that there

exist real numbers p, q with
A? = p/ﬁ) + q,ﬁ.

By Chasles’ Rule,
Oﬁ =O0A + p(Oﬁ — OA) + q(Oé — OA),
— ——
,a A

is the equation of a plane containing the three non-collinear points A, B, and C. By letting r = OR, a = OA, etc.,
we deduce that

r—a=p(b—a)+q(c—a).

Thus we have the following definition.
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402 Definition The parametric equation of a plane containing the point A, and parallel to the vectors u and v is

given by
r—a=pu-+ qv.

Componentwise this takes the form
X —ai; =puy + gvs,
Yy — az = puz + qvz,

Z— a3 = pusz + qvs.

The Cartesian equation of a plane is an equation of the form ax + by + cz = d with (a,b,c,d) € R* and
a? +b%+c? F0.
403 Example Find both the parametric equation and the Cartesian equation of the plane parallel to the vectors

1 1 0

1| and [1| and passing through the point | _q

1 0 2

Solution: The desired parametric equation is

This givess=z—2,t=y+1—s=y+1—z+2=y—z+3andx=s+t=z—24+y—z+3=y+1.
Hence the Cartesian equationisx —y =1.

404 Theorem Let u and v be non-parallel vectors and let r —a = pu + qv be the equation of the plane containing
A an parallel to the vectors u and v. If n is simultaneously perpendicular to u and v then

(r —a)en=0.

a

Moreover, the vector || is normal to the plane with Cartesian equation ax + by + cz = d.

Proof:  The first part is clear, as usn = 0 = ven. For the second part, recall that at least one of
a,b, c is non-zero. Let us assume a ¥ 0. The argument is stmilar if one of the other letters is
non-zero and a = 0. In this case we can see that

d b c
X=———Yy— —2z.
a a a
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Puty=s and z=t. Then

1S a parametric equation for the plane. [

405 Example Find once again, by appealing to Theorem 404, the Cartesian equation of the plane parallel to the
1 1 0

vectors |1| and |7 | and passing through the point | _q

1 0 2
1 1 —1
Solution: The vector |1| X |1| = | 1 | is normal to the plane. The plane has thus equation
1 0 0
X —1

y+1[°|1 =0 = x+y+1=0 = x—y-=1,

as obtained before.

406 Theorem (Distance Between a Point and a Plane) Let (r — a)en = 0 be a plane passing through the point
A and perpendicular to vector n. If B is not a point on the plane, then the distance from B to the plane is

—
Proof: Let Ry be the point on the plane that is nearest to B. Then BRy = rg — b s orthogonal
to the plane, and the distance we seek is

_ (ro —b)en |(ro — b)en|
Iproje || = =
! [ [
Since Ro s on the plane, ro*n = a*n, and so
iro_b roen — ben| |asn — ben| [(a — b)en|
lproj’ "Il = = = ,
|[ml]| || ||

as we wanted to shew. U

|:| Given three planes in space, they may (i) be parallel (which allows for some of them to
coincide), (it) two may be parallel and the third intersect each of the other two at a line, (1)
intersect at a line, (iv) intersect at a point.
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407 Definition The equation of a line passing through A € R? in the direction of v = 0 is given by

r—a=tyv,

teR.

408 Theorem Put OA — a, OB - b, and OC — c. Points (A,B, C) € (R3)3 are collinear if and only if

aXb +bxc+cxa=0.

Proof:
must have

—
If the points A, B, C are collinear, then AB 1is parallel to R and by Corollary 388, we

(c—a)x(b—a)=0.

Rearranging, gives

cXb —cxa—axb=0.

FPurther rearranging completes the proof. [

409 Theorem (Distance Between a Point and a Line) Let L : r =a+ Av, v 0, be a line and let B be a point

not on L. Then the distance from B to L is given by

Proof: If Ro—with position vector ro—1s the point on L that is at shortest distance from B then
BRy s perpendicular to the line, and so
— — LT —
IBRo x V|| = [[BRolll[vl sin 5 = IBRol[[lvI].
The distance we must compute 1s HBROH = |lro — bl|, which is then given by
—
IIBRox V|| [[(ro —b)Xvl|
llro — bl = =
vl vl

Now, since Ro is on the line Itg € R such that rg = a + tov. Hence

(ro —b)Xxv=(a—b)xv,

guing
llro — bl =

proving the theorem. [

ll(a —b) XVl

)

vl

|:| Given two lines in space, one of the following three situations might arise: (i) the lines
intersect at a point, (i1) the lines are parallel, (iit) the lines are skew (one over the other, without

intersecting).

410 Problem Find the equation of the plane passing through
the points (a,0, a), (—a,1,0), and (0,1, 2a) in R3.

411 Problem Find the equation of plane containing the point
(1,1,1) and perpendicular to the linex =1+t,y = —2t,z =
1—+t.

412 Problem Find the equation of plane containing the point

(1,—1,—1) and containing the line x = 2y = 3z.

413 Problem Find the equation of the plane perpendicular to
the line ax = by = cz, abc + 0 and passing through the
point (1,1,1) in R3.

414 Problem Find the equation of the line perpendicular to
the plane ax + a’y + a®z = 0, a 70 and passing through
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the point (0,0,1).

415 Problem The two planes

x—y—z=1, x—z=—1,

intersect at a line. Write the equation of this line in the form

X

yl|—a+tv, ter

z

416 Problem Find the equation of the plane passing through

1 2 X
the points o |, 1 | and parallel to the line y| =
1 1 z
—1 _1
—2|1 +t|o
0 1

4.7 R"

417 Problem Points a, b, ¢ in R? are collinear and it is known
that axc =1i— 2j and axb = 2k — 3i. Find bxc.

418 Problem Find the equation of the plane which is equidis-

3 1
tant of the points | 2 | and | _1
1 1

419 Problem (Putnam Exam, 1980) Let S be the solid in
three-dimensional space consisting of all points (x,y, z) sat-
isfying the following system of six conditions:

x>0, y=>0, z2>0,

x+y+z< 11,
2x +4y + 3z < 36,

2x + 3z < 24.

Determine the number of vertices and the number of edges of

S.

As a generalisation of R? and R3 we define R™ as the set of n-tuples

X1

X2

Xn

The dot product of two vectors in R™ is defined as

X1 Y1

X2 Y2
X.y - L]

_xn_ _yn_

The norm of a vector in R™ is given by
[Ix|| =

As in the case of R? and R3 we have

:xi €R

=X1Y1 +x2Y2 + -+ XnYn.

X*X.

420 Theorem (Cauchy-Bunyakovsky-Schwarz Inequality) Given (x,y) € (R™)? the following inequality holds

eyl < lIxllllyll-
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n n n
Proof: Puta= in, b= Zxkyk, and ¢ = Z yﬁ. Consider
k=1 k=1 k=1

n n n n
thk—yk =tZZxﬁ—2thkyk+Zyﬁ=at2+bt+c.
k=1 k=1 k=1

This 1s a quadratic polynomial which s non-negative for all real t, so it must have complez roots.
Its discriminant b? — 4ac must be non-positive, from where we gather

(Er) <o) (E)

2 2
[xeyl? < lIxI¥[lyll

This gives
from where we deduce the result. [

421 Example Assume that ay, by, ¢,k =1,...,n, are positive real numbers. Shew that

(Brome) () (1) (£1)

Solution: Using CBS on ZL‘=1 (axby)ck once we obtain

n n 1/2 /4 1/2
Y akbier < <Z aibi) <Z ci) :
k=1 k=1

Using CBS again on (22:1 aibi)”z we obtain

Y1 axbrex < (ZE=1 aﬁbi)”z (Zk 1€ )1/2

< (ko ai)”‘l (X ke bi)”‘l (Xwoc )1/2)

which gives the required inequality.

422 Theorem (Triangle Inequality) Given (x,y) € (R™)? the following inequality holds

%+ yll < lIx[l + [lyll-

Proof: We have
la+Dbl*? = (a+b)s(a+b)

= aea+ 2a*b + beb
< lall* + 2/alll[bll + |/b||?

= (llall +1Ibl})?,

from where the desired result follows.
O

We now consider a generalisation of the Euclidean norm. Given p > 1 and x € R™ we put

n 1/p
X1, = (Z |xk|p> (4.20)
k=1
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Clearly
Ixll, >0 (4.21)
Ixll,=0&x=0 (4.22)
loex], = ledlx]l,, &€ R (4.23)

We now prove analogues of the Cauchy-Bunyakovsky-Schwarz and the Triangle Inequality for H-||p. For this we need
the following lemma.

1 1
423 Lemma (Young's Inequality) Let p > 1 and put — + a = 1. Then for (a,b) € ([0;+oo[)? we have
P

Proof: Let 0<k<1, and consider the function

[0; 400 — R
f:
k

X = x<—k(x—1)
Then 0= f/(x) = kx¥ 1 —k & x=1. Since f”/(x) = k(k—1)x*2<0 for 0<k<1,x >0, x=1
1
s a mazimum point. Hence f(x) < f(1) for x > 0, that is x* < 1+ k(x — 1). Letting k= — and
P

aP
x = — we deduce
bd

@ 12,
par = T p\pa )

PHl+pP/a—p 1+p/q
ab<b1+P/q+ab _b
- 1% 1%

Rearranging gives

from where we obtain the inequality. O
The promised generalisation of the Cauchy-Bunyakovsky-Schwarz Inequality is given in the following theorem.
424 Theorem (Hélder Inequality) Given (x,y) € (R™)? the following inequality holds
xey] < [IxIL Iyl

Proof: If Hpr =0 or Hqu = 0 there is nothing to prove, so assume otherwise. From the Young
Inequality we have

Xkl [yl Ixi|P lYl9
X[, lylly = IxI,"p  1lyll,"a
Adding, we deduce
Xkl (Yl 1 n 1 n
patia < T P 4+ ——= T [yl
< [yl qupppp e . Iyllg*a =+
S 1yl
IxI,"p  llyll,"d
1 1

P g
1.
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This gives

n

S byl < lxll llyll-
k=1

The result follows by observing that

n
Z XkYxk
k=1

n
<yl Iyl ,-
k=1

O

As a generalisation of the Triangle Inequality we have

425 Theorem (Minkowski Inequality) Let p €]1;+oo[. Given (x,y) € (R™)? the following inequality holds

x4+ yll, < lixll, + 1yl

Proof: From the triangle inequality for real numbers 1.6

i + Yxl? = Ixx + yulxie + Yl < (xxl + [yl e+ P

Adding
n n n
Xk +Yklm < XklXk + Yxl" Ykl Xk +Yl™ . .
Xk +yxlP < x| + yilP T+ lxx + yxlP ! (4.24)
k=1 k=1 k=1
By the Hélder Inequality
_ 1 _ 1/
S el yPT < (IR adP) P (TR e+ yi (P e)
1 1
= (IR )T (R ) (425)
_ p/da
= Ikl lix + ¥
In the same manner we deduce
(4.26)

n
>yl ulP T <yl x4yl
k=1

Hence (4.24) gives
n
Ix +yIP = hac+yul® < lixlllix + yIE/ Y+ [yl lx + yl[B/9,
k=1
from where we deduce the result. [

426 Problem Prove Lagrange’s identity: Zi“:1 a; = 0. Prove that Z1<M<n aj*a; = 772_1,

b)) = 2 2
(Z1Si§n a]b,) - (Z1§i§n a]-) (Z1§j§“ bi) 428 Problem Let ax > 0. Use the CBS Inequality to shew
that

7Z1§k<j§n(akb)' — ajbk)2 n "
2 2
(L) (L)

and then deduce the CBS Inequality in R". k=1 k=1 k

427 Problem Let a; € R™ for 1 < i < n be unit vectors with | 429 Problem Let ax > 0,1 < k < n be arbitrary. Prove
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Chapter

Vector Spaces

5.1

Vector Spaces

430 Definition A wector space (V,+,-,F) over a field (F,+,) is a non-empty set V whose elements are called
vectors, possessing two operations + (vector addition), and . (scalar multiplication) which satisfy the following

axioms.

V(a,b,c) € V3, ¥(a, B) € F?,
VS1 Closure under vector addition :

a+beyV,
VS2 Closure under scalar multiplication
xa €V,
VS3 Commutativity
a+b=b+a
VS4 Associativity
(a+b)+c=a+ (b+c)

VS5 Existence of an additive identity

VS6

V&S7

V=S8

V39

VS10

JoeV:a+0=a+0=a

Existence of additive inverses

d —aeV:a+(—a)=(—a)+a=0

Distributive Law
ala+ b) = axa+ ab

Distributive Law
(x+ pBla=oaa—+ pBa

Tra=a

(axB)a=«a(Ba)

100

(5.1)

(5.2)

(5.3)

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)
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431 Example If n is a positive integer, then (F™, 4+ - ) is a vector space by defining
(a1,az,...,an) + (b1,b2,...,bn) = (a1 + by,a2 +bz,...,an + bn),

Alaj,az,...,aq) = (Aag,Aaz,...,Aan).

In particular, (Z%, ~+,+,Z2) is a vector space with only four elements and we have seen the two-dimensional and
tridimensional spaces (R?, +, -, R) and (R3, +, -, R).

432 Example (M xn(F), +, -, F) is a vector space under matrix addition and scalar multiplication of matrices.

433 Example If
Fix]={ao+ a1x +axx+---+anx":a; €F, n €N}

denotes the set of polynomials with coefficients in a field (F,+,) then (F[x], +,-,F) is a vector space, under
polynomial addition and scalar multiplication of a polynomial.

434 Example If
Fulx] ={ao + a1x + azx + -+ ax*:a; €F, ne Nk <n}

denotes the set of polynomials with coefficients in a field (F, 4, ) and degree at most m, then (Fy[x], +,-,F) is a
vector space, under polynomial addition and scalar multiplication of a polynomial.

435 Example Let k € N and let C¥(R[%:?)) denote the set of k-fold continuously differentiable real-valued functions
defined on the interval [a; b]. Then C*(R[%?)) is a vector space under addition of functions and multiplication of a
function by a scalar.

436 Example Let p €]1;+oc[. Consider the set of sequences {a, ] ,, an € C,

L {{an}:’:;o ) lanlP < +oo} :

n=0

Then 1P is a vector space by defining addition as termwise addition of sequences and scalar multiplication as termwise
multiplication:

{an};ozo + {bn}f:o ={(an + bn)};ozm
Manly o = {Aanlyy A e C.

n=0>
All the axioms of a vector space follow trivially from the fact that we are adding complex numbers, except that
we must prove that in 1P there is closure under addition and scalar multiplication. Since ) , lan|P < +c0 =

Y oo IAan|P < 400 closure under scalar multiplication follows easily. To prove closure under addition, observe that
if z € C then |z| € R, and so by the Minkowski Inequality Theorem 425 we have

1/p

(Sholan+baP) " < (ENglanl) "+ (DN o)

< (ZuolanP) P+ (I3, [balP) /7.

(5.11)

This in turn implies that the series on the left in (5.11) converges, and so we may take the limit as N — +oo
obtaining

00 1/p 00 1/p 00 1/p
(Z |an +bn|P> < (Z |anp> + (Z |bnp> : (5.12)
n=0 n=0 n=0

Now (5.12) implies that the sum of two sequences in 1P is also in 1P, which demonstrates closure under addition.

437 Example The set
V={a+bv2+cV3:(ab,c)€Q’
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with addition defined as
(a+bvV2+ceV3)+ (a’+b'V2+c'V3)=(a+a’)+ (b +b)V2+ (c+ c)V3,
and scalar multiplication defined as
Ala+bvV2+ ¢ev3) = (Aa) + (Ab)V2 + (Ac)V3,

constitutes a vector space over Q.

438 Theorem In any vector space (V, +, -, F),

V aelF, «0=0.

Proof: We have
a0 = x(0+ 0) = x0 + «O0.

Hence
0 — a0 = «0,

or
0= «0,

proving the theorem. [

439 Theorem In any vector space (V, +, -, F),

YV veV, Opv=0.

Proof: We have
Opv = (O + Op)v = Opv + Opv.

Therefore
O]FV — OJFV = O]FV,

or
0= O]FV,

proving the theorem. [

440 Theorem In any vector space (V,+,,F), « € F, v €V,

av=0 — =0 V v=0.

Proof: Assume that o #/ Op. Then & possesses a multiplicative inverse o' such that o« ot = 1p.

Thus

1

av=0 —= o av = '0.

By Theorem 439, o« '0 = 0. Hence

o Tav =0.

1

Since by Aziom 5.9, we have a«~ ' av = Tpv = v, and so we conclude that v =0. [

441 Theorem In any vector space (V, +, -, F),

VaeF, VveV, (—x)v=a(—v)=—(av).
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Proof: We have

Orv=(ax+ (—a))v=av+ (—a)v,

whence

—(av) + 0pv = (—a)v,

that 1s

Stmalarly,

(—ax)v.

0=a(v—v)=av+ a(—v),

whence

—(av) + 0= a(—v),

that 1s

—(av)

proving the theorem. [

442 Problem Is R? with vector addition and scalar multipli-
cation defined as

X1 Y1 X1 + Y1 X1 AX1

+

X2 X2 + Y2 X2 0

Y2

a vector space?

443 Problem Demonstrate that the commutativity axiom 5.3
is redundant.

444 Problem Let V = R" =]0; +oo[, the positive real num-
bers and F R, the real numbers. Demonstrate that V

5.2 Vector Subspaces

(X(_V) )

is a vector space over F if vector addition is defined as
a@®b = ab, (a,b) € (RT)? and scalar multiplication is
defined as a ® a = a%, («,a) € (R,R").

445 Problem Let C denote the complex numbers and R denote
the real numbers. Is C a vector space over R under ordinary
addition and multiplication? Is R a vector space over C?

446 Problem Construct a vector space with exactly 8 ele-
ments.

447 Problem Construct a vector space with exactly 9 ele-
ments.

448 Definition Let (V, +, -, F) be a vector space. A non-empty subset U C V which is also a vector space under
the inherited operations of V is called a vector subspace of V.

449 Example Trivially, X7 = {0} and X, = V are vector subspaces of V.

450 Theorem Let (V,+, ., F) be a vector space. Then U C V, U + & is a subspace of V if and only if Va € F

and V(a,b) € U? it is verified that

a+ ab € U.

Proof:

Observe that U inherits commutativity, associativity and the distributive laws from V.

Thus a non-empty W C V is a vector subspace of V if (i) U is closed under scalar multiplication,
that is, if « € F and v € U, then av € U; (i2) U s closed under vector addition, that is, if
(u,v) € U2, then u + v € U. Observe that (i) gives the eristence of inverses in U, for take
a=—lpand sove U = —v € U. This coupled with (1) gives the existence of the zero-vector,
for 0 =v —v € U. Thus we need to prove that if a non-empty subset of V satisfies the property
stated in the Theorem then it is closed under scalar multiplication and vector addition, and vice-
versa, if a non-empty subset of V 1s closed under scalar multiplication and vector addition, then
it satisfies the property stated in the Theorem. But this is trivial. O

451 Example Shew that X = {A € M, (F) : tr (A) = Op} is a subspace of My, (IF).
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Solution: Take A,B € X, « € R. Then
tr (A + aB) = tr (A) + atr (B) = Op + «(Of) = Op.

Hence A + aB € X, meaning that X is a subspace of M, (FF).

452 Example Let U € M, (F) be an arbitrary but fixed. Shew that
%u ={A € M, (F) : AU=UA}

is a subspace of M, (F).

Solution: Take (A,B) € (%u)?. Then AU = UA and BU = UB. Now
(A+aB)U=AU+ o«BU = UA + «UB = U(A + «B),

meaning that A + aB € %u. Hence %y is a subspace of My, (). %y is called the commutator of U.

453 Theorem Let X C V, Y C V be vector subspaces of a vector space (V, +, -, F). Then their intersection X N'Y
is also a vector subspace of V.

Proof: Let a € F and (a,b) € (XN Y)2. Then clearly (a,b) € X and (a,b) € Y. Since X is a
vector subspace, a + ab € X and since Y s a vector subspace, a+ ab € Y. Thus

at+abeXNY

and so XN'Y 1s a vector subspace of V by virtue of Theorem 450. [

|:| We we will soon see that the only vector subspaces of (R?, +, -, R) are the set containing the
zero-vector, any line through the origin, and R? itself. The only vector subspaces of (R3, +, - R)
are the set containing the zero-vector, any line through the origin, any plane containing the origin
and R3 itself.

454 Problem Prove that 456 Problem Let a € R™ be a fixed vector. Demonstrate that
A X ={x € R" : asx = 0}
is a subspace of R".
b
X= €R*:a-Db-3d-0 457 Problem Let a € R? be a fixed vector. Demonstrate that
‘ X={x€R:axx =0}
4] is a subspace of R>.

is a vector subspace of R*. )
458 Problem Let A € Muy,xn(F) be a fixed matrix. Demon-

strate that
455 Problem Prove that

S={X&€ Mnx1(F) : AX=0mx1}

a is a subspace of My x1(IF).

2a —
a—3b 459 Problem Prove that the set X C My (F) of upper trian-

gular matrices is a subspace of My (F).

X = 5b ta,beR
a+2b 460 Problem Prove that the set X C My (F) of symmetric
matrices is a subspace of M, (IF).
a

461 Problem Prove that the set X C My (F) of skew-
is a vector subspace of R>. symmetric matrices is a subspace of Mn (F).
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462 Problem Prove that the following subsets are not sub-
. . a b
spaces of the given vector space. Here you must say which of 0 (a,b) € RZat+bi=0% C M2y (R)

the axioms for a vector space fail. 0 o

ro 463 Problem Let (V,+,-,IF) be a vector space, and let Uy C
a V and U, C V be vector subspaces. Prove that if U; U U,

B 5 3 is a vector subspace of V, then either U; C U, or U, C U;.
a bl :a,bER,a”+b" =13 CR

464 Problem Let V a vector space over a field F. If F is in-

_O_ finite, show that V is not the set-theoretic union of a finite
number of proper subspaces.
a 465 Problem Give an example of a finite vector space V over

a finite field F such that

O bl :a,bER* ab=0) CR’
V=Vi;UVyUYV;3,

0 where the Vi are proper subspaces.

5.3 Linear Independence

466 Definition Let (A7,A2,--+ ,An) € F™. Then the vectorial sum

n
PERNLY
j=1

is said to be a linear combination of the vectors a; € V,1 <1i < n.

a b
467 Example Any matrix € M3(R) can be written as a linear combination of the matrices
c d
1 0 0 1 00 00
00 00 1 0 01
for
a b 1 0 01 00 00
-a +b +c +d
c d 00 00 10 01

468 Example Any polynomial of degree at most 2, say a4+ bx 4+ cx? € Ry[x] can be written as a linear combination
of 1,x — 1, and x* — x + 2, for

a+bx+cex? = (a—c)(1) + (b+c)(x — 1) + e(x* —x + 2).
Generalising the notion of two parallel vectors, we have
469 Definition The vectors a; € V,1 < i < n, are linearly dependent or tied if
(A1,A2,-++ ,An) € F*"\ {0} such that i Aja; =0,

=1

that is, if there is a non-trivial linear combination of them adding to the zero vector.
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470 Definition The vectors a; € V,1 < i < n, are linearly independent or free if they are not linearly dependent.
That is, if (A7,A2,--+ ,An) € F™ then

n
Y Naj=0 = Ay =Az=---=Ay=0p.
j=1

|:| A famaly of vectors is linearly independent if and only if the only linear combination of them
giuing the zero-vector s the trivial linear combination.

471 Example
1 4 7
21,518
3 6 9
is a tied family of vectors in R3, since
1 4 7 0

472 Example Let u, v be linearly independent vectors in some vector space over a field F with characteristic different
from 2. Shew that the two new vectors x = u — v and y = u + v are also linearly independent.

Solution: Assume that a(u — v) + b(u+ v) = 0. Then
(a+b)u+ (a—b)v=0.

Since u, v are linearly independent, the above coefficients must be 0, that is, a + b = Op and a — b = Op. But
this gives 2a = 2b = Oy, which implies a = b = Op, if the characteristic of the field is not 2. This proves the linear
independence of u — v and u + v.

473 Theorem Let A € My, xn(F). Then the columns of A are linearly independent if and only the only solution
to the system AX = 0,y is the trivial solution.

Proof: Let Aq,...,Ay be the columns of A. Since
X1A1 +%x2A2 + -+ +xnAn = AX|

the result follows. O

474 Theorem Any family
{0>u1)u2>~ .- )uk}

containing the zero-vector is linearly dependent.
Proof: This follows at once by observing that
170 + Opug + Opuz + ..., +O0pux =0

1s a non-triwvial linear combination of these vectors equalling the zero-vector. [
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475 Problem Shew that

1 1 1
Ol [1]> |1
0 0 1

forms a free family of vectors in R3.

476 Problem Prove that the set

1 1 1 1
1 1 —1 1
1 —1 1 0
1 —1 —1 1
is a linearly independent set of vectors in R* and shew that
1
2
X = can be written as a linear combination of these
1
1
vectors.

477 Problem Let (a,b) € (R3)? and assume that a*b = 0
and that a and b are linearly independent. Prove that
a, b, axb are linearly independent.

478 Problem Let a; € R™, 1 < i < k (k < n) be k non-zero
vectors such that aj*a; = O for i # j. Prove that these k
vectors are linearly independent.

479 Problem Let (u,v) € (R™)2. Prove that [uev| = |[ul|||v]]
if and only if u and v are linearly dependent.

480 Problem Prove that

is a linearly independent family over R. Write as a

linear combination of these matrices.

5.4 Spanning Sets

488 Definition A family {uy,uz,...
as a linear combination of the uj’s.

, Uk,

481 Problem Let {vi,v2,v3,vs} be a linearly independent
family of vectors. Prove that the family

{vi +v2,v2 +v3,v3 +v4,va +vi}

is not linearly independent.

482 Problem Let {v1, v2,v3} be linearly independent vectors
in R5. Are the vectors

b1 =3vi + 2v2 +4v3s,

b2 = vi +4v2 + 2vs,
bz =9vi + 4vz + 3vs,
by = vi + 2v2 + 5v3,

linearly independent? Prove or disprove!

483 Problem Is the family {1,+/2} linearly independent over
Q7

484 Problem Is the family {1,+/2} linearly independent over

R?

485 Problem Consider the vector space
V={a+bvV2+cV3:(ab,c)e Q.

1. Shew that {1, v/2, v/3} are linearly independent over Q.

2. Express
1 2

+
1-v2 V122
as a linear combination of {1, v/2, v/3}.

486 Problem Let f, g, h belong to C*® (R®) (the space of in-
finitely continuously differentiable real-valued functions de-
fined on the real line) and be given by

f(x) = e*,g(x) = e, h(x) = e3*.

Shew that f, g, h are linearly independent over R.

487 Problem Let f, g, h belong to C*® (R®) be given by
f(x) = cos® x, g(x) = sin” x, h(x) = cos 2x.

Shew that f, g, h are linearly dependent over R.

..., € Vis said to span or generate V if every v € V can be written
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489 Theorem If {uy,uy,...,ux,...,} € V spans V, then any superset
{W,Lﬁ,uz,...,Uk,...,} g \4

also spans V.
Proof:  This follows at once from
! 1
Z Aiuq = Opw + Z Aiui.
i=1 i=1
O

490 Example The family of vectors

0 0 1
a
spans R3 since given bl € R3 we may write
c
a

b| =ai+ bj+ ck.

491 Example Prove that the family of vectors

ti = (o, t2=11],t3= |1

spans R3.
Solution: This follows from the identity

a 1 1 1

bl =(a—b)|o| +(b—c)|1| +c|1]| =(a—Db)t; + (b —c)tz + cts.

c 0 0 1
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492 Example Since

1 0 0 11 [0 O 0 0

the set of matrices
00 00 1 0 01

493 Example The set
{1,%x,x,x3, ... ,x™,...}

spans R[x], the set of polynomials with real coefficients and indeterminate x.

494 Definition The span of a family of vectors {uj,uz,...,ux,..., | is the set of all finite linear combinations
obtained from the u;’s. We denote the span of {u;,uz,...,ux,...,} by
span (uj,uz,...,Uk,..., ).

495 Theorem Let (V, +, -, F) be a vector space. Then
span (uy,uz,...,uk,...,) CV

is a vector subspace of V.

Proof: Let x € F and let
1

1
x=) @k, y=) biu,
k=1

k=1
be in span (uj,uz,...,uk,...,) (Some of the coefficients might be Op). Then

1

X+0‘y:Z(ak+0€bk)ukESpan(uhuz,---,uk,---,),
=1

and so span (uj,uz,...,uUxk,...,) 1S a subspace of V. U

496 Corollary span (uj,uz,...,ux,...,) C V is the smallest vector subspace of V (in the sense of set inclusion)
containing the set

{u1,uz,...,uk,...,}.
Proof: IfW C YV 1is a vector subspace of V containing the set

{U.],llz,...,l].k,...,}

then it contains every finite linear combination of them, and hence, it contains span (ug,uz,..., Uk, ..., ).
O

497 Example If A € M,(R), A € span , , then A has the form

i.e., this family spans the set of all symmetric 2 X 2 matrices over R.
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498 Theorem Let V be a vector space over a field F and let (v, w) € V2, vy € F \ {Or}. Then
span (v,w) = span (v, yw) .
Proof: The equality
av +bw =av + (by ") (yw),

proves the statement. [

499 Theorem Let V be a vector space over a field F and let (v, w) € V2, vy € F. Then
span (v,w) = span (w,v + yw) .
Proof:  This follows from the equality
av+ bw = a(v+ yw) + (b — ay)w.

0
500 Problem Let R3[x] denote the set of polynomials with de- | 503 Problem Prove that
gree at most 3 and real coefficients. Prove that the set

1.1 1 2 1 3 1 0 1 0 0 1 0o 1
L1 +x,004+x)7, (1 +x)7) span , ) , _ Mi(R).
spans R3[x]. 0 1 0 —1 1 0 -1 0
1 1 0 504 Problem For the vectors in R,
501 Problem Shew that | 1 [ & span ol |1
1 1 1 3
—1 —1 —1 a=|2|,b=|3],c=1|1|,d=]8]|,
1 2 0 5
1 0 00 0o 1
502 Problem What is span , , q prove that
0 0 01 -1 0 span (a,b) = span (c,d) .

5.5 Bases

505 Definition A family {uy, uo,..
(ii) they span V.

., Uk, ...r € Vis said to be a basis of V if (i) they are linearly independent,
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506 Example The family

Or

O
€i = 1]1: )

Or

Or

where there is a Tp on the i-th slot and Op’s on the other n — 1 positions, is a basis for F™.

507 Theorem Let (V, +, -, F) be a vector space and let
U={u1,u2,...,uk,...}§ \Y4

be a family of linearly independent vectors in V which is maximal in the sense that if U’ is any other family of
vectors of V properly containing U then U’ is a dependent family. Then U forms a basis for V.

Proof:  Since U s a linearly independent family, we need only to prove that it spans V. Take
v € V. Ifv € U then there is nothing to prove, so assume that v € V \ U. Consider the set
U’ = U U{v}. This set properly contains U, and so, by assumption, it forms a dependent family.
There exists scalars o, X1, ..., &y Such that

xov + oxjuy + -+ -+ apun = 0.

Now, &g # O, otherwise the uy would be linearly dependent. Hence 0451 exists and we have
v=—ay (&us + -+ + &nlin),

and so the ui span V. U

|:| From Theorem 507 it follows that to shew that a vector space has a basis it is enough to shew
that it has a mazimal linearly independent set of vectors. Such a proof requires something called
Zorn’s Lemma, and it s beyond our scope. We dodge the whole business by taking as an ariom
that every vector space possesses a basis.

508 Theorem (Steinitz Replacement Theorem) Let (V, +,-,F) be a vector space and let U = {uj,uz,...} C V.

Let W = {wy,w32,...,wg} be an independent family of vectors in span (Ul). Then there exist k of the u;’s, say
{uy,uy,...,ux} which may be replaced by the w;’s in such a way that
span (W1, w2,..., Wk, Uk+1,...) =span (U).

Proof: We prove this by induction on k. If k =1, then
W1 =0&1u] + xuz + ¢+ + KpUn

for some n and scalars o;. There is an «; # Op, since otherwise w1 = 0 contrary to the assumption
that the wi are linearly independent. After reordering, we may assume that o1  Op. Hence

u; = (w1 — (aquz + -+ + apun)),
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and so uj € span (wi,u2,...,) and

span (wq,u2,...,) =span (uj,uz,...,).

Assume now that the theorem s true for any set of fewer than k independent vectors. We may
thus assume that that {uq, ...} has more than k — 1 vectors and that

span (W1,w2,...,Wk_1,Ux,,...) =span (U).
Since wi € U we have
Wi =pB1wi + B2w2 + -+ B 1WKk 1 + YUk + Yk+1Uk+1 + YmUm.

If all the yi = Op, then the {w1,w2,..., Wi} would be linearly dependent, contrary to assumption.
Thus there is a yi # Op, and after reordering, we may assume that yy 5 Op. We have therefore

Uk = V(Wi — (B1w1 + Baw2 + -+ + Brk_1Wk—1 + Yk 1Ukt1 + Ymlm)).

But this means that
span (w1, w2,..., Wk, Uk+1,...) =span (U).

This finishes the proof. [

509 Corollary Let {w;,w3,...,wy} be an independent family of vectors with V = span (wq1,w2,...,wy). If we
also have V = span (uy,uz,...,uy), then
1. n<v,

2. n = v if and only if the {y1,y2,...,yv} are a linearly independent family.

3. Any basis for V has exactly n elements.

Proof:
1. In the Stewinitz Replacement Theorem 508 replace the first n ui’s by the wi’s and n < v
follows.
2. If{uj,uz,...,uy} are a linearly independent family, then we may interchange the réle of the

wi and u; obtaining v < m. Conversely, if v = n and if the u; are dependent, we could
express some uq as a linear combination of the remaining v — 1 vectors, and thus we would
have shewn that some v — 1 vectors span V. From (1) in this corollary we would conclude
thatn < v — 1, contradicting n = v.

3. This follows from the definition of what a basts is and from (2) of this corollary.
O

510 Definition The dimension of a vector space (V, +, -, F) is the number of elements of any of its bases, and we
denote it by dim V.

511 Theorem Any linearly independent family of vectors
\rx1 y X2y o e )Xk}
in a vector space V can be completed into a family

{XLXZ,--->Xk>YK+1,Yk+2,---}

so that this latter family become a basis for V.

Proof: Take any basis {uy,...,ux,ux,1,..., | and use Steinitz Replacement Theorem 508. U
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512 Corollary If U C V is a vector subspace of a finite dimensional vector space V then dim U < dim V.

Proof: Since any basis of U can be extended to a basis of V, it follows that the number of
elements of the basts of U s at most as large as that for V. O

513 Example Find a basis and the dimension of the space generated by the set of symmetric matrices in My, (R).

Solution: Let Eij; € Muy(R) be the n X n matrix with a 1 on the ij-th position and 0’s everywhere else. For
nmn-—1
1 < 1i<j < mn, consider the (TZI) = % matrices Aij = Ei; + E;i. The Ay; have a 1 on the ij-th and ji-th

position and O’s everywhere else. They, together with the n matrices Eii, T < 1 < n constitute a basis for the space
of symmetric matrices. The dimension of this space is thus

nn-—1) nn+1)
—2 "t

514 Theorem Let {u7,...,u,} be vectors in R™. Then the u’s form a basis if and only if the n X n matrix A
formed by taking the u’s as the columns of A is invertible.

Proof: Since we have the right number of vectors, it is enough to prove that the u’s are linearly

X1

X2
independent. But if X = , then

Xn

X1u1 + + - + Xnpun = AX.

If A 1s tnvertible, then AX =0, — X = A0, = 0., meaning that x; =X =+-+-Xn =0, so the
u’s are linearly independent.

Conversely, assume that the u’s are linearly independent. Then the equation AX = 0, has a unique
solution. Let r = rank (A) and let (P, Q) € (GLn(R))? be matrices such that A =P "Dy n Q7 ',
where Dn n r ts the Hermite normal form of A. Thus

AX = On = P_1Dn,n,1‘Q_1X =0, = Dn,n,rQ_1X = Op.

Y1

Y2
Put QX = . Then

Yn

Dn,n,rQ_1X =0, = vyie; +-+-++yrer =0y,

where e; is the n-dimensional column vector with a 1 on the j-th slot and 0’s everywhere else. If
T < n then Yr+1,...,Yn can be taken arbitrarily and so there would not be a unique solution, a
contradiction. Hence r =n and A 1is tnvertible. U
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515 Problem In problem 455 we saw that

2a —3b
ca,beR
a—+2b

a

is a vector subspace of R®. Find a basis for this subspace.

516 Problem Let {vq,v2,v3,vs,vs} be a basis for a vector
space V over a field F. Prove that

{vi +v2,v2+v3, vz +va,va +vs5,vs +Vvi}

is also a basis for V.

517 Problem Find a basis for the solution space of the system
of n + 1 linear equations of 2n unknowns

X1 +X2+ - +%xn =0,

X2 +X3 + -+ Xnp1 =0,

Xnt+1 +Xny2 + - +%x2n =0.

518 Problem Prove that the set
X ={(a,b,c,d)[b + 2c =0} C R*

is a vector subspace of R*. Find its dimension and a basis for
X.

5.6 Coordinates

524 Theorem Let {vq,va,..

519 Problem Prove that the dimension of the vector subspace

w and find a

of lower triangular n X m matrices is

basis for this space.

520 Problem Find a basis and the dimension of

1 1 2

1 1 2
X =span | vi = , V2= , Vg =

1 1 2

1 0 1

521 Problem Find a basis and the dimension of

1 1 2

1 1 2
X =span | vi = , V2= , Vs =

1 1 2

1 0 2

522 Problem Find a basis and the dimension of

1 0 1 0 0 1
X =span | vi =

0 1 2 0 2 0

523 Problem Let (a,b) € R® x R? be fixed. Solve the equa-
tion
axx = Db,

for x.

., Vn} be a basis for a vector space V. Then any v € V has a unique representation

vV=mvy+ avz + -+ QpnVn.

Proof: Let

v=byvi +bavz+---+bpvy

be another representation of v. Then

0=(ar —by)vi+(az—ba)vy+---+ (an — bn)va.

Since {v1,v2,..
have

., Vn} forms a basis for V, they are a linearly independent family. Thus we must

a;—by=a—by=:--=a, — by =0p,

that 1s

a; =by;a2 =ba;---;an = by,

proving uniqueness. [
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525 Definition An ordered basis {vy,v2,...,vn} of a vector space V is a basis where the order of the vy has been
fixed. Given an ordered basis {vy,v2,...,vy} of a vector space V, Theorem 524 ensures that there are unique
(aj,az,...,an) € F™ such that

V=0a1V] +0a2v2 + -+ + QpnVn.

The ay’s are called the coordinates of the vector v.

1

526 Example The standard ordered basis for R3 is . = {i, j, k}. The vector |2| € R3 for example, has coordinates
3

1

(1,2,3) 5. If the order of the basis were changed to the ordered basis .74 = {i, k, j}, then |2| € R3 would have

3

coordinates (1,3,2) s, .

|:| Usually, when we gwe a coordinate representation for a vector v € R™, we assume that we
are using the standard basis.

1

527 Example Consider the vector || € R3 (given in standard representation). Since

3
1 1 1 1
2| ==1jol =1 |1]| +3|1]>
3 0 0 1
1 1 1 1
under the ordered basis %1 =< |o|, (1|, |1]| ¢, |2| has coordinates (—1,—1,3)%,. We write
0 0 1 3
1 —1
2= |1
3 3
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528 Example The vectors of

2 1
By = ,
1 —1
3
Find the coordinates of in the base %4,.
4
Kz
Solution: We are seeking x,y such that
1 1 2 1 1 1| (3 2 1 X
3 +4 =X +y = =
1 2 1 —1 1 2| |4 1T —1] |y
K@z
Thus
_ -1 -
X 2 1 1 1] 1|3
y 1 -1 1 2] |4
B L .
1 1
B 1 1113
1 2
3 3 1 2 _4
2
- 3 1 3
1
3 —1] |4
6
—5
= K@z

3 1 1 7
=3 | +4]| | = ,
4 1 2| |
_{%] [ L
6 2 1 7
-6 _5 -
-5 1 -1 |m

_{%2 [ L
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In general let us consider bases %y , %, for the same vector space V. We want to convert Xz, to Ygz,. We
let A be the matrix formed with the column vectors of #; in the given order an B be the matrix formed with the
column vectors of %, in the given order. Both A and B are invertible matrices since the %’s are bases, in view of
Theorem 514. Then we must have

AXg, =BYy, = Yz, =B 'AXy

.-
Also,

Xz, = A" 'BYg,.

This prompts the following definition.

529 Definition Let %7 = {uj,uz,...,un} and %, = {v1,v2,...,vn} be two ordered bases for a vector space V.
Let A € M, (F) be the matrix having the u’s as its columns and let B € M;, (FF) be the matrix having the v’s as
its columns. The matrix P = B~ 1A is called the transition matriz from %; to %, and the matrix P~ = A~ "B is
called the transition matriz from %, to %.

530 Example Consider the bases of R3

10 (1] |1
Fr=< 11|, 1], 0] ¢
1| [o| |o
1 1 2
B2 = 1(,|=1]>|0
—1 0 0

Find the transition matrix from %; to %>, and also the transition matrix from %> to %;. Also find the coordinates

1

of [2 in terms of %4>.

[z

Solution: Let
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The transition matrix from %; to %, is

P = B 'A
_ —1
1 1 2 1
= 1T —1 0 1
-1 0 O 1
O 0 —1[ |1 1
= {0 —1 —1| |1 1
1 1
-1 0 0
= (-2 -1 =0
2 1 1
The transition matrix from %> to % is
—1
-1 0 O0 —1
Pl=1_2 1 0o =|2
2 1 3 0
Now,
-1 0 0] |1
Yz, = |2 —1 of 2| =
2 1 1|3
2' 3&1
As a check, observe that in the standard basis for R3
1 1 1 1
2 =111l +2{1|+3]0
3 1 0 0
l@] -
—1 1 1
_4 =—1|1|—4|1| +—=
L —1 0
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531 Problem

1. Prove that the following vectors are lin-

early independent in R*

1 1 1 1
1 1 —1 —1
ay = , az = , A3 = , aq =
1 —1 1 —1
1 —1 —1 1
1
2
2. Find the coordinates of under the ordered basis
1
1
(a1,a2,a3,a4).
1
2
3. Find the coordinates of under the ordered basis
1
1

(a1,a3,az2,a4).

532 Problem Consider the matrix

a 1 1 1

01 0 1
A(a) =

1 0 a 1

11 1 1

0 Determine all a for which A(a) is not invertible.

0 Find the inverse of A(a) when A(a) is invertible.

[0 Find the transition matrix from the basis

1 1 1
1 1 1
P = , ,
1 1 0
1 0 0
to the basis
a 1 1
0 1 0
P2 = ) ,
1 0 a
1 1 1

1

0
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Linear Transformations

6.1 Linear Transformations

533 Definition Let (V,+, -, F) and (W, +, -, F) be vector spaces over the same field F. A linear transformation
or homomorphism

vV - W
L: ,
a — L(a)
is a function which is

e Linear: L(a+ b) =L(a) + L(b),

e Homogeneous: L(xa) = al(a), for x € F.

|:| It 1s clear that the above two conditions can be summarised conveniently into

L(a+ ab) =L(a) + aL(b).

534 Example Let

Then L is linear, for if (A, B) € My (R), then

L(A+ aB) =tr (A + aB) = tr (A) 4+ atr (B) = L(A) 4+ «L(B).

535 Example Let

Mn(R) — Mn(R)

Then L is linear, for if (A, B) € My (R), then

LA+ aB)=(A+aB)T =AT + aBT = L(A) + «L(B).

120
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536 Example For a point (x,y) € R?, its reflexion about the y-axis is (—x,y). Prove that

is linear.

Solution: Let (x1,y1) € R?, (x2,Y2) € R?, and « € R. Then

R((x1,y1) + &(x2,92)) = R((x1 + ax2,y1 + ay2))
= (—(x1 + ox2),y1 + oy2)
= (=x1,y1) + a(—x2,1Y2)
= R((x1,Y1)) + aR((x2,Y2)),

whence R is linear.

537 Example Let L : R? — R* be a linear transformation with

—1 2
1 1 —1 0
L = ; L =
1 2 1 2
3 3
5
Find L
3
Solution: Since
5 1 —1
-4 — ,
3 1 1
we have
—1 2 —6
5 1 —1 1 0 4
L =4L —L =4 — =
3 1 1 2 2 6
3 3 9

538 Theorem Let (V, +,-,F) and (W, +, -, F) be vector spaces over the same field F, and let L : V — W be a

linear transformation. Then
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e L(0Oy) =0w

e Vx € V,L(—x) = —L(x).

Proof: We have

L(Ov) =L(0v + 0v) =L(0v) + L(0v),

hence

L(0v) — L(0v) = L(0v).

Since

L(0Ov) — L(0v) = Ow,

we obtain the first result.

Now

Ow =L(0v) = L(x + (—x)) = L(x) + L(—x),

from where the second result follows. O

539 Problem Consider L : R3 — R3,

X X—y—2z
Liyl=|x+y+z
z z

Prove that L is linear.

540 Problem Let h, k be fixed vectors in R3. Prove that

R x R® — R?
L:
(x,y) — xxXk+ hxy

is a linear transformation.

541 Problem Let A € GL, (R) be a fixed matrix. Prove that

GLn(R) — GL, (R)
L:

H — —A "HA™'

is a linear transformation.

542 Problem Let V be a vector space and let S C V. The
set S is said to be conver if Vaa € [0;1],Vx,y € S,
(1 — a)x + xy € S, that is, for any two points in S, the
straight line joining them also belongs to S. Let T: V — W
be a linear transformation from the vector space V to the
vector space W. Prove that T maps convex sets into convex
sets.

6.2 Kernel and Image of a Linear Transformation

543 Definition Let (V,+, -, F) and (W, +, -, F) be vector spaces over the same field F, and

T:

be a linear transformation. The kernel of T is the set

vV - W

v = T(v)

ker (T)={veV:T(v)=0w}

The tmage of T is the set

Im(T)={w €w:3v € Vsuch that T(v) =w}=T(V).

|:| Since T(0y) = Ow by Theorem 538, we have Oy € ker (T) and Ow € Im (T).
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544 Theorem Let (V,+, -, F) and (W, +, -, F) be vector spaces over the same field F, and

vV - W
T:

v = T(v)
be a linear transformation. Then ker (T) is a vector subspace of V and Im (T) is a vector subspace of W.

Proof:  Let (vi,v2) € (ker (T))? and « € F. Then T(vq) = T(v2) = Oyv. We must prove that
vi + avy € ker (T), that is, that T(vy + avz) = Ow. But

T(vi +av2) =T(vi) + «T(v2) =0y + &0y = 0y

proving that ker (T) is a subspace of V.

Now, let (wq1,w2) € (Im(T))? and « € F. Then 3(vy,v2) € V2 such that T(v1) = w1 and
T(v2) = wa. We must prove that w1 + awz € Im (T), that s, that Iv such that T(v) = wi + aws.
But

w1 +awz =T(vy) +al(vy) =T(vi + avz),

and so we may take v = vy + avy. This proves that Im (T) s a subspace of W.
O

545 Theorem Let (V,+, -, F) and (W, +, -, F) be vector spaces over the same field F, and

vV - W
T:
v = T(v)
be a linear transformation. Then T is injective if and only if ker (T) = Oy.
Proof: Assume that T s injective. Then there is a unique x € V mapping to Ow:
T(X) = Ow.

By Theorem 538, T(0v) = Ow, t.e., a linear transformation takes the zero vector of one space to
the zero vector of the target space, and so we must have x = Ovy.

Conversely, assume that ker (T) = {0v}, and that T(x) = T(y). We must prove that x =y. But

T(x) —T(y) = 0w

Ll
i

as we wanted to shew. [
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546 Theorem (Dimension Theorem) Let (V, +, -, F) and (W, +, -, F) be vector spaces of finite dimension over the
same field F, and

vV - W
T:
v = T(v)

be a linear transformation. Then
dimker (T) + dimIm (T) = dim V.

Proof: Let {vq1,v2,...,vi} be a basis for ker (T). By virtue of Theorem 511, we may extend
this to a basis &/ ={v1,V2,...,Vk,Vka1,Vki2,...,Vn} of V. Here n = dim V. We will now shew
that B ={T(vkt1), T(Vk+2),...,T(vn)} is a basis for Im (T). We prove that (i) & spans Im (T),
and (1) # s a linearly independent famaily.

Letw € Im (T). Then 3dv € V such that T(v) =w. Now since &/ is a basis for V we can write

Hence " N
w=T(v) :Zo‘iT(Vl) = Z o T(vyi),
i=1 i=k+1

since T(vi) =0y for 1 < i< k. Thus & spans Im (T).

To prove the linear independence of the % assume that
n n
Ow = Z BiT(vi) =T ( Z BiVi> .
i=k+1 i=k+1

This means that Z?=k+1 Bivi € ker (T), which is impossible unless Pxr1 = Pxy2="-++= Pn = Op.
O

547 Corollary If dimV = dim W < +co, then T is injective if and only if it is surjective.

Proof: Simply observe that if T is injective then dimker (T) =0, and #f T is surjective Im (T) =
T(V)=W and Im (T) =dimW. O

548 Example Let

| M) o Ma(R)

A — AT —A

Observe that L is linear. Determine ker (L) and Im (L) .

a b
Solution: Put A = and assume L(A) = 02. Then

c d
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This means that ¢ = b. Thus

keR
—k O

This means that dimker (L) = 3, and so dimIm (L) =4 —3 =1.

549 Example Consider the linear transformation L : M (R) — R3[X] given by

a b
L = (a+b)X? + (a—b)X3.
c d
Determine ker (L) and Im (L).
Solution: We have
a b
0=-L =(a+b)X*+(a—b)X> = a+b=0,a—b=0,— a=b=0.
c d
Thus
0 0
ker (L) = (c,d) € R?
c d

Thus dim ker (L) = 2 and hence dimIm (L) = 2. Now
(a+b)X?> 4+ (a—b)X> = a(X? +X3) +b(X? —X3).
Clearly X? + X3, and X? — X3 are linearly independent and span Im (L). Thus

m (L) = span (X2 + X3, x? —X3) .

550 Problem In problem 539 we saw that L : R3 — R3, satisfy
X X—y—z o o o
L _ 1 2 1
yl =~ [x+y+z 1 1 0
0 —1 —1
z z Lio| - s L = » Lof =
—1 0 1
is linear. Determine ker (L) and Im (L). 0 0 1
0 0 0
551 Problem Let - - -
R* —» R* Determine ker (L) and Im (L).
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552 Problem It is easy to see that L : R> — R3,

x + 2y
X
L = |x+2y
Y
0

is linear. Determine ker (L) and Im (L).
553 Problem It is easy to see that L : R? — R3,
xX—y
L =|x+vy

0

is linear. Determine ker (T) and Im (T).

555 Problem Let

A —  tr(A)

Determine ker (L) and Im (L).

556 Problem 1. Demonstrate that

L Mz(R) — M2(R)

A —~ AT+A

is a linear transformation.
2. Find a basis for ker (L) and find dim ker (L)
3. Find a basis for Im (L) and find dim Im (L).

557 Problem Let V be an n-dimensional vector space, where
the characteristic of the underlying field is different from 2.
A linear transformation T : V — V is idempotent if T?> = T.

554 Problem It is easy to see that L : R — R?,

X Prove that if T is idempotent, then
L I O I —T is idempotent (I is the identity function).
Y y— 2z O I+ T is invertible.

z
O ker (T)=Im(I—T)

is linear. Determine ker (L) and Im (L).
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6.3 Matrix Representation

Let V, W be two vector spaces over the same field F. Assume that dimV = m and {vi}ig[1,m] is an ordered basis
for V, and that dim W = n and &/ = {wi}ig[1,n] an ordered basis for W. Then

ai

azi

=
=
I

11wy + a1w2 + ¢+« + Qp1wp

L(v2) Q12wW1 + Q22W2 + -+ + Apowy

azn
L(vim) = a1mWi + a2mW2 + -+ + QumWn =

anm

558 Definition The n X m matrix

ay; 12 -+ Qin

azr Qg2 - a2n
M. =

an1 An2 - Anm

formed by the column vectors above is called the matriz representation of the linear map L with respect to the
bases {Vilig[1:m], \Wilie[1:n]-

559 Example Consider L : R3 — R3,

Liyl=|x+y+z

Clearly L is a linear transformation.

1. Find the matrix corresponding to L under the standard ordered basis.
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2. Find the matrix corresponding to L under the ordered basis ||, |1]|, ||, for both the domain and the

0 0 1
image of L.
Solution:
1 1 0 —1 0 —1
1. Solution: The matrix will be a 3 X 3 matrix. We have L |g| = |1, L|1| =] 1 |,and L |o| =1 |,
0 0 0 0 1 1
whence the desired matrix is
1T -1 -1
1 1 1
0 0 1
2. Call this basis «7/. We have
1 1 1 1 1 0
Liof=1{1|=0o| +T|1| +0 o] =|1] >
0 0 0 0 1 0
L L L L d o
1 0 1 1 1 -2
Lit|=12=—2o|+2[1|+O0jo|=]2]| >
0 0 0 0 1 0
L L L L L L dy
and o o o o o -
1 0 1 1 1 -3
Lio|=|21="3]o|+2[1|+1]|o|=|2] >
1 1 0 0 1 1
L L L L L L dy
whence the desired matrix is
0 —2 -3
1 2 2
0 0 1

560 Example Let R,[x] denote the set of polynomials with real coefficients with degree at most n.
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1. Prove that
Ra[x] — Rilx]
L:
p(x) — p”(x)
is a linear transformation. Here p’/(x) denotes the second derivative of p(x) with respect to x.
2. Find the matrix of L using the ordered bases {1, x,x?, x3} for R3[x] and {1, x} for R,[x].
3. Find the matrix of L using the ordered bases {1,x,x?,x3} for R3[x] and {1,x -+ 2} for R¢[x].

4. Find a basis for ker (L) and find dim ker (L).

5. Find a basis for Im (L) and find dim Im (L).

Solution:
1. Let (p(x), q(x)) € (R3[x])? and & € R. Then
L(p(x) + aq(x)) = (p(x) + aq(x))” = p”(x) + «q”(x) = L(p(x)) + aL(q(x)),

whence L is linear.

2. We have

d? 0
L(1) = @1 = 0 = 0N +0(x) = ,
0
d? 0
Lx) = 45% = 0 = 0+0(x) - ||,
0
d? 2
L(x?) = —x% = 2 = 2(1)+0(x) = ,

dx?
0
d? 0
L(x3) = —x3 = 6x = 0(1)+6(x) = ,
dx? p

whence the matrix representation of L under the standard basis is

00 20

0 0 0 6
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3. We have -
d? 0
L(1) = —1 = 0 = 0(1)+0(x+2) = ,
dx?
0
d? 0
L(x) = —x = 0 = 0(1)+0(x+2) = ,
dx?
0
d? 2
L(x?) = —x* = 2 = 2(1)+0(x+2) = ,
dx?
0
d2 —12
L(x3) = —x* = 6x = —12(1)+6(x+2) = ,
dx?
6
whence the matrix representation of L under the standard basis is
00 2 —12
00 0 6
4. Assume that p(x) = a + bx + cx? + dx> € ker (L). Then
0=L(p(x))=2c+6dx, VxeR.
This means that ¢ = d = 0. Thus a, b are free and
ker (L) ={a + bx: (a,b) € R?}.
Hence dimker (L) = 2.
5. By the Dimension Theorem, dimIm (L) =4 — 2 = 2. Put q(x) = & + Bx + yx? + &x3. Then

)
L(q(x)) =2y + 68(x) = (2v)(1) + (68)(x).
Clearly {1, x} are linearly independent and span Im (L). Hence

Im (L) = span (1,x) = Rq[x].

561 Example 1. A linear transformation T : R3 — R3 is such that

It is known that

and that

ker (T) = span 2
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Argue that there must be A and p such that

T(k) = AT(i) + uT(j).
2. Find A and u, and hence, the matrix representing T under the standard ordered basis.

Solution:

1. Since T(k) € Im (T) and Im (T) is generated by T(i) and T(k) there must be (A, u) € R? with

2 3 2N+ 3p
T(k) =ATH) +uT(G) =A 1| +u|o|= A
1 —1 A—pu

2. The matrix of T is

Since | 2 | € ker (T) we must have

—1
2 3 2A+3u| |1 0
1 0 A 21=1|o
1T -1 A—p | |1 0

2 3 8
1 0 1
1T =1 —1

|:| If the linear mapping L : V — W, dimV = n,dimW = m has matriz representation

A € M «n(F), then dimIm (L) = rank (A).

562 Problem 1. A linear transformation T : R3 — R3 has kernel the linex =y =z. If
as image the plane with equation x +y +z = 0 and as
1 a 2 3 1
Tl =|o|l, Tli|=]v]|, T|2
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Find a, b, c. A
2. Find the matrix representation of T under the standard
basis. 2. The ordered basis for R*is |g|, [1], | 1| and R? has
563 Problem 1. Prove that T : R? — R3 of o [T]
the standard ordered basis .
Xty 1l (1] |7
X
T T x—vy 3. The ordered basis for R* is o[, [1|, |1] and the
Yy
is a linear transformation. 1 1
. 2. _
2. Find a basis for ker (T) and find dim ker (T) ordered basis for R is o/ = ’
0 1

3. Find a basis for Im (T) and find dim Im (T).
4. Find the matrix of T under the ordered bases &/ =

1 1 0
1 1
, of R? and % = 1110 1,11
2 3
1 —1 0
of R3.

564 Problem Let

R® — R?
L: ,
a — L(a)
where
X
x + 2y
L yl =
3x —z
z

Clearly L is linear. Find a matrix representation for L if

1. The bases for both R and R? are both the standard
ordered bases.

565 Problem A linear transformation T : R?> — R? satisfies

1 2
ker (T)=Im (T),and T =

1 3

senting T under the standard ordered basis.

. Find the matrix repre-

566 Problem Find the matrix representation for the linear
map

for M2 (R).

567 Problem Let A € Mnxp(R), B € Mpxq(R), and
C € Mgxr(R), be such that rank (B) = rank (AB). Shew
that

rank (BC) = rank (ABC).
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Determinants

7.1 Permutations

568 Definition Let S be a finite set with n > 1 elements. A permutation is a bijective function T: S — S. It is
easy to see that there are n! permutations from S onto itself.

Since we are mostly concerned with the action that T exerts on S rather than with the particular names of the
elements of S, we will take S to be the set S = {1,2,3,...,n}. We indicate a permutation T by means of the
following convenient diagram

1 2 ... n

(1) =(2) --- (M)

569 Definition The notation S, will denote the set of all permutations on {1, 2,3, ...,n}. Under this notation, the
composition of two permutations (T, o) € STZl is

1 2 n 1 2 n
ToOo = o
(1) =(2) T(n) o(1) o(2) o(n)
1 2 n
(too)(1) (too)(2) (too)(n)
The k-fold composition of T is
k

TO:+:++0T =7T".
~

k compositions

|:| We usually do away with the o and write To o simply as To. This “product of permutations”
1s thus simply function composition.

Given a permutation t: S — S, since 7T is bijective,
!1:85S

exists and is also a permutation. In fact if



134

Chapter 7

then
o, |t (@) T(n)
T =
1 2 n
1

Figure 7.1: S3 are rotations and reflexions.

570 Example The set S3 has 3! = 6 elements, which are given below.

1. Id :{1,2,3} — {1,2,3} with

1 2 3
Id =
1 2 3
2. 11 :{1,2,3} — {1, 2,3} with
1T 2 3
T =
1 3 2
3. 12:{1,2,3} > {1,2,3} with
1 2 3
T2 =
3 21
4. t3:{1,2,3} — {1, 2,3} with
1T 2 3
T3 =
21 3
5. o1 :{1,2,3} — {1,2, 3} with
1 2 3
01 =
2 31
6. 02:{1,2,3} — {1,2,3} with
1 2 3
02 =
31 2
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571 Example The compositions T7 o 07 and o1 o T7 can be found as follows.

T1 001 =

(We read from right to left T — 2 — 3 (“1 goes to 2, 2 goes to 3, so 1 goes to 3”), etc. Similarly

1
01071 =

2

2

3

1

3

3

=T2.

= T3.

Observe in particular that o7 o Ty & T1 0 01. Finding all the other products we deduce the following “multiplication

table” (where the “multiplication” operation is really composition of functions).

o [|[Id |Tt1 | T2 ]| T3 ]| 01| 02
Id |Id |1 | T2 | T3 | 01 | O2
T 71 |Id | o7 | 02| T2 | T3
T2 || T2 |02 |Id | o1 | T3 | T1
T3 T3 (OB oy | Id T1 T2
o2|lo2 | 2| T | T |Id | oq
o1 ||or | T3 | T1 | T2 |02 |1d

The permutations in example 570 can be conveniently interpreted as follows. Consider an equilateral triangle
with vertices labelled 1, 2 and 3, as in figure 7.1. Each T4 is a reflexion (“fipping”) about the line joining the vertex
a with the midpoint of the side opposite a. For example t7 fixes 1 and flips 2 and 3. Observe that two successive
flips return the vertices to their original position and so (Va € {1, 2, 3}»)('{%1 = Id ). Similarly, o is a rotation of
the vertices by an angle of 120°. Three successive rotations restore the vertices to their original position and so

o3 =1d .

572 Example To find 11_1 take the representation of T7 and exchange the rows:

This is more naturally written as

Observe that 1171 =T1.
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573 Example To find 0‘1*1 take the representation of oy and exchange the rows:

2 31
oy =
1 2 3
This is more naturally written as
1 2 3
oy =
31 2

Observe that of1 = 02.

7.2 Cycle Notation

We now present a shorthand notation for permutations by introducing the idea of a cycle. Consider in So¢ the
permutation

123 45 67 89

213 6 27 845

We start with 1. Since 1 goes to 2 and 2 goes back to 1, we write (12). Now we continue with 3. Since 3 goes to 3,
we write (3). We continue with 4. As 4 goes 6, 6 goes to 7, 7 goes 8, and 8 goes back to 4, we write (4678). We
consider now 5 which goes to 9 and 9 goes back to 5, so we write (59). We have written T as a product of disjoint
cycles

T=(12)(3)(4678)(59).

This prompts the following definition.

574 Definition Let 1 > 1 and let i7,...,1; € {1,2,...n} be distinct. We write (i; i ... 1;) for the element
o € S, such that o(iy) =141, 1<r<l,o(i1) =1 and o(i) =ifori & {i1,...,41}. We say that (i; iz ... 41)
is a cycle of length 1. The order of a cycle is its length. Observe that if T has order 1 then t' = Id .

|:| Observe that (i ... L 11) = (11 ... 4) etc., and that (1) = (2) =---=(n) =1d . In fact,

we have

(i1 ... W)=01 ... jm)

if and only if (1) l=m and if (2) 1> 1: Ja such that VK: ik = jx+a mod 1. Two cycles (i1,...,11)
and (j1,...,jm) are disjoint if {i1,..., 4} N{j1,...,im} = &. Disjoint cycles commute and if
T = 0102---0¢ 1S the product of disjoint cycles of length 11,1,, ..., respectively, then T has
order

lcm(h,lz,...,lt).

575 Example A cycle decomposition for & € So,

123 45 6 7 8 9
1 8 7 6 23 45 9
is
(285)(3746).
The order of & is lem (3,4) = 12.
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576 Example The cycle decomposition 3 = (123)(567) in S¢ arises from the permutation

123 45 6 7 89
231 46 7 589

Its order is lem (3, 3) = 3.
577 Example Find a shuffle of a deck of 13 cards that requires 42 repeats to return the cards to their original order.

Solution: Here is one (of many possible ones). Observe that 74+ 6 =13 and 7 X 6 = 42. We take the permutation
(1234567)(8910111213)
which has order 42. This corresponds to the following shuffle: For
ie€{1,2,3,4,5,6,8,9,10,11,12},

take the ith card to the (i + 1)th place, take the 7th card to the first position and the 13th card to the 8th position.
Query: Of all possible shuffles of 13 cards, which one takes the longest to restitute the cards to their original position?

578 Example Let a shuffle of a deck of 10 cards be made as follows: The top card is put at the bottom, the deck is
cut in half, the bottom half is placed on top of the top half, and then the resulting bottom card is put on top. How
many times must this shuffle be repeated to get the cards in the initial order? Explain.

Solution: Putting the top card at the bottom corresponds to

123 45 67 8 9 10

23 456 7 8 9 10 1

Cutting this new arrangement in half and putting the lower half on top corresponds to

123 4 5 6 7 8 92 10

78 9 101 2 3 45 6

Putting the bottom card of this new arrangement on top corresponds to

123 4 5 6 7 8 9 10
=(16)(27)(38)(492)(510).

6 78 92 101 2 3 4 5

The order of this permutation is lem(2,2,2,2,2) = 2, so in 2 shuffles the cards are restored to their original position.
The above examples illustrate the general case, given in the following theorem.

579 Theorem Every permutation in S;, can be written as a product of disjoint cycles.

Proof: Let T € Sn,a7 € {1,2,...,n}. Put ™(a1) = axy1,k > 0. Let aj,az,...,as
be the longest chain with no repeats. Then we have T(as) = ai. If the {a;,az,...,as} ez-
haust {1,2,...,n} then we have T = (a7 az ... Qg). If not, there exist by € {1,2,...,n}\

{a1,a2,...,as}. Again, we find the longest chain of distinct b1,ba,..., by such that T(by) =
byxi1,k = 1,...,t — 1 and T(by) = by. If the {a1,a2,...,as,b1,b2,...,by} ezhaust all the
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{1,2,...,n} we have T = (a7 az ... ag)(by bz ... by). If not we continue the process and
find
T=((11 az...as)(b1 bz...bt)(C1...)....

This process stops because we have only n elements. [

580 Definition A transposition is a cycle of length 2.1

581 Example The cycle (23468) can be written as a product of transpositions as follows
(23468) = (28)(26)(24)(23).
Notice that this decomposition as the product of transpositions is not unique. Another decomposition is

(23468) = (23)(34)(46)(68).
582 Lemma Every permutation is the product of transpositions.

Proof: It is enough to observe that
(a1 az ... as) = (a1 as)(ar as—1)---(ar az)
and appeal to Theorem 579. [

Let 0 € S, and let (i,j) € {1,2,...,n}%, i+j. Since o is a permutation, I(a,b) € {1,2,...,n}%, a +#b, such
that o(j) — o(i) = b — a. This means that

[ cw=e)|

1<igj<n =)

583 Definition Let o € S;,,. We define the sign sgn(o) of o as

o(i) —o(j)
sgn(o) = [ ————-(-1".
1<ij<n t—)
If sgn(o) = 1, then we say that o is an even permutation, and if sgn(o) = —1 we say that o is an odd permutation.
|:| Notice that in fact
sgn(o) = (—1)'),

where I(o) = #{(1,j) |1 <i<j<nand o(i) > 0(j)}, t.e., I(0) is the number of inversions that o
effects to the identity permutation Id .

584 Example The transposition (1 2) has one inversion.
585 Lemma For any transposition (k 1) we have sgn((k 1)) = —1.
Proof: Let T be transposition that exchanges k and 1, and assume that k < 1:
12 ... k—1 k k+1 ... 1—-1T 1 1+1 ... m

12 ... k—1 1 k+1 ... 1—-1T k 1+1 ... n

Let us count the number of inversions of T:

1A cycle of length 2 should more appropriately be called a bicycle.
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e The pairs (i,j) withi € {1,2,... k—1}U{l,1+1,...,n} andi<j do not suffer an tnversion;

e The pair (k,j) with k <j suffers an tnversion if and only if j € {k+ 1,k + 2,...,1}, making
1 — k wnversions;

e Ifie{k+1,k+2,...,1—1} and i<j, (i,j) suffers an tnversion if and only if j = 1, giving
1 — 1 — k wnversions.

This gwes a total of I(t) = (1—k)+(1—1—k) =2(1—k—1) + 1 tnversions when k < L. Since this
number is odd, we have sgn(t) = (—1)1(T) = —1. In general we see that the transposition (k 1)
has 2|1k — 1| — 1 inversions. O

586 Theorem Let (0, T) € S2. Then
sgn(to) = sgn(T)sgn(o).

Proof: We have

sgn(oT) TTi<igan Lt Loml0)

(r(i))—o(x()) )—7()
(H1§i<j§n R ) : (H1§i<j§n e ) )
The second factor on this last equality is clearly sgn(T), we must shew that the first factor is
sgn(o). Observe now that for 1 < a<b < n we have

o(a) —o(b) B o(b) —o(a)
a—b N b—a

Since o and T are permutations, 3b < a, T(i) = a,T(j) = b and so o1(i) = o(a),ot(j) =b. Thus

o(t(i)) —o(x(j)) o(a)—o(b)
—(j) a—>b

T(i -
d
e R I C
T(i) - T(]) 1<ab<n a—b .

O

587 Corollary The identity permutation is even. If T € S,,, then sgn(t) = sgn(t ).

Proof:  Since there are no inversions in Id , we have sgn(Id ) = (—1)° = 1. Since vt~ ' =1d ,
we must have 1 = sgn(Id ) = sgn(tt ') = sgn(t)sgn(t— ') = (—1)%(—1)% ' by Theorem 586.
Since the values on the righthand of this last equality are &1, we must have sgn(t) = sgn(t— ).
O

588 Lemma We havesgn(12 ... 1)) = (—1)'"1.
Proof: Simply observe that the number of inversions of (12 ... 1) isl—1. O

589 Lemma Let (7, (i7 ... i1) € S2. Then
(i ... W) = (1) ... T(h)),

and if 0 € Sy, is a cycle of length 1 then
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Proof: For 1 < k < 1 we have (T(iy T (k) = T((i1 ... W)(k)) = T(iks1).
On a (t(i1 ... T M) (t(r)) = ©((is )( 1)) =7T(i1). Fori & {t(i1) ... (i)} we have
v '1) € {i1 ... iy} whence (i1 ... il)("t_1(1)) T T(i) ete.

Furthermore, write 0 = (i1 ... 11). Let T € S, be such that t(k) = ix for 1 < k < 1. Then
o=1(12 ... )T ! and so we must have sgn(o) = sgn(T)sgn((12 ... 1))sgn(t "), which equals

sgn((12 ... 1)) by virtue of Theorem 586 and Corollary 587. The result now follows by appealing
to Lemma 588 [

590 Corollary Let 0 = 0702 - -+ 0, be a product of disjoint cycles, each of length 14, ..., 1,, respectively. Then
sgn(o) = (—T)E i T

Hence, the product of two even permutations is even, the product of two odd permutations is even, and the product
of an even permutation and an odd permutation is odd.

Proof: This follows at once from Theorem 586 and Lemma 589. O
591 Example The cycle (4678) is an odd cycle; the cycle (1) is an even cycle; the cycle (12345) is an even cycle.

592 Corollary Every permutation can be decomposed as a product of transpositions. This decomposition is not
necessarily unique, but its parity is unique.

Proof:  This follows from Theorem 579, Lemma 582, and Corollary 590. [

593 Example (The 15 puzzle) Consider a grid with 16 squares, as shewn in (7.1), where 15 squares are numbered
1 through 15 and the 16th slot is empty.

1 2|31 4
516 |78
(7.1)
92 1101112
13114 |15
In this grid we may successively exchange the empty slot with any of its neighbours, as for example
1 213 1|4
5|6 |78
i (7.2)
2 11011 (12
13| 14 15
We ask whether through a series of valid moves we may arrive at the following position.
1 2|13 1|4
516 |78
(7.3)
2 (1011112
1311514
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Solution: Let us shew that this is impossible. Each time we move a square to the empty position, we make
transpositions on the set {1,2,...,16}. Thus at each move, the permutation is multiplied by a transposition and
hence it changes sign. Observe that the permutation corresponding to the square in (7.3) is (14 15) (the positions
14th and 15th are transposed) and hence it is an odd permutation. But we claim that the empty slot can only return
to its original position after an even permutation. To see this paint the grid as a checkerboard:

B|R|B|R
R|B|R|B
(7.4)
B|R|B|R
R|B|R|B

We see that after each move, the empty square changes from black to red, and thus after an odd number of moves
the empty slot is on a red square. Thus the empty slot cannot return to its original position in an odd number of
moves. This completes the proof.

594 Problem Decompose the permutation as a product of disjoint cycles and find its order.
1 2 3 45 6 7 8 9

23 4158 6 7 9

7.3 Determinants

There are many ways of developing the theory of determinants. We will choose a way that will allow us to deduce
the properties of determinants with ease, but has the drawback of being computationally cumbersome. In the next
section we will shew that our way of defining determinants is equivalent to a more computationally friendly one.

It may be pertinent here to quickly review some properties of permutations. Recall that if o € S,, is a cycle of
length 1, then its signum sgn(o) = =1 depending on the parity of L — 1. For example, in S7,

oc=(13476)
has length 5, and the parity of 5 — 1 = 4 is even, and so we write sgn(o) = +1. On the other hand,
T=(134765)

has length 6, and the parity of 6 — 1 =5 is odd, and so we write sgn(t) = —1.
Recall also that if (o, T) € Sﬁ, then

sgn(to) = sgn(T)sgn(o).

Thus from the above two examples
ot=(13476)(1347605)

has signum sgn(o)sgn(t) = (+1)(—1) = —1. Observe in particular that for the identity permutation Id € S,
we have sgn(Id ) = +1.

595 Definition Let A € My (F), A = [ayj] be a square matrix. The determinant of A is defined and denoted by
the sum

det A = Z sgn(0)A14(1)026(2) * * * Ano(n)-
ocES,
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|:| The determinantal sum has n! summands.

596 Example If n = 1, then S; has only one member, Id , where Id (1) = 1. Since Id is an even permutation,
sgn(Id ) = (+1) Thus if A = (aq7), then
det A = a1

597 Example If n = 2, then S, has 2! = 2 members, Id and o = (1 2). Observe that sgn(o) = —1. Thus if

then
det A = sgn(Id )ay1q (1)Q214 (2) +58N(0)A15(1)025(2) = Q11022 — A12027.

598 Example From the above formula for 2 X 2 matrices it follows that

detA = det

-1 2
detB = det (—1)(4) — (3)(2)
3 4
= —10,
and
0 4
det(A + B) = det =(0)(8) —(6)(4) = —24.
6 8

Observe in particular that det(A + B) ¥ det A + det B.

599 Example If n = 3, then S, has 3! = 6 members:

Id ,t1 = (23),12=(13),t3=(12),01=(123),02 = (132).

. Observe that Id , o1, 02 are even, and T71, T2, T3 are odd. Thus if

a1 a2 i3
A=lay ax a

az1 a3z azs
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then
det A

sgn(Id )ai1a (1)0214 (2)@314 (3) + 880(T1) A1, (1)A27, (2) 31, (3)
+sgn(T2)Q1r,(1)A27,(2)A31,(3) + 880(T3) A1, (1) Q275 (2) A3 (3)
+sgn(01)A16,(1)020,(2)A30,(3) +580(02)A16,(1)020,(2)A30,(3)

= 11022033 — A11023032 — Q13022037

—Q13Qa21033 + Q12023037 + A13021032.

600 Theorem (Row-Alternancy of Determinants) Let A € My (F),A = [ay;]. If B € My (F),B = [by] is the
matrix obtained by interchanging the s-th row of A with its t-th row, then det B = — det A.

Proof: Let T be the transposition

Then ot(a) =o(a) fora e {1,2,...,n}\{s,t}. Also, sgn(oT) =sgn(o)sgn(t) = —sgn(c). As o
ranges through all permutations of Sy, so does o, hence

det B

Y oes, 580(0)b16(11b20(2) *** Bso(s) ** * Bro(t)  * * Bro(n)

= D ses, 580(0)A14(1)A20(2) *** Ast*** Qgs * * * Ang(n)

= —2 ses, 58n(0T)A15(1)A207(2) *** Asor(s) ** * Qtor(t) *** Anor(n)
= —2 aes, S8n(A)a1r(1)A2a(2) *** Ana(n)

= —detA.

O

601 Corollary If A(;.), 1 < k < n denote the rows of A and o € S, then

det = (sgn(o)) det A.

| A(r:o(n)

An analogous result holds for columns.

Proof: Apply the result of Theorem 600 multiple ttmes. O

602 Theorem Let A € My (F), A =[ay;]. Then

det AT = det A.
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Proof: Let C = A'. By definition
detAT = detC
= Zo'esn sgn(0)C14(1)C20(2) * * * Cno(n)

desn Sgn(U)aau 11A6(2)2°°* Ao(n)n-

But the product 05(1)10¢(2)2*** Qg(n)n also appears in det A with the same signum sgn(o), since
the permutation

(1) o(2) o(n)
1 2 n
1s the tnverse of the permutation
1 2 n
(1) o(2) o(n)

O

603 Corollary (Column-Alternancy of Determinants) Let A € My (F), A = [ai;]. If C € My (F), C = [cy5] is the
matrix obtained by interchanging the s-th column of A with its t-th column, then det C = — det A.

Proof: This follows upon combining Theorem 600 and Theorem 602. [

604 Theorem (Row Homogeneity of Determinants) Let A € My (F),A =[ay] and ¢ € F. If B € M, (F),B =
[byj] is the matrix obtained by multiplying the s-th row of A by «, then

det B = adet A.

Proof: Simply observe that
sgn(0)A14(1)026(2) * ** Kbsg(s) * ** Ang(n) = *SEGN(0)A15(1)A20(2) * ** Asa(s) * * * Ano(n)-

O

605 Corollary (Column Homogeneity of Determinants) If C € M, (F), C = (Cy;) is the matrix obtained by mul-
tiplying the s-th column of A by «, then
det C = axdet A.

Proof: This follows upon using Theorem 602 and Theorem 604. [

|:| It follows from Theorem 604 and Corollary 605 that if a row (or column) of a matriz consists
of Ors only, then the determinant of this matriz is Op.

606 Example
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607 Corollary
det(aA) = a"™ det A.

Proof: Since there are n columns, we are able to pull out one factor of & from each one. [

608 Example Recall that a matrix A is skew-symmetric if A = —AT. Let A € Mz001(R) be skew-symmetric.
Prove that det A = 0.

Solution: We have
det A = det(—AT) = (—1)?°°T det AT = —det A,
and so 2det A = 0, from where det A = 0.

609 Lemma (Row-Linearity and Column-Linearity of Determinants) Let A € My (F), A =[ai;]. For a fixed row
s, suppose that as; = bgj + cs; for each j € [1;n]. Then

arq a2 A1n
azq az2 ao2n
det A(s—1)1 Ais—1)2 A(s—1)n
bgy + cg1 bga + cg2 bsn + csn
A(s+1)1 A(s+1)2 A(s+1)n
L Ani An2 ann m
arq a2 A1n
azq az2 az2n
:det As—1)1 A(s—1)2 A(s—1)n
bgq bg2 bsn
A(s+1)1  O(s+1)2 T G(s4+1)m
L %n1 An2 ann m
a1l a2 A1n
azq azz aAo2n
—l—det T(s—1)1 AQ(s—1)2 As—1)n
Cs1 Cs2 Csn
Qis+1)1 A(s+1)2 A(s+1)n
L Ani1 An2 ann m
An analogous result holds for columns.
Proof: Put
a1 a2 A1n
azq azz Ao2n
S — A(s—1)1 A(s—1)2 A(s—1)n
- )
bgy + cgq bso + c52 bsn + csn
A(s+1)1 A(s+1)2 A(s+1)n
L Ani An2 ann n
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and

Then

detS =

By applying the above argument to A", we obtain the result for columns.

O

a1 a2 A1n
azq az2 ao2n
T= Ais—1)1 Qis—1)2 A(s—1)n
bgq bso bsn
A(s+1)1  %(s+1)2 A(s+1)n
L %n1 An2 ann
alq a2 A1n
azq az2 aA2n
u-= Fs—1)1  %(s—1)2 A(s—1)n
Cs1 Cs2 Csn
A(s+1)1 Ais+1)2 As+1)n
An1 aAn2 ann
Y oes, 58n(0)A16(1)A26(2) " As—1)o(s—1) (Pso(s)
+Cs0(s))As+1)o(s+1) *** Onag(n)
Y oS, S8n(0)A16(1)026(2) " * A(s—1)o(s—1) Pso(s) As+1)a(s+1) *** Ono(n)

+3 ses, 58n(0)A15(1)A20(2) "+

det T + det U.

Qs 1)o(s—1)Cso(s)A(s+1)

o(s+1) *** Ang(n)

610 Lemma If two rows or two columns of A € M, (F), A = [ay;] are identical, then det A = Op.

Proof:  Suppose agj = ay for s #t and for all j € [1;n]. In particular, this means that for any
0 € Sy we have Qgg(t) = Qio(r) ONd Qig(s) = Aso(s)- Let T be the transposition

Then ot(a) = o(a) for a € {1,2,...,n}\ {s,t}. Also, sgn(oT)

sgn(o)sgn(t) = —sgn(o).

As o runs through all even permutations, ot runs through all odd permutations, and viceversa.
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Therefore
detA = 3 5 s8n(0)A14(1)026(2) """ Aso(s) *** Cto(t) = * Ano(n)
= Y cesn  (s8n(0)A16(1)020(2) "+ Uso(s) * ** Ao (t) * * * Ono(n)
sgn(o)=1
+sgn(07T) A1 6c(1)0207(2) * * * Usor(s) * * * Qtor(t) ** * Onor(n))

= Y eesn s80(0) (A16(1)A26(2) *** Aso(s) * ** Ato(t) * * * Ono(n)
sgn(o)=1

—Q15(1)A26(2) *** Aso(t) " Qto(s) *** ano‘(n))

Y cesn s80(0) (A10(1)A20(2) ** Aso(s) *** Ato(t) * * * Ono(n)
sgn(o)=1

—Q15(1)A26(2) *** Ato(t) *** Aso(s) *°* ano‘(n))

Or.

Arguing on AV will yield the analogous result for the columns. [

611 Corollary If two rows or two columns of A € My (F), A = [ay;] are proportional, then det A = Op.

Proof: Suppose as; = aay for s /'t and for allj € [1;n]. If B is the matriz obtained by pulling
out the factor o from the s-th row then det A = adet B. But now the s-th and the t-th rows in B
are identical, and so det B = Op. Arguing on AT will yield the analogous result for the columns.

O

612 Example

since on the last determinant the first two columns are identical.

613 Theorem (Multilinearity of Determinants) Let A € M, (F),A =[ajjland o € F. If X € My (F), X = (xy5) is
the matrix obtained by the row transvection R+ &Ry — R then det X = det A. Similarly, if Y € My (F), Y = (yi;)
is the matrix obtained by the column transvection Cs + xC¢ — C;s then detY = det A.

Proof:  For the row transvection it suffices to take bgj; = asj, €sj = xayy for j € [1;n] in Lemma
609. With the same notation as in the lemma, T = A, and so,

det X =detT + det U =det A + det U.

But U has its s-th and t-th rows proportional (s #t), and so by Corollary 611 det U = Op. Hence

det X = det A. To obtain the result for column transvections it suffices now to also apply Theorem
602. O
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614 Example Demonstrate, without actually calculating the determinant that

2.9 9
det 14 6 8
7 4 1

is divisible by 13.

Solution: Observe that 299,468 and 741 are all divisible by 13. Thus

299 2 9 299 2 9 23
det |4 ¢ g| T TE T T det 4 6 ae8| =13det |4 6 36].
7 4 1 7 4 741 7 4 57

which shews that the determinant is divisible by 13.

615 Theorem The determinant of a triangular matrix (upper or lower) is the product of its diagonal elements.

Proof: Let A € Mn(F),A = [ai] be a triangular matriz. Observe that if ¢ # Id then
Qig(i)Ao(i)o2(i) = OF occurs in the product

A16(1)020(2) *** Ono(n)-
Thus
detA = }  cs,580(0)A16(1)026(2) " Ono(n)
= sgn(Id )ajma (1)021d (2)*** Qnid (n) = A11022 *** Apn.
0

616 Example The determinant of the n X n identity matrix I, over a field F is

detI,, = 1p.

617 Example Find

det 14 5 6
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Solution: We have

C,—2C;—C,
C3—3C1~>C3
D

det |4 5 6 det |4 3 —6

7 8 9 7 —6 —12

- (—3)(—6)det 4 1 1

= 0,

since in this last matrix the second and third columns are identical and so Lemma 610 applies.

618 Theorem Let (A, B) € (M, (F))2. Then
det(AB) = (det A)(det B).

Proof: Put D = AB,D = (dij),dij = 22:1 aikbk]-. If A(c:k),D(c;k)>1 S k S n denote the
columns of A and D, respectively, observe that

n
D(ci) = ZblkA(c:l)) 1<k<n
1-1
Applying Corollary 605 and Lemma 609 multiple times, we obtain

detD = det(Dc1),D(c:2),---,Dieny)

Z;ﬂ Z;le=1 “'Z;Tlnﬂ b1j,b2j, -+ by,
~det(A (i), Afeiz)r - Aeiin )-

By Lemma 610, if any two of the A(..j,) are identical, the determinant on the right vanishes. So
each one of the ji is different in the non-vanishing terms and so the map

{1,2,...,n} — {1,2,...,n}
1 = j[
is a permutation. Here j1 = o(l). Therefore, for the non-vanishing

det(A(cijy ), Afciia)y -+ - Alciin))

we have in view of Corollary 601,

det(A(cij, ), Acijz)r-- - Afesjn)) = (sgn(o)) det(A(c.1), A2y, .-+, Afem))

= (sgn(o))detA.
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We deduce that

det(AB) det D

Z;In=1 by

as we wanted to shew. [

1b2iz o

(detA) Y cs, (sgn(c))big1)bag(2) -

(det A)(det B),

“bnj, det(A ey, Afeija)y - - -

yAfeiin))

'bnu(n)

By applying the preceding theorem multiple times we obtain

619 Corollary If A € M;,(F) and if k is a positive integer then
det A¥ = (det A)¥.

620 Corollary If A € GL,(F) and if k is a positive integer then det A ¥ O and
det A~ ¥ = (det A)*.

Proof:
result follows. [

621 Problem Let

bc ca ab
Q=det | 45 p c
az b2 ¢?

1 1 1
Q =det az b2 CZ
a b

622 Problem Demonstrate that

a—b—c 2a 2a
Q = det 2b b—c—a 2b
2c 2c c—a—>

7.4 Laplace Expansion

= (a+b+c)

We have AA~1 = I, and so by Theorem 618 (det A)(det A~") = 1y, from where the

623 Problem After the indicated column operations on a 3 x 3
matrix A with det A = —540, matrices A1,A2,...,As are
successively obtained:

C1+3C,—Cq C,6C3 3C,—C1—C, C;1—-3C,—Cy 2C1—Cy
A = Al 5T A, = Aj = Ay T T A

Determine the numerical values of det A1, det A2, det Az, det A4
and det As.

624 Problem Let A, B, C be 3 X 3 matrices with det A =
3,det B3 —8,detC = 2. Compute (i) det ABC, (ii)
det5AC, (iii) det A’B~3C~'. Express your answers as frac-
tions.

625 Problem Shew that VA € My (R),
3(X,Y) € (Mn(R))?, (det X)(det Y) 0

such that
A=X+Y.

That is, any square matrix over R can be written as a sum of
two matrices whose determinant is not zero.

626 Problem Prove or disprove! The set X = {A € My, (F) :
det A = Or} is a vector subspace of Mp (F).

We now develop a more computationally convenient approach to determinants.

Put

Cij= ) (sgn(0))@14(1)20(2) * ** Gno(n)-

OCESH
o(i)=j
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Then

detA = ) s (sgn(0))a14(1)020(2) " Ano(n)

Y, i Y cesy (580(0))A16(1)A20(2)
o(i)=j (7.5)

Q-1 o(i—-1)A(i+1) o (i+1) *** Ano(n)

n
= 2 a5Cy,

is the expansion of det A along the j-th column. Similarly,

detA = ) s (sgn(0))a14(1)020(2) " Ano(n)

Sy resn (sgn(o))ar4(1)020(2)
o(i)=j

Q-1 o(i—-1)A(i+1) o (i+1) *** Ano(n)
= X1 a5Cy,
is the expansion of det A along the i-th row.

627 Definition Let A € My (F),A = [ai;]. The ij-th minor Ay; € My_1(R) is the (n — 1) X (n — 1) matrix
obtained by deleting the i-th row and the j-th column from A.

628 Example If

1 2 3
A=14 5 6
7 8 9
then, for example,
5 6 4 6 2 3 1 3 1 2
Aq1 = , Alz= , A21= , A= , As3z=
8 9 7 9 8 9 7 9 4 5

629 Theorem Let A € My, (F). Then

det A = Z Qij (71 )i+j det Aij = Z Qij (71 )i+j det Ai]’.
i=1 j=1

Proof: It is enough to shew, in view of 7.5 that
(—1 )H_j det Ay = Cij.
Now,

Can = X cesa sgn(0)A16(1)026(2) *** An—1)o(n—1)
o(n)=n

2 es,, S8n(T)A1(1)02¢(2) ** * An—1)7(n—1)

= det Ann,
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since the second sum shewn s the determinant of the submatriz obtained by deleting the last row
and last column from A.

To find Cij for general ij we perform some row and column interchanges to A in order to bring aij
to the nn-th position. We thus bring the i-th row to the n-th row by a series of transpositions, first
swapping the i-th and the (i + 1)-th row, then swapping the new (i + 1)-th row and the (1 + 2)-th
row, and so forth until the original i-th row makes it to the n-th row. We have made thereby
n — i wnterchanges. To this new matriz we perform analogous interchanges to the j-th column,
thereby making n —j interchanges. We have made a total of 2n —i—j wnterchanges. Observe that
(—1)2"t9 = (—1)1H. Call the analogous quantities in the resulting matriz A’, Cl. AL, Then

Cij =C/, =detA/ =(—1)" det Ay,

by virtue of Corollary 601.
O

|:| It 1s 1rrelevant which row or column we choose to expand a determinant of a square matrix.
We always obtain the same result. The sign pattern is given by

+ - + —
-+ — +
+ - + —
630 Example Find
1 2 3
det |4 5 ¢
7 8 9
by expanding along the first row.
Solution: We have
5 6 4 6 4 5
detA - 1(—1)"""det +2(—1)"*"2 det 1 3(—1)"3 det
8 9 7 9 7 8

— 1(45—48) —2(36 —42) + 3(32—35) = 0.

631 Example Evaluate the Vandermonde determinant
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Solution:

1 1 1 1 0 0
det | q b c¢c| = det|ag b—-—a c—a
az b2 c? a2 b2—a? c?—a?

= det

1 1
= (b—a)(c—a)det
b+a c+a
= (b—a)(c—a)(c—0»b).
632 Example Evaluate the determinant
1 2 3 4 -+- 2000
2 1 2 3 cee 1999
3 2 1 2 <ee 1998
det A = det
4 3 2 1 cee 1997
2000 1999 1998 1997 ... 1

Solution: Applying R,y — Rn+1 — Ry for 1 < n < 1999, the determinant becomes

_ —1 1 1 1 1 1 |
-1 -1 1 1 1 1
-1 -1 1 1 1
det | 1 1 —1 —1 ... 1 1
-1 -1 =1 -1 —1 1
2000 1999 1998 1997 ... 2 1 |
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Applying now C;, + Cz000 — Cy for 1 < n < 1999, we obtain

0 2 2 2 2 1
0 0 2 2 2 1
0 0 0 2 2 1
det | ¢ 0 0 0 oo 2 1

0 0 0 o .- 0 1

2001 2000 1999 1998 ... 3 1

This last determinant we expand along the first column. We have

2 2 2 ... 2 1
0O 2 2 ... 2 1
O 0 2 ... 2 1
—2001 det = —2001(2'778).
0O 0 © 2 1
O 0 0 - 0 1

633 Definition Let A € M, (F). The classtcal adjoint or adjugate of A is the n X n matrix adj (A) whose entries
are given by o

[adj (A)li; = (—1)'" det A,
where Aj; is the ji-th minor of A.

634 Theorem Let A € M,,(F). Then
(adj (A))A =A(adj (A)) = (det A)I;.

Proof: We have
[A(adj (A))]y; = Y ¢ q awladj (A)lg

= ZE:1 aix(—1 )i+k det Ajk.

Now, this last sum is det A if i =j by virtue of Theorem 629. Ifi+j it is 0, since then the j-th
row 1s identical to the i-th row and this determinant is Op by virtue of Lemma 610. Thus on the
diagonal entries we get det A and the off-diagonal entries are Op. This proves the theorem. [

The next corollary follows immediately.

635 Corollary Let A € M,,(IF). Then A is invertible if and only det A & Or and

,_adi(A)
det A
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636 Problem Find

by expanding along the second column.

637 Problem Compute the determinant

det

1 0 0 1

638 Problem If

det

det =2ab(a—Db).

a 0 b 0

0O a 0 Db

det = (ad — be)>.

666 —3 —1 1000000

641 Problem Use induction to shew that

11 1 v 11
10 0 S0 0
01 0 ..~ 0 0
det -
0 0 1 0 0
00 0 10

642 Problem Let

n n n n n

071)n+1'

n

that is, A € My (R), A =[ayj] is a matrix such that axx = k

and aij = n when i /j. Find det A.

643 Problem Let n € N, > 1 be an odd integer. Recall that
the binomial coefficients (“) satisfy (:\‘) = (3) =1 and that

13
for 1 <k <mn,

() - Go)+ (0

Prove_ that
TG G o G
TG GG
det (n:) 1 L (nES) (n
G G 6 1

644 Problem Let A € GLn(F), n >
det(adj (A)) = (det A)™ .

645 Problem Let (A,B,S) € (GLy (F))3. Prove that

0 adj(adj (A)) = (det A)"2A.
0 adj (AB) = adj (A) adj (B).
0 adj (SAS™') = S(adj (A))S™'.

)

") = A+(=1"m™

1. Prove that

646 Problem If A € GL;(IF),, and let k be a positive integer.

Prove that det(adj---adj(A)) = det A.

13
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7.5 Determinants and Linear Systems

647 Theorem Let A € M, (F). The following are all equivalent
O det A #Op.
O A is invertible.
O There exists a unique solution X € My x1(F) to the equation AX =Y.
O If AX =0p1x1 then X = 0,,%7.

Proof:  We prove the implications in sequence:

0 = [O: follows from Corollary 635

0 = 0O: If A is invertible and AX =Y then X = A~ 'Y is the unique solution of this equation.
[0 = [: follows by putting Y = Onx1

0 = [: Let R be the row echelon form of A. Since RX = 0 x1 has only X = 0, x1 as a solution,
every entry on the diagonal of R must be non-zero, R must be triangular, and hence det R  O.
Since A = PR where P is an invertible n X n matriz, we deduce that det A = det P det R +# Op.

O

The contrapositive form of the implications [1 and [ will be used later. Here it is for future reference.

648 Corollary Let A € M, (). If there is X 5/ 05, x1 such that AX = 0;,x1 then det A = Op.
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Eigenvalues and Higenvectors

8.1 Similar Matrices
649 Definition We say that A € M, (F) is similar to B € M, (F) if there exist a matrix P € GL, (F) such that

B =PAP .

650 Theorem Similarity is an equivalence relation.

Proof: Let A € My (F). Then A = I,AL_', so similarity is reflezive. If B = PAP~! (P €
GL,(F) ) then A = P71BP so similarity is symmetric. Finally, if B = PAP~! and C = QBQ™'
(P € GL,(F) , Q € GL,(F)) then C = QPAP'Q~' = QPA(QP)! and so similarity is
transitive. U

Since similarity is an equivalence relation, it partitions the set of n X n matrices into equivalence classes by Theorem
7.

651 Definition A matrix is said to be diagonalisable if it is similar to a diagonal matrix.

Suppose that

Ao 000 0
0 A2 O 0
A =
0O 0 0 --- A,
Then if K is a positive integer
A¥ 0 0 0
o Ak o 0
AK =
0 0 O AK
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In particular, if B is similar to A then

Ak 0 0 0
0 A¥ 0o .- 0
BX = (PAP ")(PAP ')... (PAP ') =PAXP ' =P P,
K factors : : : :
0 0 0 --- AK

so we have a simpler way of computing B¥. Our task will now be to establish when a particular square matrix is
diagonalisable.

8.2 Eigenvalues and Eigenvectors

Let A € M, (F) be a square diagonalisable matrix. Then there exist P € GL;,,(F) and a diagonal matrix D €
M., (F) such that P~TAP = D, whence AP = DP. Put

A0 0 -ee 0
0 A2 0 «++ 0

D - , P =[Py P20 5Py,
0 0 0 «++ An

where the Py are the columns of P. Then
AP =DP = [AP1;AP;--- ;APL] =[A1P1;A2P2;5- -« ; AnPal,

from where it follows that APy = AxPx. This motivates the following definition.

652 Definition Let V be a finite-dimensional vector space over a field Fandlet T : V — V be a linear transformation.
A scalar A € F is called an eigenvalue of T if there is a v /0 (called an eigenvector) such that T(v) = Av.

653 Example Shew that if A is an eigenvalue of T : V — V, then A¥ is an eigenvalue of T* : V — V, for k € N\ {0}.

Solution: Assume that T(v) = Av. Then
T?(v) =TT(v) = T(Av) = AT(v) = A(AvV) = A?v.

Continuing the iterations we obtain T*(v) = A¥v, which is what we want.

654 Theorem Let A € M, (F) be the matrix representation of T: V — V. Then A € F is an eigenvalue of T if an
only if det(AI,, — A) = Op.

Proof: A s an etgenvalue of A & there i1s v 0 such that Av=Av &< Av—Av=0 &
AML,wv—Av=0 & det(Al,, — A) =0 by Corollary 648.0

655 Definition The equation
det(AL, — A) =0p

is called the characteristic equation of A or secular equation of A. The polynomial p(A) = det(Al,, — A) is the
characteristic polynomial of A.
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656 Example Let A = . Find

0 The characteristic polynomial of A.

O The eigenvalues of A.

[J The corresponding eigenvectors.

Solution: We have

O
A—1 -1 0
-1 A—-1 0
det(Al; — A) = det
0 0 A—1
0 0 —1
A—1 0

= A=DA=D((A=12=1) + (=(A=1)*=1))

= A=ND((A=1A=2)(A) = (A—=2)(A)

= A=-2)M((A=1)2=1)

= (A—=2)2(2)?

O The eigenvalues are clearly A = 0 and A = 2.

O If A =0, then

0I; —A =
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This matrix has row-echelon form

and if

then c=—d and a=—b

Thus the general solution of the system (0I4 — A)X = 01 is

a 1 0
b —1 0
=a +c
c 0 1
d 0 —1

If A =2, then

2, —A =

This matrix has row-echelon form

_—1 10 0_
0o 01 —1
0 00 O |
|0 0 0 0]

and if
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thenc=dand a=">b

Thus the general solution of the system (2I4 — A)X = 0y x1 is

_a_ _1_ _O_
b 1 0
-a +c
c 0 1
d] _O_ _1 |
Thus for A = 0 we have the eigenvectors
- 1 - . , -
—1 0
0 ’ 1
L O d _71_
and for A = 2 we have the eigenvectors
_1 - _0_
1 0
0 ’ 1
_O_ _1 d

657 Theorem If A = O is an eigenvalue of A, then A is non-invertible.

Proof:  Put p(A) = det(AL, — A). Then p(Or) = det(—A) = (—1)" det A 1is the constant term
of the characteristic polynomeal. If A = Op is an eigenvalue then

P(Or) =0 = det A = O,

and hence A 1is non-invertible by Theorem 647. [

658 Theorem Similar matrices have the same characteristic polynomial.
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Proof: We have
det(AI, — SAS™ ") = det(ASI,S™ ! —SAS)
= det S(AI, —A)S™!

= (det S)(det(AL, — A))(det S71)

1
— (det S)(det(AL, — A)) (det s)
— det(AL, — A),

from where the result follows.O

659 Problem Find the eigenvalues and eigenvectors of

0 2 -1
1 -1
A = 660 Problem Let A= | 2 3 _—2|. Find
-1 1
-1 -2 0

0 The characteristic polynomial of A.
0 The eigenvalues of A.

0 The corresponding eigenvectors.

8.3 Diagonalisability

In this section we find conditions for diagonalisability.

661 Theorem Let{vy,v2,...,vi} C V betheeigenvectors corresponding to the different eigenvalues{A1, Az, ..., Ak}
(in that order). Then these eigenvectors are linearly independent.

Proof: LetT :V — V be the underlying linear transformation. We proceed by induction. For
k =1 the result 1s clear. Assume that every set of k—1 eigenvectors that correspond to k—1 distinct

eigenvalues 1s linearly independent and let the eigenvalues A1,Az,...,Ax—1 have corresponding
etgenvectors vi,va,...,Vk_1. Let A be a eigenvalue different from the A1,A2,...,Ax_1 and let
its corresponding eigenvector be v. If v were linearly dependent of the vi,v2,...,vk_1, we would
have

XV +X1vy +X2v2 + o +Xk_1Vk_1 = 0. (8.1)
Now

T(xv +x1vi +%x2v2 + -+ +xx_1vk_1) = T(0) =0,
by Theorem 538. This implies that

XAV +X1A1V] +X2A2V2 + -+« + Xk _1Ak_1VKk_1 = 0. (8.2)
From 8.2 take away A times 8.1, obtaining

X1(AM —A)vi +x2(A2v2+ o+ X1 (A1 — A)vk_1 =0 (8.3)

Since N — Ay  Op 8.3 is saying that the eigenvectors vi,va,...,Vvk_1 are linearly dependent,
a contradiction. Thus the claim follows for k distinct eigenvalues and the result is proven by
induction. U

662 Theorem A matrix A € My, (FF) is diagonalisable if and only if it possesses n linearly independent eigenvectors.
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Proof: Assume first that A is diagonalisable, so there exists P € GLy (F) and
AM 0 O - O
0O A, 0 --- O
D=
0 0 0 An
such that i i
A 000 0
0 A2 O 0
P AP =
0 0 0 An
Then
M 0 0 -2 O
0 A2 O 0
[AP1;AP2;- -+ ;APR]= AP =P =[A1P1;A2P2; - -+ 5 AnP],
0O 0 0 -+ A,

where the Py are the columns of P. Since P s tnvertible, the Py are linearly independent by wirtue
of Theorems 473 and 647.

Conversely, suppose now that vy, ..., vy are n linearly independent eigenvectors, with correspond-

ing ergenvalues A1, A2, ..., An. Put
AM 0 O --- O
O A2 O .-+ O
P=[vi;...;val, D=
0O 0 O An

Since Avy = Ayvi we see that AP = PD. Again P s tnvertible by Theorems 473 and 647 since

the v are linearly independent. Left multiplying by P~ we deduce P~'AP = D, from where A 1is
diagonalisable. [

663 Example Shew that the following matrix is diagonalisable:
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and find a diagonal matrix D and an invertible matrix P such that

A=PDP .

Solution: Verify that the characteristic polynomial of A is

A 3N A+ 12=(A—=2)A+2)(A—3).

The eigenvector for A = —2 is
1
—1
L 4 J
The eigenvector for A = 2 is o
—1
0
1
The eigenvector for A = 3 is o
—1
1
L 1 d
We may take
—2 0 0 1 —1 4
D=0 2 0|, P=|—1 0 1
0 0 3 -1 1 1
We also find
P

1 1
5 0 3
664 Problem Let A be a 2 X 2 matrix with eigenvalues 1 and ] ]
1 1 . )
—2 and corresponding eigenvectors and , respec- | One of the eigenvalues has two eigenvectors || and |1
0 —1
0 0

tively. Determine A'°.

665 Problem Let A € M3(RR) have characteristic polynomial

A+ 1) (A —3).
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1

The other eigenvalue has corresponding eigenvector |1 |. De-

1

termine A.

666 Problem Let

0 0 0 1
00 1 0
A =
01 0 0
10 0 0
Find det A.
Find A~ .

Find rank (A — 14).

Find det(A — 14).

Find the characteristic polynomial of A.
Find the eigenvalues of A.

Find the eigenvectors of A.

Find A'°.

© N o ok w

667 Problem Let U € M; (R) be a square matrix all whose
entries are equal to 1.

8.4 The Minimal Polynomial

o ks W b o=

Demonstrate that U? = nll.
Find det U.

Prove that det(AL, — U) = A" (A — n).

Shew that dimker (U) =n — 1.
Shew that

_n 0 O_
0 0 0
u="p P
_0 0 0_
where
_1 1 0 0 0
1 0 1 0 0
1 0 0
P-=
1 0 0 0 1
1T -1 -1 -1 -1

668 Theorem (Cayley-Hamilton) A matrix A € My, (IF) satisfies its characteristic polynomial.

Proof: Put B =AIl,, — A. We can write

det B = det(AL, —A) = A" + biA™ T £ oA 2 4 ... 4 by,

as det(AL,, — A) is a polynomial of degree n.

Since adj (B) is a matriz obtained by using (n—1) X (n— 1) determinants from B, we may write

adj (B) = A" "By 1 + A" 2Bn 5 + -+ + Bo.

Hence

det(Aly — AL, = (B)(adj (B)) = (AL, — A)(adj (B)),

from where

AL 4+ b1 A b L A 2 o+ bpln = (ALy — A) (A" "Bh1 + A" ?Bn_ + -+ + Bo).

By equating coeffictents we deduce
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I = Bn—1
b1l = —AB, 1 +Bn 2
bZIn = _ABn—Z + Bn—S

bn_1In = —AB1 +BO

bnln = —ABo.

Multiply now the k-th row by A"~ ¥ (the first row appearing is really the 0-th row):

A" = A"Bn_
biAM ! = —A"B,_1 + A" 'Bn 2
bAM 2 = A Bn_2+ An_ZBn_g

bn_1A *AZB1 + ABj

bnln = —ABo.

Add all the rows and through telescopic cancellation obtain
A" +b1AY T oo 4 by 1A + byl = 0y,

from where the theorem follows. O

669 Example From example 663 the matrix

has characteristic polynomial
(A—=3)A—2)(A+2) =A% =37 —4A + 12,

hence the inverse of this matrix can be obtained by observing that
1/3 1/6

A? —3A7 —4A +12I3=0; = AL (A2 —3A —4I3) =
17 1/6  1/3

—1/6

1/6

I —-5/6 —1/6 —1/3 |

Having seen that the characteristic polynomial of a square matrix A annihilates A, the question now arises of whether

there exists a polynomial of minimal degree annihilating A.
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Answers and Hints

17
x € X\ (X\A) & xeXAxg (X\A)
— xeXAx€eA
— xeXnNA.
18

X\ (AUB) x €EXANA(x & (AUB))
x EXNxZAAXx&B)
xeEXAXxZA)AN(x e XAx &B)

x € (X\NA)Ax € (X\B)

11111

x € (X\ A)N (X \ B).

21 One possible solution is
AUBUC=AU(B\A)U(C\ (AUB)).

23 We have
lal=la —b + bl < [a — bl + [b],
giving
lal —[b| < la —bl.
Similarly,
bl =b—a+al <[b—al+|al=[a—Db|+]al
gives

Ib| —lal < la—bl.
The stated inequality follows from this.

38 a ~ asince ¢ =1 € Z, and so the relation is reflexive. The relation is not symmetric. For 2 ~ 1 since % €Zbutl =2
since % ¢ 7. The relation is transitive. For assume a ~ b and b ~ c¢. Then there exist (m,n) € Z? such that p=m, % =n.
This gives

-E:mnGZ,
c

ole

c
and so a ~ c.

39 Here is one possible example: put a ~ b & % € Z. Then clearly if a € Z\ {0} we have a ~ a since # =a+1€Z.

On the other hand, the relation is not symmetric, since 5 ~ 2 as 5ZT+5 =15 € Z but 2 45, as 22;2 = g & Z. It is not

transitive either, since 233 € Z — 5~3and 43 € Z — 3 ~12but 3342 ¢ Zand s0 5 = 12.

167
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41 [B] [x] = x + %Z. [C] No.

55 Letw:—%Jri@. Then w? + w + 1 =0 and w?® = 1. Then
x=a>4+b>+c>—3abc=(a+b+c)a+ wb+ w?ec)la+ w?b + cw),

y=u3—|—v3—|—w3—3uvw=(u—|—v—|—w)(u—|—wv—|—w2w)(u—|—w2v—|—ww).

Then (a+b+c)lu+v+w)=au+av+ aw + bu+ bv + bw + cu + cv + cw,
(a+ wb + w?e)(u+ wv+ w?w) = au+bw+cv
+w(av + bu + cw)
+w?(aw + bv + cu),
and

au + bw + cv

(a+ w?b + we)(u + w?v + ww)
+w(aw + bv + cu)

+w?(av + bu + cw).
This proves that

xy = (au+bw+cv)® + (aw +bv+ cu)® + (av + bu + cw)?

—3(au + bw + cv)(aw + bv + cu)(av + bu + cw),

which proves that S is closed under multiplication.

56 We have
xT(YT2)=xT(Yy®a®z)=x)R®(a)® (Y®aR®z)=xQRaRyR®a® z,

where we may drop the parentheses since ® is associative. Similarly
xTY)Tz=x®a®Y)Tz=xQRa®Y)R(a)®(z2)=xka®yYy R a z.

By virtue of having proved
xT(yTz)=(xTy)Tz,

associativity is established.
57 We proceed in order.
O Clearly, if a, b are rational numbers,
lal<1,/b|<1T = Jab|<1 = —1<ab<1 = 1+ ab>0,

whence the denominator never vanishes and since sums, multiplications and divisions of rational numbers are rational,

]a:at;) is also rational. We must prove now that —1 < 10:‘3) <1 for (a,b) €] — 1;1[%. We have

a+b

LA wr

<1 & —1—ab<a+b<«<1+ab

& —1—ab—a—b<0<1+ab—a—>»
&S —(a+1)(b+1)<0<(a—T1)(b—1).

Since (a,b) €] — 1;1[2, (a+1)(b+ 1) > 0 and so —(a + 1)(b + 1) < 0 giving the sinistral inequality. Similarly
a—1<0and b—1<0give (a—1)(b—1) > 0, the dextral inequality. Since the steps are reversible, we have

established that indeed —1 < atb <
1+ ab
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a+b B b+a
1+ab 1+ba

0 Sincea® b = =b ® a, commutativity follows trivially. Now

b+c>
1+ be
b+c
a+(1—|—bc>
b+c>
1+ bc

a®(b®c) = a®(

1+a(

a(l+bc)+b+c a+b+c+abe
1+bc+a(b+c) 1+ab-+bc+eca

One the other hand,

a+b
a+b
1+ab>+c
a+b
1Jr(1+ab)c

(a+b)+ c(1+ ab)
1+ ab—+ (a+Db)c

a+b+c+ abce
1+ ab +be+ca’

whence ® is associative.

0 Ifa® e = athen 1a:aee = a, which gives a + e = a + ea? or e(a? — 1) = 0. Since a # +1, we must have e = 0.
O Ifa®b=0,then a+b = 0, which means that b = —a.
1+ ab

58 We proceed in order.

O Sincea®b=a+b—ab=b+ a—ba=>b® a, commutativity follows trivially. Now

a®(b®c) = a® (b+c—be)
= a+b+c—bc—a(b+c—bce)
= a+b+c—ab—bc—ca+ abc.
One the other hand,
(a®@b)®c = (a+b—ab)®c

= a+b—ab+c— (a+b—ab)c
= a+b+c—ab—bc—ca+ abc,

whence ) is associative.

0 Ifa®e=athen a+ e — ae = a, which gives e(1 — a) = 0. Since a 1, we must have e = 0.

a
1—a

O Ifa®b=0,then a+ b — ab =0, which means that b(1 — a) = —a. Since a 1 we find b = —
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+ o T 2 3 s 5 3 7 8 9 | 70 o T 2 3 7 5 3 7 8 9 | 70
0 0 T 2 3 7 5 3 7 8 9 |70 0 o 0 o 0 o o 0 o 0 o 0
T T 2 3 % 5 3 7 8 9 70| © T o T 2 3 7 5 3 7 8 9 | 70
2 2 3 7 5 3 7 3 9 |70 ]| © T 2 ol 2 7 3 38 |70 | 7T 3 5 7 9
3 3 7 5 3 7 8 9 |70 | © T 2 3 0| 3 3 2 T p 7 |70 | 2 5 B
% % 5 3 7 3 9 |70 | 0 T 2 3 z z 8 T 5 9 2 ¢ |70 | 3
5 5 3 7 8 9 |70 | 0 T 2 3 % 5 o| 5 |10 | = 9 3 B 2z 7 T
3 3 7 3 9 70| © T 2 3 s 5 3 0| 6 T 7 2 8 3 9 7 |70 | 5
7 7 o 9 |70 | 0 T 2 3 % 5 3 7 ol 7 3 10 | 6 2 9 5 T B z
8 8 9 70| © T 2 3 % 5 3 7 B 0| 8 5 2 |70 | 7 3 T 9 3 3
9 9 |70 ]| © T 2 3 s 5 3 7 8 9 ol 9 7 5 3 T |70 | 8 3 ry 2
o || 70| © T 2 3 % 5 3 7 3 9 10 |0 |70 | 9 8 7 3 5 ry 3 2z T
Table A.1: Addition table for Zq11. Table A.2: Multiplication table Zq1.
59 We have
xoy = (xoy)o(xovy)

= [yo(xoy)lox
= [(xoy)ox]oy
= [(yox)ox]oy
= [(xox)oyloy

- (yoy)o(xox)

= Yyox,
proving commutativity.
71 The tables appear in tables A.1 and A.2.
72 From example 68
x> =5

Now, the squares modulo 11 are 0’ - 0, 7= 1,2°=4,3"=9,4 =55 =3. Also, (11 —4)? = 7’ — 5. Hence the
solutions are x =4 or x = 7.

81 We have
1 . V2+2v3-3V6
vV2+2V3+3V6 (V2 +2v3)2 — (3V6)2
_ V2+2v3-3V6
2+4+12+4v6—54
_ V2+2v3-3V6
—40 + 46
(V2 +2v3-3V6)(—40 — 4V6)
402 — (4v/6)2
_ (V2+2v3-3v6)(—40 — 4V6)
- 1504
~ 16vV2+22v/3-30V6—18
- 376
82 Since

(—a)b '+ ab ' =(—a+a)b ' =0sb"" = 0Op,
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we obtain by adding —(ab~ ") to both sides that
(—a)b™ ' = —(ab ).
Similarly, from
a(~b ") +ab ' =a(-b "+ b ") = als = O,
we obtain by adding —(ab~ ") to both sides that

93 Assume h(b) = h(a). Then

= a>—-0b3=0
= (a—b)(a®>+ab+b2)=0

Now,
2 3 2
b’ +ab +a’ = (b+g) +22
2 4
This shews that b + ab + a? is positive unless both a and b are zero. Hence a — b = 0 in all cases. We have shewn that

h(b) =h(a) = a =D, and the function is thus injective.

94 We have
6a 6D
2a—3 2b—3

6a(2b — 3) = 6b(2a — 3)

f(a) = f(b)

—

—

& 12ab —18a =12ab — 18b
& —18a=-—18b

—

proving that f is injective. Now, if

f(x) =y, y73,
then
6x
>3 v
that is 6x = y(2x — 3). Solving for x we find
X = 3y
S 2y—6°

Since 2y — 6 0, x is a real number, and so f is surjective. On combining the results we deduce that f is bijective.

1T 1 1

104 A= |2 4 8

105 A=|2 4 ¢
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a+1 0 2c 2a —4a 2c
106 M+N=| ¢ b—2a 0|, 2M-= 0 —2a 2b
2a 0 -2 2a + 2b 0 -2

107 x=1and y =4.

13 —1 5 0
108 A = ,B=

15 3 6 1

111 The set of border elements is the union of two rows and two columns. Thus we may choose at most four elements from
the border, and at least one from the central 3 X 3 matrix. The largest element of this 3 X 3 matrix is 15, so any allowable
choice of does not exceed 15. The choice 25, 15, 18,1 23, 20 shews that the largest minimum is indeed 15.

2 2
120
0o -2
121
a b c a+b+c b+c ¢
AB=| c¢c+a a+b b+c |»BA=la+b+c a+b b
a+b+c a+b+c a+b+c a+b+c c+a a
02 0 3
02 0 3
122 AB =04 and BA =
02 0 3
02 0 3
123 Observe that ,
—4 x —4 x| |—4 x 16 —x* 0
—x 4 —x 4| |—~x 4 0 16 — x*

1 0 01
124 Disprove! Take A = and B = . Then AB = B, but BA =0;.
0 0 0 0
0 0 1 0
125 Disprove! Take for example A = and B = . Then
1 1 1 0
-1 0 -1 0
A’ —B? = 4 (A +B)(A —B).
0o 1 -2 1
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32 32
127
—-32 32
oo 0 2100131002
128 A =
2100231001 0

130 The assertion is clearly true for n = 1. Assume that is it true for n, that is, assume

An cos(M)ax —sin(n)a
sin(n)aa  cos(n)a
Then
AMTT = AAM

_cos a —sina| |cos(n)aa —sin(n)a
_sin ® cosa sin(n)a  cos(n)a
_cos acos(n)a —sinasin(n)ax  — cos asin(n)a — sin x cos(n)«x
_sin acos(n)a + cos asin(n)x —sinasin(n)a + cos a cos(n)x
_cos(n + 1o —sin(n+ 1)«
_sin(n+1)(x cos(n + 1)« ,

and the result follows by induction.

131 Let A =[ayj], B = [bij] be checkered n X n matrices. Then A+ B = (aij +bij). If j—iis odd, then ai; +bi; =0+0 =0,
which shows that A + B is checkered. Furthermore, let AB = [ci;] with ¢ij = Y _; dikbyj. If i is even and j odd, then
aix = 0 for odd k and by; = O for even k. Thus ci; = O for i even and j odd. Similarly, cij = O for odd i and even j. This
proves that AB is checkered.

132 Put
0 1 1
J=1]o o0 1
0 0 O
We first notice that
0 0 1

This means that the sum in the binomial expansion

A" = (I + )" Z()I“ “y




174

Appendiz A

is a sum of zero matrices for k > 3. We thus have

A" = ¥+l '+ (31322
100 0 nn 00 (%)
= 01 of*+*]o 0 n|t|0 0 0
0 0 1 0 0 O 0o 0 o0
_1 n (n+1)
2
= 0 1 n »
0 0 1
giving the result, since (TZ‘) = “(“{” and n + (‘21) = w
134 Argue inductively,
A’B-A(AB)-AB-B
A’B=A(A’B)=A(AB) =AB =8B
A™B = AB =B.
Hence B=A™B = 0,B = 0,.
a b
136 Put A = . Using 135, deduce by iteration that
c d
A¥=(a+d)* A
a b
137 , bc = —a?
c —a
a b
138 +1I,, , a’=1—bc
c —a
a b
139 We complete squares by putting Y = =X — 1. Then
c d
a’ +bc bla+d) o , |10 0
=Y =X"—2X+1I=(X—-1)" = +1I=
cla+d) be+d? 6 3 6

This entails a = 0,b = 0, cd = 6, d? = 4. Using X = Y + I, we find that there are two solutions,

1 0 1 0

3 3 -3 -1
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150 There are infinitely many solutions. Here is one:

1 2 3 -9 2 3 10 0 0
A=12 3 1|=|12 3 1|+|0o o0 o
31 2 3 1 2 0 0 0

151 If such matrices existed, then by the first equation
tr (AC) 4+ tr (DB) =n.
By the second equation and by Theorem 141,
0=tr (CA) +tr (BD) =tr (AC) 4+ tr (DB) =n,

a contradiction, since n > 1.

1 1 30
152 Disprove! This is not generally true. Take A = and B = . Clearly AT = A and BT = B. We have

1 2 0 1

31
AB =
3 2
but
. |33
(AB) =
1 2
154 We have
a b|l|a b a’ +bc ab+bd
tr (AZ) =tr =tr =a? +d* + 2be
c d||c d ca+cd d?+cb
and
2
a b
tr =(a+d)?>.

c d

Thus

tr (A?) = (tr (A))* & a’+d’> +2bc=(a+d)? < bec=ad,

is the condition sought.

155
tr (A—14)%) = tr(A* —2A+1L)

= tr (A%) —2tr (A) + tr (1)
- —4-2tr(A)+4

= —2tr (A),

and tr (3I4) = 12. Hence —2tr (A) =12 or tr (A) = —6.

156 Disprove! Take A = B = I, and n > 1. Then tr (AB) = n<n? = tr (A) tr (B).
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157 Disprove! Take A = ,B= ,C= . Then tr (ABC) =1 but tr (BAC) = 0.

158 We have

(AAT)T = (AT)TAT = AAT.

159 We have

(AB—BA)" = (AB)" — (BA)" =BTAT —ATB" = —BA — A(—B) = AB — BA.
161 Let X = [xi;] and put XXT = [ci;]. Then

n
2
0=cii :ink = xix = 0.
k=1

187 Here is one possible approach. If we perform C; < C3 on A we obtain

1 0 1 0 0O 0 1 0

0 1 0 1 0O 1 0 0
Aq = so take P =

1 1 -1 1 1 0 0 0

1T -1 1 1 0 0 0 1

2 0 2 0 2 0 0 O

0o 1 0o 1 0O 1 0 0
Az = so take D =

1 1 -1 1 0O 0 1 0

1 -1 1 1 0 0 0 1

4 -2 4 2 1 0 0 2

0 1 0 1 0O 1 0 0
B = so take T =

1 1 -1 1 0O 0 1 0
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188 Here is one possible approach.

a b c g h i
Pip3pg
d e f ~ d e f
g h i a b c
h g i
P’:C1C,
~ e d f
b a c
h—g g i
T:C;—C,—C;
~ e—d d f

D:2p3—ip3
B

Thus we take

100 0 0 1
1 00 100
T=]1—1 1 0|, D=fo 1 0
0 0 1 0 0 2
189 Let Eij € My (F). Then
_o 0 ar o_
00 az 0
AE;; = ,
00 : anmn : O
00 : au : O

where the entries appear on the j-column. Then we see that tr (AE;;) = aji and similarly, by considering BE;j, we see that
tr (BEij) = bji. Therefore Vi,j, aji = bji, which implies that A = B.
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190 Let Es¢ € Mn(R). Then

0 0 0
EjA = aj1 Qj2 ... Qjn|>
0 0 0
where the entries appear on the i-th row. Thus
0 0 0
2
(EyA)" = ajiaj1r @iz ... QiQin |
0 0 R 0

which means that Vi, j, ajiajx = 0. In particular, ajzi = 0, which means that Vi,j, a;: =0, i.e., A = On.
216 a=1,b=—2.
217 Claim: A~' =1, — A + A? — A>. For observe that

(In +A)(In —A+A —A*) =L, —A+A* —A> —A+A* A’ A =1,
proving the claim.
218 Disprove! It is enough to take A = B = 2I,. Then (A +B) ' = (4I4) ' = JInbut A~ + B~ = II, + 31, =I,..
223 We argue by contradiction. If exactly one of the matrices is not invertible, the identities

A = Al, = (ABC)(BC) ' = 0n,

B = I,BI, = (A) '(ABC)C ' =0n,
C=1.C=(AB) '(ABC) = 0,,,

shew a contradiction depending on which of the matrices are invertible. If all the matrices are invertible then

0, =0,.C "B A "= (ABC)C "B A" =1,,

also gives a contradiction.

224 Observe that A, B, AB are invertible. Hence
A’B? =1, = (AB)> = AABB =ABAB
= AB =BA,

by cancelling A on the left and B on the right. One can also argue that A = A™', B = B™', and so AB = (AB)™! =
B 'A' =BA.

225 Observe that A = (a — b)I, + bU, where U is the n X n matrix with Tg’s everywhere. Prove that
A% = (2(a—b) +nb)A — ((a — b)* + nb(a — b))In.

226 Compute (A —I1,)(B — I).
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227 By Theorem 141 we have tr (SAS”) = tr (Sf1 SA) =tr (A).
243 The rank is 2.
244 If B is invertible, then rank (AB) = rank (A) = rank (BA). Similarly, if A is invertible rank (AB) = rank (B) =

1 0 0 1 0 0
rank (BA). Now, take A = and B = . Then AB = B, and so rank (AB) = 1. But BA = ,

0 0 00 0 0
and so rank (BA) = 0.

245 Effecting Rz — R1 — R3; aRs — bR2 — Ry successively, we obtain

_1 a 1 b_ _1 a 1 b ]
a 1 b 1 a 1 b 1

T b 1 a 0 b—a 0 a—>b
b 1 a1 0 a-—b a’? —b? a—Db|

1 a 1 b
0 1—a? b—a 1—ab

0 b—a 0 a—D>b

0 0 a?—b? 2a—0)

Performing (1 — a?)R3 — (b — a)R2 — R3 we have

_1 a 1 b ]
0 1—-a’ b—a 1—ab

0 0 —a? +2ab —b? 2a—2b —a® + ab?
0 0 a? —b? 2(a—b) ]

Performing R3 — R4 — R3 we have

_1 a 1 b ]
0 1—a? b—a 1—ab

0 0 —2a(a—b) —a(a®—1b?)
0 0 a? —b? 2(a—b) |

Performing 2aRs + (a + b)R3z — R4 we have

_1 a 1 b ]
0 1—a? b—a 1—ab

0 0 —2a(a—b) —a(a? —b?)

0 0 0 4a®> —4ab — a* + a’b? —ba’® + ab3_
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Factorising, this is

0 0 0

0 0 —2a(a—0»b)

—a(a+2+b)(a—b)(a—2+Db)

—a(a—Db)(a+b)

b

1—ab

Thus the rank is4 if (a+2+b)(a—b)(a—2+b) 40. Therankis3ifa+b=2and (a,b)/(1,1)orifa+b=-—-2
and (a,b) /(—1,—1). Therankis2ifa=b =1 and a—1. Therankis1ifa=b=+1.

246 rank (A) =4 if m3 +m? + 2 /0, and rank (A) = 3 otherwise.

247 The rank is 4 if a # +b. The rank is 1 is a = £b /0. The rank is 0if a=b = 0.

248 Therank is 4 if (a —b)(c —d) /0. Therankis2isa=b,cdorifa+#b,c=d. Therankislifa="b and c=d.

249 rank (ABC) <2 = x=13.

1 i
252 For the counterexample consider A =

261 We form the augmented matrix

=

Nl

Nl

(9]

1

From Rz — 2R71 — R; and Rz — 3R; — Rz we obtain

From R, < R3 we obtain

2

6

NI

NI

2

6

Wl

Nl

98]

NI

ol

W

ol

NI

Now, from Ry — Rz — Ry and R3 — 3R, — Rz, we obtain

1

~ 10

[o]]

From 4R, — R2 and 4R3 — Rz, we obtain

=

[o]]

0

2

(o]

(o]

=

(o]

NI ol Wl

(9]

[o]]

=

(o]]

ol

1]

&

&

1]

ol & Bl

Ll

Nl

(o]

(o]]

ol

ol

=

ol

ol

ol

ol

[o]]

[o]] ol

|

(o]

(o]

ol

ol

IN|

Nl
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Finally, from Ry — 3R3 — R3 we obtain

=
ol
ol
IN|

0 0 1|0
We deduce that :
12 3
237 -
31 2

262 To find the inverse of B we consider the augmented matrix

0 (e

0 —1 a

-1 a b
Performing Ry < R3, —R3 — R3, in succession,

—1 a b

0 —1 a

Performing Ry 4+ aR2 — Ry and R> — aR3 — R in succession,

-1 0 b+ad?

Performing R — (b + a?)R3 — R3, —R; — Ry and —R2> — R; in succession, we find

Nl Bl

ol

ol NI

|

0

ol NI

|

-1

1 0 0|-b—a?

0O 1 0 —a
0 0 1 —1
whence
—b—a?
B'=| _g4

Bl (=]

Nl

Bl (=]

NI

a

0 0

—a
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Now,
_o 0 —1_ _a b c||-b—a® —a -1
BAB™' = |0 —1 a1 0 0 —a -1 0
-1 a b _O 1 0 —1 0 0
_0 —1 0_ _—b—az —a —1
= |—-1 a 0 —a -1 0
_0 0 -] | —1 0 0
_a 1 0
= b 0 1
c 0 0
= AT,

which is what we wanted to prove.

263 Operating formally, and using elementary row operations, we find

__a?-1 a?+2a—2 a—2
aZ-5+2a aZ—-5+2a aZ—-5+2a

B '] _ 2 a+4 _ 1
aZ-5+2a aZ—-5+2a aZ—-5+2a

2a __2a+5 a
aZ-5+2a aZ—-5+2a aZ—-5+2a

Thus B is invertible whenever a # —1 4+ v/6.

264 Form the augmented matrix

a 2a 3a|1 0 O

0 b 2|0 1 0

Now perform R; — 2R> — R; and R> — 2R3 — R in succession, to obtain
1 0 —1|1/a —2/a 0

01 0 0 1/b —2/c

0 0 1 0 0 1/c
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Finally, perform R; + Rz — R to obtain

1 0 0|1/a —2/b
01 0| 0 1/b
0 0 1 0 0
Whence .
a 2a 3a 1/a
0 b 2b =( 0
0 0 ¢ 0

1/c

—2/c

1/c

—2/b

1/b

0

1/c
—2/c

1/c

265 To compute the inverse matrix we proceed formally as follows. The augmented matrix is

b a 0|1 0
c 0 a|0 1
0O ¢c b|0 O
Performing bR2 — cRy — Rz we find
b a 0 1
0 —ca ab|—c
0 c b 0
Performing aR3 + R2 — Rz we obtain
b a 0 1
0 —ca ab | —c
0 0 2ab | —c
Performing 2R2> — R3 — Rz we obtain
b a 0 1
0 —2ca 0 | —c
0 0 2ab | —c
Performing 2cR1 + Rz — R; we obtain
2bc 0 0 c
0 —2ca 0 |—c
0 0 2ab | —c
From here we easily conclude that B
b a 0 -5
c 0 a = &
0 c¢c b —>ba

0

0

N|_‘

~ Zac

al=

)

2bc

o=

==
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as long as abc #0.

266 Form the expanded matrix

T+a 1 1 1 0 0
1 1+b 1 01 0

1 1T T1+c|0 0 1

Perform bcR;1 — Ry, abR3 — R3, caRz — R2. The matrix turns into

bc + abc bce bce bec O 0
ca ca+ abc ca 0 ca O
ab ab ab +abc | 0 0 ab

Perform R; + Rz + R3 — Ry the matrix turns into

ab +bc+ ca+ abc ab + bc+ ca+ abc ab +bc+ ca+ abec | bc ca ab

ca ca+ abc ca 0 ca O
ab ab ab + abce 0 0 ab
Perform mh — Ry. The matrix turns into

1 1 1 bce ca ab
ab+bc+ca+abce ab+bc+ca+abce ab+bc+ca+abce

ca ca+ abc ca 0 ca 0

ab ab ab + abc 0 0 ab

Perform R, — caRy — Rz and R3 — abR3 — R3. We get

1 1 1 be ca ab
ab+bc+ca+abce ab+bc+ca+abe ab+bc+ca+abe
abc? c2a? a’be
0 abce 0 "~ abtbcrcatabe ca— ab+bc+ca+abce " ab+bctcatabe
ab?c a’be a?b?
0 0 abe "~ abtbcrcatabe " ab+bctcatabe ab — ab+bce+ca+abe |

Perform -+~R2 — R and —+~R3 — R3. We obtain

ABC ABC

1 1 1 be ca ab
ab+bc+ca+abce ab+bc+ca+abce ab+bc+ca+abe

01 0l — c 1_ ca S - S
ab+bc+ca+abe b b(ab+bc+ca+abce) ab+bc+ca+abe

0 0 1 _ b o a 1 ab
ab+bc+ca+abe ab+bc+ca+abe c c(ab+bcec+ca+abce)

Finally we perform Ry — R — R3 — Ry, getting

1 0 0 a+b+be . c _ b
ab+bc+ca+abce ab+bc+ca+abce ab+bc+ca+abe

01 ol — c 1_ ca - a
ab+bc+ca+abce b b(ab+bc+ca+abc) ab+bc+ca+abce

0 0 1 o b o a 1 ab
ab+bc+ca+abce ab+bc+ca+abce c c(ab+bc+ca+abc)
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We conclude that the inverse is

bictbe _ c _ b
ab+bc+ca+abe ab+bc+ca+abe ab+bc+ca+abe
o c ct+at+ca _ a
ab+bc+ca+abe ab+bc+ca+abe ab+bc+ca+abce
. b o a a+b+ab
ab+bc+ca+abce ab+bc+ca+abe ab+bc+ca+abe

271 Since rank (AZ) <5, A? is not invertible. But then A is not invertible and hence rank (A) < 5.

282 The free variables are z and w. We have

2u+w=2 = 2y=2—w = y=14+w,

and
xX+y+z+w=0 = x=—y—z—w =2y + 2z + 2w.

Hence

X 0 0 0

y 1 0 0

= | +z]| | +w
z 0 1 0
w 0 0 1

This gives the 9 solutions.

283 We have
1 2 3| |x 5
7 3 7| |yl -|8]
371 2| |z 0
Hence

<
I
Nl
wl
-
(o))
I
Nl
ol
N
o)}
I
w

N
(9]
=
Nl
o
(o]
|
Nl
o
w




186

Appendiz A

291 Observe that the third row is the sum of the first two rows and the fourth row is twice the third. So we have

Rearranging the rows we obtain

Hence d and f are free variables. We obtain

The solution is

292 The unique solution is

1

—1

R3—R;—R,—Rj3
Yl
R;—2R;—2R,—5Ry

R;—R5—R;,
S

R1—R5—R;

1| +d| o | +f

1

—1
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293 The augmented matrix of the system is

_2m 1 1 2 ]
1 2m 1 4m
i 1 1 2m Zmz_
Performing Ry < Ra>. i i
1 2m 1 4m
2m 1 1 2
1 1 2m|2m?
Performing R, < R3. : :
1 2m 1 4m
1 1 2m|2m?
2m 1 1 2
Performing R, — Ry — Ry and Rz — 2mR; — R_g we obtain ]
1 2m 1 4m
0 1—-2m 2m-—1|2m?—4m
0 1—4m*> 1—-2m| 2—8m’
Ifm-= 13 the matrix becomes
1T 1 1] 2
0 0 O —%
0 0 0| O

and hence it does not have a solution. If m & 13, by performing

1 2m 1
0 1 —1
0 1+2m 1
Performing R3 — (1 + 2m)R2 — R3 we obtain
1 2m 1
0o 1 —1
0 0 242m
If m = —1 then the matrix reduces to
1T -2 1
0o 1
(VN

1

1
172mR2 — Rz and

1—2m

R3 — R3, the matrix becomes

4m

2m(m—2)
1—2m

2(1 4 2m)

4m

2m(m—2)
T—2m

2(1+2m)(1—m?)

T1—2m
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The solution in this case is

X 4
y| = |24z
z 4
If m # —1,m # —1 we have the solutions
x T
y| = =7m
z (1+2m)(1—m)

T—2m

294 By performing the elementary row operations, we obtain the following triangular form:

ax+y —2z=1,
(a—1)2y+(1—a)(a—2)z:1—a,

(a—2)z=0.
If a = 2, there is an infinity of solutions:
X T+t
z t

Assume a 2. Then z = 0 and the system becomes
ax+y=1,
(a—1)’y=1—aq,
2x+(3—a)y=1.

We see that if a = 1, the system becomes
x+y=1,

2x +2y =1,

and so there is no solution. If (a — 1)(a — 2) & 0, we obtain the unique solution

X

295 The system is solvable if m ¥ 0, m &/ £2. If m = 2 there is the solution vl =

z

x a+d+b—c

y —c—d—b+a
296 There is the unique solution =

z d+c—b+a

t c—d+b+a

‘_&

3
N

3
4+
w

3
N

3
+
N

3
N
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297 The system can be written as

0O ¢ b z a
The system will have the unique solution
_ -1
X b a O c
Y = c 0 a b
z 0O ¢ b a
1 1
7% e e |©
- 1 b 1
Za  Zac e bl
1 1
|~ e ™ | @
(b2 + ¢* —a?
2bc
_ |a?+c?—1b?
2ac
a? + b2 — 2
L 2ab

as long as the inverse matrix exists, which is as long as abc 0

298
x = 2723°
y _ 273312
z = 2°377.

299 Denote the addition operations applied to the rows by a1, a2, a3, as and the subtraction operations to the columns
by b1, b2, b3, bs. Comparing A and AT we obtain 7 equations in 8 unknowns. By inspecting the diagonal entries, and the
entries of the first row of A and AT, we deduce the following equations

a; = bs,
az = by,
asz = bs,
a4 = by,
a; — by =3,
a; — b3 =6,
a; —bg =9.

This is a system of 7 equations in 8 unknowns. We may let as = 0 and thus obtain a1 =b; =9, a, =b, =6, a3 =bz =3,
Qg = b4 =0.
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300 The augmented matrix of this system is

Permute the rows to obtain

0 —y 1 —1 Yy 0

0 1 0 vy 1—y2|o

Performing Rs — R2 — Rs and R4 + yR2 — R4 we get

10 o0 1 —y |0
01 —y 1 0o |0
00 1 —y 1 0

0 0 1—y?2 y—1 y 0

00 y y—1 1—y2 |0

10 0 1 —y 0
01 —y 1 0 0
0 0 1 —y 1 0
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Performing Rs + R4 — Rs5 we get

0

0

0

0

0

Upon factoring, the matrix is equivalent to

0

0

0

0

0

0

—y? +2y—1

0

1

v +y—1

v +y’+3y—2

-y

—(y—Nw +y—1)

—(y—2)y*+y—1)

Thus (y — 2)(y? +y — 1)x4 = 0. If y = 2 then the system reduces to

In this case x5 is free and by backwards substitution we obtain

If y2 +y — 1 = 0 then the system reduces to

_x1_ _t_
X2 t
x3| T |t|>
X4 t
X5 t

_1 0o 0 1

o1 —y 1

—2

0

teR.

0
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In this case x4, x5 are free, and

_x1_ i yt—s
X2 y?s —yt —
X3 | = ys —t
X4 S

X5 t

S

, (s, t) € R%.

Since y?s — s = (y2 +y — 1)s — ys, this last solution can be also written as

_x1_ | yt—s
X2 —ys —yt
X3| = ys —t
X4 S

X5 t

Finally, if (y —2)(y? +y — 1) #0, then x4 = 0, and we obtain

X1

X2

X3 |

X4

323 v2a%2 —2a+1

324 [AV[=3 = A2+ (A2=1 = 2V =7 = A

325 0

326 a=+1ora=—8.

327 [A] 2(x+y)— 1z, [Blx+y— 1z, [C] —(x+y +2)
328 [A]. 0, [B]. 0, [C]. 0, [D]. 0, [E]. 2¢(= 2d)

329 [F]. 0, [G]. b, [H]. 20, [I]. 0.

)

(s,t) € R%.

330 Let the skew quadrilateral be ABCD and let P, Q, R, S be the midpoints of [A, B], [B, C], [C, D], [D, A], respectively.

Put x = OX, where X € {A,B, C,D, P, Q, R, S}. Using the Section Formula 4.4 we have

a+b _b+c
2 ) q-= 2 )

This gives
. _a—c
P q-= 2 )

This means that @ = ]ﬁ and so PQRS is a parallelogram since one pair of sides are equal and parallel.

s—r=

c+d S_d—|—a
2 2

2




Answers and Hints 193

331 We have ZB? = ﬁ + F_VC} By Chasles’ Rule A? = AY + E?, and ﬁ)) = ﬁ + E—>D We deduce that
AC + BD = AE + EC + BE + ED = AD + BC.
But since ABCD is a parallelogram, ﬁ = ]ﬁf Hence

AC +BD - AD + BC - 2BC.
— — —

— — —
332 We have IA = —3IB <= IA = —3(IA + AB) = —3IA — 3AB. Thus we deduce

IA +3IA = —3AB &= 4IA - —3AB
— 4Al-3AB
& Al-32AB
Similarly
JA- 1B < 3JA--JB
e 3JA-—_JA—AB
— 4JA- _AB
— AJ-1AB

|=

Thus we take I such that /ﬁ = %/ﬁ) and J such that AJ = 4,ﬁ.

Now
MA +3MB - MI +1IA + 31B
— 4MI +IA + 3IB
~ 4MI,
and

3MA +MB = 3MJ+3JA + MJ +JB
~ 4MJ +3JA +JB

— 4MJ.

333 Let G, O and P denote vectors from an arbitrary origin to the gallows, oak, and pine, respectively. The conditions of
the problem define X and Y, thought of similarly as vectors from the origin, by X =0 + R(O — G), Y =P + R(P — G),
where R is the 90° rotation to the right, a linear transformation on vectors in the plane; the fact that —R is 90° leftward

rotation has been used in writing Y. Anyway, then

X+Y O+P  R(O-P)

2 2 + 2
is independent of the position of the gallows. This gives a simple algorithm for treasure-finding: take P as the (hitherto)
arbitrary origin, then the treasure is at O%R(O)
352 a=1
354
4 —1 2
p= =2 +3 =2r + 3s.




194

Appendiz A

355 Since a; = a®i, a; = a*j, we may write
a=(a*i)i+ (a%)j

from where the assertion follows.
356
xa+pBb=0 = a*(xa+ b)=a0

— «fa®a) =0

= dallall* =0.
Since a + 0, we must have ||a]| /0 and thus & = 0. But if & = 0 then

xa+pfb=0 = pBb=0
= B=0,

since b 0.

357 We must shew that
(2x + 3y)*(2x — 3y) = 0.
But 9
(2x + 3y)*(2x — 3y) = 4lIxII* — 9llyll* = 4(ZllylI*) — 9llyll* = 0.

358 We have Vv € R? ve(a — b) = 0. In particular, choosing v = a — b, we gather
(a—b)s(a—b) =la—bl*=0.

But the norm of a vector is O if and only if the vector is the O vector. Therefore a — b =0, i.e., a=b.

359 We have
latbl|> = (axb)e(atb)
= a*a &+ 2a*b + beb
= [lal* + 2a*b + [b]I*,
whence the result follows.
360 We have
lu+vl? —llu—vl[? = (u+v)(u+v)—(u—v)(u—v)

= ue*u + 2u°v + vev — (u*u — 2uev + vev)

= 4uev,
giving the result.

361 By definition

projs

. roj2ea
proj = &

2
llal|
a®x
=12 X2

2
[lal|
(asx)?

2 2
Il [lall

)

ov)2
Since 0 < ﬁ < 1 by the CBS Inequality, the result follows.
x[|%|la
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362 Clearly, if a = 0 and A &/ 0 then there are no solutions. If both a = 0 and A = 0, then the solution set is the whole space
R2. So assume that a - 0. By Theorem 347, we may write x = u 4+ v with proj: = ulla and v L a. Thus there are infinitely
many solutions, each of the form

= v = x*a v=——a+vV
lal|? lal? ’
where v € a™t.
2 1
372 Since a = isnormalto2x —y =1and b = is normal to x — 3y = 1, the desired angle can be obtained by
—1 -3
finding the angle between the normal vectors:
(;F) = arccos _ab arccos > arccos 1 .=
’ llalll[bl] V5 -4/10 2 4
373 2(x —1)+(y+1)=0or2x+y=1.
— — = — — —
374 By Chasles’ Rule AA’ = AG + GA’, BB/ = BG ++ GB/, and CC’ = CG + GC’. Thus
e T
0 = AA’+BB’'+CC’
— — —
- AG+GA’+BG+GB’+CG+ GC
—_— = =
- —(GA+GB +GC) + (GA’ + GB’ + GC)
—_— = —3
= GA’'+GB’' + GC’,

whence the result.

375 We have:

0 The points F, A, D are collinear, and so FT)l\ is parallel to FTD), meaning that there is k € R \ {0} such that FT)R = kF—)D.
Since the lines (AB) and (DC) are parallel, we obtain through Thales’ Theorem that ﬁ = kﬁ and ﬁ = kl?. This
gives

FA —Fl = k(FD — FJ) — IA = kJD.

FB — Fl - k(FC — F) = IB - KjC.

Since I is the midpoint of [A, B], IT)A + I@ =0, and thus k(]? + ]T))) = 0. Since k /0, we have ]_()Z + ]—)D = 0, meaning
that J is the midpoint of [C, D]. Therefore the midpoints of [A, B] and [C, D] are aligned with F.

O Let J’ be the intersection of the lines (EI) and (DC). Let us prove that J’ =J.

Similarly

Since the points E, A, C are collinear, thelrej> 1 + 0 such that l?)'\ = lﬁ. Since the lines (ab) and (DC) are parallel,
we obtain via Thales’ Theorem that I?I) =1EJ’ and 153) = lﬁ. These equalities give

— —
EA—El-1UEC—EJ)) — IA-U'C,
— —
EB_—El-LED—FEJ/) — IB-1'D.

— —  — — —
Since I is the midpoint of [A, B], IA + IB - 0, and thus 1(J'C + J’D) = 0. Since 1 ## 0, we deduce J'C + J'D = 0,

that is, J’ is the midpoint of [C, D], and so J’ =7J.

376 We have:
0 By Chasles’ Rule

Ac

Al
!
al
-

and

>
I}
=
+
9|
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Adding, and observing that since ABCD is a parallelogram, /ﬁ = C—D>,

AB + BE + AD + DF=AC <= BE +DF-AC — AB — AD
« BE+DF-AD+DC_AB_ AD -
«> BE-_DFL

The last equality shews that the lines (BE) and (DF) are parallel.
[0 Observe that ]ﬁ = %ﬁ = %A_D) = /TI) = —17\ . Hence

1j - IA + AB + BJ - AB,

proving that the lines (AB) and (IJ) are parallel.

Observe that
IE —IA + AF -

whence IEJF is a parallelogram.

ﬁ+%ﬁ=%?+ﬁ=a+ﬁ=ﬁ+a=ﬁ,

1
2

377 Since ﬁ = %IT)) and [I, D] is a median of AABD, E is the centre of gravity of AABD. Let M be the midpoint of
[B, D], and observe that M is the centre of the parallelogram, and so 2Ai§i = /ﬁ + ﬁ Thus

AE - %m - %(LW) - %(ﬁ + AD).

To shew that A, C, E are collinear it is enough to notice that /ﬁ = %/ﬁ

378 Suppose A, B, C are collinear and that % = % Then by the Section Formula 4.4,
b Ac + ua,
At

whence pa— (A+ u)b+ Ac = 0 and clearly p — (A+pn) +A = 0. Thus we may take @ = u, B = A+, and y = A. Conversely,

suppose that
aa+Bb+vyc=0, a+B+v=0
for some real numbers «, 3,7y, not all zero. Assume without loss of generality that y s 0. Otherwise we simply change the
roles of v, and « and  Then vy = —(a + ) # 0. Hence
xa + Bb

xa+ Bb=(ax+ B)c = c= P

)

and thus [O, C] divides [A, B] into the ratio g, and therefore, A, B, C are collinear.

379 Put OX = x for X € {A,A’,B,B’,C,C’,L,M, N, V}. Using problem 378 we deduce

vt+aa+a'a’=0, T+a+a =0, (A1)
v+pa+pa’=0, 1+p+p' =0, (A.2)
v+vya+vya’=0, 1+v+vy' =0. (A.3)

From A.2, A.3, and the Section Formula 4.4 we find
Bb —yc B'b’ —vy'c’
B—y B Y

whence (f — y)l = Bb — yec. In a similar fashion, we deduce

=1,

(Y — a)m = yc — «aa,

(¢ — B)n=cxa— Bb.
This gives
(B—vY)1+(y —a«)m+ («—B)n=0,
B—v)+ (v —a)+(a—B)=0,
and appealing to problem 378 once again, we deduce that L, M, N are collinear.
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391 [A] AS, [B] AB.

392 Put

Then either

or

will satisfy the requirements.

393 The desired area is

a=|1| x |7| =>(G+j+Kx(i+j=j—1i=] 1

1 0 0
_ 3
V2
3a _3a | |
lall /2 |
3
V2
_3a | 5
llal| V2
0

—1

0
PP -+

394 It is not associative, since iX (iXj) =ixXk = —j but (ixi)xj=0x]j=

395 We have xXx = —xXx by letting y = x in 4.15. Thus 2xXx = 0 and hence xXx = 0.

396 2axb

397

ax(xxb)=bx(xxa) & (a*b)x — (a*x)b = (bea)x — (b*x)a <= a*x = bex =0.
The answer is thus {x : x € Raxb}.

398

_ (a*b)a + 6b + 2axc

- 12 + 2/[al)?

_ (asc)a + 6¢c + 3axb
18 + 3||al)

2n
399 Assume contrariwise that a, b, ¢ are three unit vectors in R? such that the angle between any two of them is > ——. Then

3

a*b < —%, bec < —1 and cea < —%. Thus

2)

la+b+cl> = lal®+Ibl? + [/
+2a¢b + 2bec + 2c*a

T+14+1-1-1-1

N

= 0,

which is impossible, since a norm of vectors is always > 0.
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410 The vectors

a— (—a)_ _Za
0—1 =11
a—0 | | a
and i i
0—(—a) a
1—1 =10
2a—0 | _Za
are coplanar. A vector normal to the plane is
2a [ a —2a
—1| X |0]| = |-3a?
a _2a a
The equation of the plane is thus given by
—2a ] X—a
—3a?|*|y—o0| =0,
a | z—a

that is,

2ax + 3a2y —az =a’.

411 The vectorial form of the equation of the line is

r= 10| +t|—2

1 1
Since the line follows the direction of | |, this means that [__)| is normal to the plane, and thus the equation of the
—1 —1

desired plane is
x—1)—2(y—1)—(z—1)=0.

412 Observe that (0,0,0) (as 0 = 2(0) = 3(0)) is on the line, and hence on the plane. Thus the vector

1-0 1

—1-0 —1

—1-0 —1
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lies on the plane. Now, if x = 2y =3z =t, then x = t,y = t/2,z = t/3. Hence, the vectorial form of the equation of the line

is
0 1 1

r=o| +tf1/2| =t|1,2

0 1/3 1/3

This means that |1 /2| also lies on the plane, and thus

1/3
1 1 1/6
—1| % |1/2| = |-4/3
-1 1/3 3/2

is normal to the plane. The desired equation is thus

6x 3YT2F7Y

413 Put ax =by =cz =t, so x =t/a;y = t/b;z = t/c. The parametric equation of the line is

X 1/a

y| =t|1/p|, teR

1/a

Thus the vector |1 /b is perpendicular to the plane. Therefore, the equation of the plane is

1/c

or

We may also write this as
bex + cay + abz = ab + be + ca.

a

2| . The line sought has the same direction as this vector, thus the equation of the

414 A vector normal to the plane is | o

(12
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line is
X 0 a
yl=lo| +t|a?|, teRr
z 1 a?

415 We have

Hence if z = t,

X _t—1 _—1 1
y|=| —2|=|-2|tt]o
z ot _O 1
416 The vector ) )
2—-1 1
1—0 =11
_1—(—1)_ 2

lies on the plane. The vector

1 1 1
ol x[1]=1]1
1 2l |1

is normal to the plane. Hence the equation of the plane is

1 x—1
11 y =0 = x+y—z=2
—1 z+1
417 We have cxa = —i + 2j and axXb = 2k — 3i. By Theorem 408, we have
bxc=—axb—cxa=—2k+3i+1i—2j=4i—2j—2k.
418 4x +6y =1

419 There are 7 vertices (Vo = (0,0,0),Vy = (11,0,0), V2 = (0,9,0),V3 = (0,0,8), V4 = (0,3,8), V5 = (9,0,2),
Vs = (4,7,0)) and 11 edges (VOV1, Von, VOV3, V1 V5, V1 Vs, V2V4, V3V4, V3V5, V4V5, and V4V6).

427 Expand ||ZI‘:1 ai||” = 0.

428 Observe that ) ;1 =n. Then we have

giving the result.
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429 This follows at once from the CBS Inequality by putting

ai
7 1
az
5 2
v = , u=
an
_Tl._ _n_

and noticing that

L, nam+1)2n+1)
P c :

k=1

442 No, since 1pv = v is not fulfilled. For example

443 We expand (1r + 1r)(a + b) in two ways, first using 5.7 first and then 5.8, obtaining
(Ir+1r)(a+b)=(lr+Tr)a+ (Ir+1r)b=a+a+ b+ b,
and then using 5.8 first and then 5.7, obtaining
(g +1r)(a+b)=Tg(a+b)+Tr(a+b)=a+b+a-+b.

We thus have the equality
at+a+b+b=a+b+a+b.

Cancelling a from the left and b from the right, we obtain
at+b=b+a,

which is what we wanted to shew.

444 We must prove that each of the axioms of a vector space are satisfied. Clearly if (x,y, ) € R" x RT x R then
x@®y=xy>0and a ® x =x% >0, so V is closed under vector addition and scalar multiplication. Commutativity and
associativity of vector addition are obvious.

Let A be additive identity. Then we need
XPA=x — xA=x — A=1.

Thus the additive identity is 1. Suppose I is the additive inverse of x. Then
xpl=1 = xI=1 = I:J—C.
Hence the additive inverse of x is 3—(

Now
a® (x@®y)=(xy)* =x"Y* =x"By* = (a®x) O («®Y),
and
(x+B)@x=x""P -x**%* - (x") & (x") = (a @x) B (B® ),
whence the distributive laws hold.

Finally,
1T@x=x"= X,
and
x® (BRx)=(BRxX)* = (xP)* =x** = (aB) @ x,
and the last two axioms also hold.
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445 C is a vector space over R, the proof is trivial. But R is not a vector space over C, since, for example taking i as a scalar
(from C) and 1 as a vector (from R) the scalar multiple i- 1 =1 ¢ R and so there is no closure under scalar multiplication.

446 One example is

ol
ol
ol
ol
-
=
=
-

(Z2)* =

ol
=
=
=
5
5
=
=

ol
=
ol
=
ol
-y

1

ol

Addition is the natural element-wise addition and scalar multiplication is ordinary element-wise scalar multiplication.

447 One example is

ol
ol
-
=
—
NI
NI
Nl

2
(Z3) = ) ) ) ) ) ) ) )

ol
=
NI
ol
=
N

ol
=
Nl

Addition is the natural element-wise addition and scalar multiplication is ordinary element-wise scalar multiplication.

454 Take o € R and

a a’
b b’
X = eX, a—b—-3d=0, y= e€X, a’'—b’'—3d'=0.
[ c’
d d’
Then
a a’ a+ aa’
b b’ b + ab’
X+ oy = + =
c c’ c+ ac’
d d’ d—+ «d’

Observe that
(a+aa’)—(b+ab’)—3(d+ad’)=(a—b—3d)+a(a’—b"—3d")=0+ a0 =0,

meaning that x + oy € X, and so X is a vector subspace of R*.

455 Take i i i i
ar az
2a; — 3bs 2a; — 3b:2
u= 5b; ,V = 5b, , x €R.
a; + 2b; az + 2b;
aq az
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Put s = a1 + aaz,t=b7 + abz. Then

_ a; + xaz ] i S ]
2(a1 + aaz) — 3(by + abz) 2s — 3t
u+av-= 5(by + abz) =| 5t |€X
(a1 + xaz) + 2(b1 + abz) s + 2t
a; + xaz S

since this last matrix has the basic shape of matrices in X. This shews that X is a vector subspace of R°.

456 Take (u,v) € X? and o € R. Then
a*(u+ av) =a*u—+ aasv=0+0=0,
proving that X is a vector subspace of R™.
457 Take (u,v) € X? and &« € R. Then
aX(u+ av) =axXxu+ xaxv=0+ a0 =0,
proving that X is a vector subspace of R™.

462 We shew that some of the properties in the definition of vector subspace fail to hold in these sets.

0 0

O Take x = |1|, « = 2. Then x € V but 2x = |2 Z Vas 0?2 +2% =4 +1.S0V is not closed under scalar

0 0

multiplication.

0 1 1

O Takex = 1|,y =|0|- ThenxeW,yeWhbutx+y= (1| €Wasl1:-1=10. Hence W is not closed under

0 0 0

vector addi_tion.

0 Take x = . Thenx € Z but —x = —

under scalar multiplication.

@Zas1+ (—1)> =2 0. So Z is not closed

463 Assume U; ¢ U and U, ¢ Uy. Take v € Uz \ Uy (which is possible because Uz ¢ Uy) and u € Uy \ U (which is
possible because U; ¢ Uz). If u+ v € Uy, then—as —u is also in U;—the sum of two vectors in Uy must also be in U,

giving
u+v—u=ve U,

a contradiction. Similarly if u + v € U;,, then—as —v also in U,—the sum of two vectors in U, must also be in U giving

ut+v—u=ue€ Uy,

another contradiction. Hence either Uy C U, or U, C Uy (or possibly both).

464 Assume contrariwise that V = Uy [J Uz |J- - - |J Uk is the shortest such list. Since the U; are proper subspaces, k > 1.
Choose x € Uy, x ¢ Uz |J---|J Uk and choose y € Uy. Put L ={y + ax|a € F}. Claim: L[|U; =@. Forifu e LW

then Jap € Fwithu=y + apx and so y = u — aox € Uy, a contradiction. So L and U, are disjoint.
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We now shew that L has at most one vector in common with Uj,2 < j < k. For, if there were two elements of F, a /b
withy + ax,y + bx € Uj,j > 2 then

(a—b)x=(y+ax) — (y + bx) € Uj,

contrary to the choice of x.

Conclusion: since F is infinite, L is infinite. But we have shewn that L can have at most one element in common with the
U;. This means that there are not enough U; to go around to cover the whole of L. So V cannot be a finite union of proper
subspaces.

465 Take F=7Z,,V =F X F. Then V has the four elements

ol
ol
—_
—_

ol
=
o
-

with the following subspaces

ol
ol
ol
=
ol
—

Vi = ’ )V2= y ,V3= ,

ol
=
ol
ol
ol
—

It is easy to verify that these subspaces satisfy the conditions of the problem.

475 If
1 1 1
alol +b 1| +c|1] =0,
0 0 1
then
a+b+c 0
b+c =10
c 0

This clearly entails that ¢ = b = a = 0, and so the family is free.

476 Assume - o _ _ o
1 1 1 1 0
1 1 —1 1 0
a +Db +c +d =
1 —1 1 0 0
1 —1 —1 1 0
Then

a+b+c+d=0,

a+b—c+d=0,
a—b+c=0,

a—b—c+d=0.

Subtracting the second equation from the first, we deduce 2c¢ = 0, that is, ¢ = 0. Subtracting the third equation from the
fourth, we deduce —2c+d = 0 or d = 0. From the first and third equations, we then deduce a +b = 0 and a — b = 0, which
entails a = b = 0. In conclusion, a=b=c=d =0.
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Now, put
1 1 1 1 1
1 1 —1 1 2
x +vy +z +w =
1 —1 1 0 1
1 —1 —1 1 1
Then

xX+y+z+w=1,

X+y—z+w=2
x—y+z=1,

xX—y—z+w=1.

Solving as before, we find

1 1 1 1 1

1 4|1 11— 1 2
21tz "3 ||

1 —1 1 0 1

1 —1 —1 1 1

477 Since a, b are linearly independent, none of them is 0. Assume that there are («, B, y) € R? such that
aa + Bb + yaxb = 0. (A.4)

Since a*(axb) = 0, taking the dot product of A.4 with a yields «ljal|? = 0, which means that & = 0, since [|a|| # 0. Similarly,
we take the dot product with b and ax b obtaining respectively, § = 0 and y = 0. This establishes linear independence.

478 Assume that
AMai + -+ + Axax = 0.

Taking the dot product with a; and using the fact that a;ea; = 0 for i +/j we obtain
0 = O'aj = Ajaj°aj = 7\)'H(1j||2.

Since a; 0 = ||a; II* +# 0, we must have Aj = 0. Thus the only linear combination giving the zero vector is the trivial
linear combination, which proves that the vectors are linearly independent.

481 We have
(vi+v2) — (v2+v3)+ (vz +va) — (va +v1) =0,

a non-trivial linear combination of these vectors equalling the zero-vector.

483 Yes. Suppose that a + bv/2 = 0 is a non-trivial linear combination of 1 and +/2 with rational numbers a and b. If one
of a, b is different from O then so is the other. Hence

a+bv2-0 = x/—=—g.
The sinistral side of the equality v/2 = —% is irrational whereas the dextral side is rational, a contradiction.

484 No. The representation 2 - 1 + (—+/2)v/2 = 0 is a non-trivial linear combination of 1 and v/2.

485 1. Assume that
a+bv2+ C\/§=O, a,b,c, e @,az—i—b2 + ¢? # 0.

If ac #0, then
2 2 3.2
20 a 3¢ V3.

b\/—=fa—cx/§<:)2b2=a2+2acx/§+3c2<:)T=
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The dextral side of the last implication is irrational, whereas the sinistral side is rational. Thus it must be the case that
ac=0.Ifa=0,c+0 then

b\/f+cx/§0(:)—%\/§,
and again the dextral side is irrational and the sinistral side is rational. Thus if a = 0 then also ¢ = 0. We can similarly
prove that ¢ = 0 entails a = 0. Thus we have
bv2 =0,

which means that b = 0. Therefore

a+bv2+c¢v3=0,a,b,c,eQ, Sa=b=c=0.
This proves that {1, v/2, v/3} are linearly independent over Q.

2. Rationalising denominators,

12 B 1+\/§+2\/12+4
1-v2 Vi2—2 1-2 12—4
1 1
= —1—\/§+§\/§+§
1 1
= _E_ﬁ+§‘/§'

486 Assume that
ae* + be™ + ce’* = 0.
Then
c=—ae % —be ~.
Letting x — 400, we obtain ¢ = 0. Thus
ae® + be** =0,
and so
—x

b=—ae
Again, letting x — +o00, we obtain b = 0. This yields
ae* = 0.
Since the exponential function never vanishes, we deduce that @ = 0. Thus a = b = ¢ = 0 and the family is linearly
independent over R.
487 This follows at once from the identity
cos 2x = cos® x — sin? x,

which implies

cos 2x — cos® x + sin” x = 0.
500 Given an arbitrary polynomial

p(x) = a+ bx + ex? + dx>,
we must shew that there are real numbers s, t, u, v such that

p(x) =s+t(1 +x) +u(l +x)% +v(1 +x)>.
In order to do this we find the Taylor expansion of p around x = —1. Letting x = —1 in this last equality,
s=p(—1)=a—b+c—deR.
Now,

p'(x) =b + 2ex + 3dx% =t + 2u(1 +x) + 3v(1 +x)%.
Letting x = —1 we find
t=p'(—1)=b—2c+3d €ER.
Again,
p”(x) =2c+ 6dx = 2u + 6v(1 4 x).
Letting x = —1 we find
u=p”’(=1)=c—3d €R.
Finally,
p”(x) =6d=6v,

so we let v=d € R. In other words, we have

px)=a+bx+ex? +dx’> =(a—b+c—d)+ (b—2c+3d)(1+x)+ (c—3d)(1 +x)* +d(1 +x)°.
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501 Assume contrariwise that

—1 —1 —1
Then we must have
a=1,
b=1,
—a—b=-1,
1 1 0 1 0
which is impossible. Thus | 1 | is not a linear combination of | ¢ |, | 1 | and hence is not in span ol-|1
—1 —1 —1 —1 —1
502 It is
1 0 0 0 (VN a c
a +b +c = ,
0 0 0 1 -1 0 —c b

i.e., this family spans the set of all skew-symmetric 2 X 2 matrices over R.

515 We have _ _ _ _ -
a 1 0
2a —3b 2 -3
5b =a|go|l +b| 5|,
a+2b 1 2
a 1 0
so clearly the family _ __ _ __ _ _ o
1 0
2 -3
0l» | 5
1 2
1 0

spans the subspace. To shew that this is a linearly independent family, assume that

_1_ _ 0 | _0_
2 -3 0
alo|l +b |5 |=10
1 2 0
1 0 0
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Then it follows clearly that a = b = 0, and so this is a linearly independent family. Conclusion:

_]_ _ , -
2 -3
0l» | 5
1 2
1 0

is a basis for the subspace.

516 Suppose

0 = a(vi+v2)+b(va+v3)+c(vs+vy)+d(vs +vs)+f(vs +vi)

(a+f)vi+ (a+b)va+ (b+c)vs+ (c+d)vs + (d + f)vs.

Since {v1,v2,...,vs} are linearly independent, we have
a+f=0,
a+b=0
b+c=0
c+d=0
d+f=0.

Solving we find a =b = ¢ = d = f = 0, which means that the
{vi +va2,v2+v3, vz +vs,v4 +vs5,vs + v1}

are linearly independent. Since the dimension of V is 5, and we have 5 linearly independent vectors, they must also be a basis
for V.

517 The matrix of coefficients is already in echelon form. The dimension of the solution space is n — 1 and the following
vectors in R2™ form a basis for the solution space

-1 -1 - -
—1
1 0
0
0 1
1
0 0
a; = , Q2= yeooy An-1=1|_1
—1 —1
0
1 0
0 1
0
1
0 0 -

(The “second” —1 occurs on the n-th position. The 1’s migrate from the 2nd and n + 1-th position on a; to the n — 1-th
and 2n-th position on an_1.)
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518 Take (u,v) € X? and « € R. Then

a a’
b b’
u= , b+2c=0, v= , b’ +2c’=0.
c c’
d da’
We have
a+ aa’
b + ab’
u+ av = s
c+ «ac’
d+ ad’

and to demonstrate that u + av € X we need to shew that (b + ab’) + 2(¢ + «c’) = 0. But this is easy, as

(b+oab’)+2(c+ac’)=(b+2c)+ ab’ +2¢') =0+ a0 = 0.

Now o ~ _ o _ -
a a 1 0 0
b —2c 0 —2 0
= =a +c +d
c c 0 1 0
_d_ I d | _0_ I 0 | _1_
It is clear that o
1 0 0
0 —2 0
0 ) 1 ) 0
_O_ i 0 | _1_

are linearly independent and span X. They thus constitute a basis for X.

m+1)

519 As a basis we may take the n matrices Eij € M, (F) for 1 <i<j < n.

520 dim X = 2, as basis one may take {vi, va}.
521 dim X = 3, as basis one may take {vi, va2, vs}.
522 dim X = 3, as basis one may take {vi, vz, vs}.

523 Since a L axx = b, there are no solutions if a®b /0. Neither are there solutions if a = 0 and b /0. If both a =b = 0,
then the solution set is the whole of R®. Assume thus that asb = 0 and that a and b are linearly independent. Then a, b, axb
are linearly independent, and so they constitute a basis for R®. Any x € R> can be written in the form

x = xa + 3b + yaxb.




210 Appendiz A

We then have

b = axx
= pBaxb + yax(axb)
-~ Baxb + y((a*b)a — (a*a)b).
= faxb — y(a*ab)

Baxb — yllall*b,

from where
Baxb + (—vllall* —1)b =0,
which means that 3 =0 and y = —m, since a, b, axb are linearly independent. Thus
X =o0a— saxb
llall

in this last case.

531 1. It is enough to prove that the matrix

is invertible. But an easy computation shews that

A% = =414,

whence the inverse sought is

1T 1 1 1 1/4 1/4 1/4 1/4
o P 5 B R R 1/4 1/4 —1/4 —1/4
A =ZA=Z =
1T -1 1 =1 14 —1/4 1/4 —1/4
1T -1 1 1 1/4 —1/4 —1/4 1/4

2. Since the ay are four linearly independent vectors in R* and dimR* = 4, they form a basis for R*. Now, we want to

solve o -~ L -
X 1 1 1 1 X 1
Yy 1 1 -1 -1 y 2
A - -
z 1T —1 1 —1 z 1
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and so
_x_ _1_ _1/4 1/4 1/4 1/4 ] _1_ i 5/4 ]
Y AT 2 1/4 1/4 —-1/4 —1/4| |2 1/4
z 1 1/4 —1/4 1/4 —-1/4| |1 —1/4
w 1 1/4 —1/4 —1/4 1/4 1 —1/4
It follows that
_1_ _1_ | 1 ] | 1 ] | 1 ]
2 5 1 N 1 1 1 —1 1 —1
1 * 1 * —1 * 1 * —1
_1_ _1_ _—1_ _—1_ i 1 |

The coordinates sought are

3. Since we have

1 1 1 1 1

2 5 1 1 -1 1 1 1 -1
4 4 4 4 ’

1 1 1 -1 -1

1 1 -1 -1 1

the coordinates sought are

1 1
a—1 0 Ta—1
—1 T1—a -1 a+1
532 [1]a=1,[2] (A(a)) ' = (3]
B 1 1 0 a
a—1 a—1
1 a 1 —a—1
I 1 1 1]
0 a—1 a—1 a—1
0 —a—1 —a —1
a a 1
0 a—1 a—1 a—1
1 2+4+a a+1 1
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539 Let « € R. Then

X + «a (x + xa) — (y + ab) — (z + «c)
Lly+ab = (x +aa)+ (y+ ab) + (z + «c)
Z + «c zZ+ ac
X—Yy—2z a—b—c

= |x+y+z| T*|la+b+ec

z c
X a

= Lly| tal |v]|,
z c

proving that L is a linear transformation.

540 Let x,y,x’,y’ be vectors in R and let &« € R be a scalar. Then

Lx+ax',y +ay’)

L((x,y) + a(x',y"))
= (x+ ax’)xk+hX(y + ay’)
= xXk+ oax’xk +hxy +hxay’

= L(x,y)+aL(x’,y’)

541
LH+aH') = —A '(H+ aH)HA™'

—A" THA ' + a(—ATH'A™ )

L(H) + «L(H'),

proving that L is linear.

542 Let S be convex and let a,b € T(S). We must prove that Va € [0;1], (1 — «)a + a«b € T(S). But since a, b belong
to T(S), 3x € S,y € S with T(x) =a, T(y) = b. Since S is convex, (1 — a)x + oy € S. Thus

T(1 —a)x + ay) € T(S),
which means that

(1—a)T(x) + «T(y) € T(S),

that is,
(1 —x)a+ ab € T(S),

as we wished to show.




Answers and Hints 213

X

550 Assume yl| € ker (L). Then

z

X 0
L yl| = [o]>
z 0
that is
x—y—z=0,
x+y-+z=0,
z=0.

This implies that x —y =0 and x +y = 0, and so x =y = z = 0. This means that

and L is injective.

By the Dimension Theorem 546, dimIm (L) = dimV — dimker (L) = 3 — 0 = 3, which means that

Im (L) =R3
and L is surjective.
a
551 Assume that || € ker (T),
c
a 1 1 0

bl =(a=0b)|o| +b [1| +c o
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Then
0
a
0
0
c
0

1 1 0

= (a—b)T |[g| +bT [1]| +¢cT |o

0 0 1
_1_ _2_ _1_
0 —1 —1
- (a—b) +b +c
—1 0 1
_0_ _0_ _0_
_a+b+c_
—b—c
—a+b+ec
L 0 |
It follows that a = 0 and b = —c. Thus
0

ker (T)=<c|_1|:c€R;,,

and so dimker (T) = 1.

By the Dimension Theorem 546,

dimIm (T) =dimV — dimker (T) =3 —1=2.

We readily see that
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and so o
1 1
0 —1
Im (T) = span ,
—1 1
0 0
552 Assume that
x + 2y 0
X
L = |x+2y| = |0
y
0 0
Then x = —2y and so
X -2
=y
y 1

This means that dim ker (L) = 1 and ker (L) is the line through the origin and (—2,1). Observe that L is not injective.

By the Dimension Theorem 546, dimIm (L) = dimV — dimker (L) =2 — 1 = 1. Assume that

3(x,y) € R? such that

x + 2y a
X
L =|x+2y| = |b
Yy
0 c
This means that
a x + 2y
b| = |x+2y| = (x+2y)
c 0
Observe that L is not surjective.
553 Assume that
X—y 0
x
L = (x+yl| = |0
Yy
0 0
Then x +y = 0 = x — y, that is, x = y = 0, meaning that
0
ker (L) = ,

1

a

b| € Im(L). Then
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and so L is injective.

a

By the Dimension Theorem 546, dimIm (L) = dimV — dimker (L) =2 — 0 = 2. Assume that || € Im (L). Then

3(x,y) € R? such that

X—y a
X
L T |x+vy b
Yy
0 c
This means that } }
a X—y 1 —1

c 0 0 0
Since )
1 —1
11> 1
0 0

are linearly independent, they span a subspace of dimension 2 in R3, that is, a plane containing the origin. Observe that L
is not surjective.

554 Assume that

X
X—y—z 0
Liyl-= =
y—2z 0
z
3

Then y = 2z;x = Yy + z = 3z. This means that ker (L) = (z |2| : z € R . Hence dimker (L) = 1, and so L is not

injective.
Now, if
x
X—y—z a
L yl = =
y—2z b
z
Then
a X—Yy—2z 1 —1 —1
= =X +vy +z
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Now,

and

are linearly independent. Since dim Im (L) = 2, we have Im (L) = R?, and so L is surjective.

555 Assume that

a b
0=tr =a—+d
c d
Then a = —d and so,
a b —d b -1 0 01 0 0
= =d +b +c ,
c d c d 0 1 0 0 1 0

ax 0
@ =tr
0 0
556 1. Let (A,B)? € M2(R), « € R. Then
L(A+aB) = (A+ aB)"T + (A + aB)

= AT+B"+A+aB
= AT+ A+ aB" +aB
= L(A)+ oaL(B),

proving that L is linear.

a b
2. Assume that A = € ker (L). Then

c d

0 0 a b a c 2a b+ec
~L(A) - + - :
0 0 c d b d b+c 2d
whence a =d =0 and b = —c. Hence
0 —1

and so dimker (L) = 1.
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3. By the Dimension Theorem, dimIm (L) =4 — 1 = 3. As above,

2a b+ec
L(A) =
b+c 2d
2 0 0 1 0 0
= a + (b +¢) +d ,
0 0 1 0 0o 2

from where

557 [0 Observe that
I—T)Y =1—2T+T>=1—-2T+T=1—T,

proving the result.

0 The inverse is I — %T, for

1. 1 1.2 L P
(I+T)(I—§T)71+T—ET—§T =I+T 2T szl,
proving the claim.
0 We have
x €€ ker(T) & x—T(x) € ker(T)

& I(x) —T(x) € ker (T)

— (I—-T)(x) € ker (T)

— x€eIm(I-T).

562 1. Since the image of T is the plane x + y + z = 0, we must have
a+0+1=0 = a=-—1,

3+b—-5=0 = b=2,
—14+24+¢c=0 = c=—1.

2. Observe that || € ker (T) and so

1 0
Tl1]=1o
1 0
Thus
1 2 1 3
Tlo| =T {1|—=-T|1| =121,
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The required matrix is therefore

563 1. Let ¢ € R. We have

proving that T is linear.

2. We have

dimker (T) = 0, and whence T is injective.

_1_ _1_ _—1_
=Tl2(=Thi|=]2]>
_1_ _1_ _—1_
_1_ _1_ _—1_
=Th|-=Tlh|=]0
_2_ _1_ _1_
3 -1 -1
2 2 0
-5 —1 1
u X+ au
= T
Yy + av
i X+ oau—+y+ av
= X+ au—y—av
_Z(X + au) + 3(y + av)
_x+y u+v
= x—y | T u—v
_2x+3y 2u + 3v
x u
= T + oT ,
Y v
X+y 0
— x—y | = o] &= x=y=0,
2x + 3y 0

3. By the Dimension Theorem, dimIm (T) =2 — 0 = 2. Now, since

=l x—y | =X|1| Y [—1|>
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whence
1 1
Im (T) = span 11, =1
2 3
4. We have
3 1 1 0 11/2
L 11 5 13
T == =51 3|0 5 |1|=]|-52] >
2
8 1 —1 0 —13/2
Lo L L L L 4z
and
4 1 1 0 15/2
L 15 7 19
T =|=2=5 (1| 3|07 |1 =]|-72
3
11 1 —1 0 —19/2
Lo L Lo L L 4z
The required matrix is
11/2 15/2
—-5/2  —-7/2

—13/2 —19/2
%

564 The matrix will be a 2 X 3 matrix. In each case, we find the action of L on the basis elements of R? and express the
result in the given basis for R3.

1. We have
1 0 0
1 2 0
L 0 = ,L 1 = ,L 0 =
3 0 —1
0 0 1
The required matrix is
1 2 0
3 0 —1
2. We have
1 1 1
1 3 3
L| |o] | = L] ] = Ll | =
3 3 2
0 0 1
The required matrix is
1 3 3
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3. We have
1
1 1 1 —2
L 0 = =2 +3 = ,
3 0 1 3
O o
1 _ _ _ _
3 1 1 0
L1 = =0 +3 = ,
3 0 1 3
O - - -7 -7 ‘2{
1 _ _ _ _
3 1 1 1
L{f1]]= =1 +2 =
2 0 1 2
1 - - -7 -7 ‘2{
The required matrix is
-2 0 1
3 3 2
2
565 Observe that € Im (T) =ker (T) and so
3
2 0
T —
3 0
Now )
1 1 2 1 2 6
T =T |3 — =3T —T = ,
0 1 3 1 3 9
and ;
0 2 1 2 1 —4
T =T —2 =T — 2T =
1 3 1 3 1 —6
The required matrix is thus
6 —4
9 —6
566 The matrix will be a 1 X 4 matrix. We have
1 0
tr =1,
0 0
0 1
tr =0,
0 0
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0 0

tr =0,
1 0
0 0

tr =1.
0 1

Thus
ML=(1 00 1).

567 First observe that ker (B) C ker (AB) since VX € Mgx1(R),
BX =0 = (AB)X=A(BX) =0.

Now
dimker (B) = q— dimIm (B)
= ( —rank (B)
= (g —rank (AB)

= — dimIm (AB)

= dimker (AB).
Thus ker (B) = ker (AB) . Similarly, we can demonstrate that ker (ABC) = ker (BC) . Thus

rank (ABC) = dimIm (ABC)
= r—dimker (ABC)
= r—dimker (BC)
= dimIm (BC)
= rank (BC).

594 This is clearly (1 23 4)(6 8 7) of order Icm(4,3) =12.

621 Multiplying the first column of the given matrix by a, its second column by b, and its third column by c, we obtain

abc abc abce

a® b3 c3

abcQ = abcdet [ g2 p2 (2

Upon dividing by abe,

Q=det |2 p2 2
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622 Performing R; + R2 + R3 — R; we have

a—b—c 2a 2a
Q = det 2b b—c—a 2b
2c 2c c—a—>b

a+b+c a+b+c a+b+c
= det 2b b—c—a 2b
2c 2c c—a—>b

Factorising (a + b + ¢) from the first row of this last determinant, we have

1 1 1
Q=(a+b+c)det [2b b—c—a 2b
2c 2c c—a—>
Performing C; — C; — Cz and C3 — Cy — C3,
1 0 0
Q=(at+b+cldet |2b —b—c—a 0
2c 0 —c—a—>

This last matrix is triangular, hence
Q-(a+b+c)(—b—c—a)(—c—a—Db)=(a+b+c)
as wanted.

623 det A1 = det A = —540 by multilinearity. det A, = — det A1 = 540 by alternancy. det A3 = 3det A, = 1620 by both
multilinearity and homogeneity from one column. det A4 = det A3 = 1620 by multilinearity, and det As = 2 det A4 = 3240
by homogeneity from one column.

624 From the given data, det B = —2. Hence
det ABC = (det A)(det B)(det C) = —12,

det 5AC = 5% det AC = (125)(det A)(det C) = 750,

3p—3p,—1y (det A)® _ 27
(det A"B 7C ) = Get B3 (det ©) ~ 6"

625 Pick A € R\ {0,a11,az22,...,ann}. Put

arr — A 0 0 0
azi (122—7\ 0 0
X = asq as2 asz —A .- 0

an1 an2 an3 c++  Qnn —A
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and

A a2z a3 QAin

0 A azs Qzn
Y=10 0 A  azn

0 0 0 A

Clearly A=X+Y,det X = (a11 —A)(azz —A) -+ (ann — A) #0, and det Y = A™ /0. This completes the proof.

626 No.

636 We have

4 6 1 3 1 3
2(—1)""2 det +5(—=1)%"2 det + 8(—1)%"3 det

7 9 7 9 4 6
—2(36 —42) +5(9 —21) — 8(6 —12) = 0.

det A

637 Since the second column has three 0’s, it is advantageous to expand along it, and thus we are reduced to calculate

Expanding this last determinant along the second column, the original determinant is thus
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638 Expanding along the first column,

_1111_
x a 0 0
0 = det

x 0 b 0
_xOOc_
_aOO 1T 1 1

= det|o b o —xdet|p b 0
_OOc 0 0 c

1T 11 1 1 1

+xdet [q 0 o —xdet |q 0 o0

0 0 c 0 b O
1 1 1 1T 1 1
= xabc—xbc+xdet | o o] —xdet |q 0 0
0 0 c 0 b 0
Expanding these last two determinants along the third row,

1 1 1 1T 1 1
0 = abc—xbc+xdet |q o | —xdet |q a 0
0 0 ¢ 0 b O

1 1 1 1

= abc—xbc+ xcdet + xb det
a O a 0

= abc—xbc— xca — xab.

It follows that
abc =x(bc + ab + ca),

whence 1 betab 101 1
1_betabtea 1,1 1
X abc a b c
as wanted.
639 Expanding along the first row the determinant equals
a b 0 a 0 O
a b a b
—adet |90 o0 p| +bdet g o p| = abdet + ab det
1 1 1 1
1T 1 1 1 1 1
= 2ab(a—Db),

as wanted.
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640 Expanding along the first row, the determinant equals

a 0 b 0 a b

adet |90 g of| +bdet | o0 o

c 0 d 0 ¢ d

Expanding the resulting two determinants along the second row, we obtain

a b a b 5
addet + b(—c) det =ad(ad —bc) — bec(ad — be) = (ad — be)”,
c d c d
as wanted.
641 For n = 1 we have det(1) =1 = (—1)'*'. For n = 2 we have
1 1
det ——1=(=1)"".
1 0

1 1 1 e 101 r ) .
0 0 : 0 0
1 0 0 0 0
1 0 0 0
0 1 o --- 0 0
det = 1det|p 1 ... 0 0
0O 0 1 0 0
0 0 1 0
0O 0 O 1 0 - -
T 1 ... 1 1
1 0 0
0 1 0
—1det
0 0 0
0 0 1 0
= 1(0) — (D=1
_ (_])n+1

giving the result.
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642 Perform Cx — C1 — Cx for k € [2;n]. Observe that these operations do not affect the value of the determinant. Then

T n—1T n—1 n—-1 - n-—1

n 2—n 0 0 : 0

n 0 3—n 0 0
det A = det

n 0 0 4—n 0

n 0 0 0 0 0

Expand this last determinant along the n-th row, obtaining,

n—1 n—1 n—1 n—1 n—1

2—n 0 0 0 0

0 3—n 0 0 0
detA = (—1)"*""ndet

0 0 4—n 0 0

0 0 0 —1 0

1 1 1 1 1
1 0 O 0 0
0 1 0 0 0
cee (—2)(—1) det
0o 0 1 0 0
0o 0 O 1 0
1 1 1 1 1
1 0 O 0 0
0 1 0 0 0
= —(n!)det
0o 0 1 0 0
0o 0 o0 1 0
- )
= (71)n+1n!)

upon using the result of problem 641.
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643 Recall that (}) = ("),

and

Z(—Hk(’;) —0, if n>0.

k=0

Assume that n is odd. Observe that then there are n + 1 (an even number) of columns and that on the same row, (E) isona

column of opposite parity to that of (nfk). By performing C1 — C2 + C3 — C4 + -+ 4+ Cn — Cny1 — Cy, the first column
becomes all 0’s, whence the determinant if 0 if n is odd.

659 We have

A—1 1
det(AI; — A) = det =A=1)22=1=A(A—-2),

1 A—1

whence the eigenvalues are 0 and 2. For A = 0 we have
0, —A =

This has row-echelon form
If

then a = b. Thus

a 1
=a
b 1
1
and we can take as the eigenvector corresponding to A = 0. Similarly, for A = 2,
1
1 3
2l —A = ,
1 3
which has row-echelon form
1 3
0 0

If
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then a = —3b. Thus

a 1
=a
b -3
1
and we can take as the eigenvector corresponding to A = 2.
-3
660 0 We have
A -2 1
det(AIs —A) = det|_2 A_3 2
1 2 A
A—3 2 —2 2 —2 A-=3
= Adet + 2det + det
2 A 1T A 1 2

= AA* =3A—4)4+2(=2A—=2) + (=A—1)
= AA—=4)A+1)—=5A+1)
= (A —4A—-5)A+1)

= A+1)?*AA—=05)

0 The eigenvalues are —1, —1,5.

o Ifa=-—1,
-1 -2 1 a 0
(-I—A)=1_-2 —4 2| |b|=|o0 & a=-2b+c
1 2 -1 c 0
a —2 1
— bl=b|1|+c|o
c 0 1
—2 1
We may take as eigenvectors | 1 |, ||, which are clearly linearly independent.

0 1
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IfA=5,

GBIz —A)=1_-2 2 2| |b|=1|o0

We may take as eigenvector | 2
—1

664 Solution: Put

We find

Since A = PDP!

Al _pp'opT =

665 Put

D=10 —1 0|, X=

0 0o 3

a=—c,b=—2c

a —1
b| =¢|-2
c 1
1 —1023

0 1024

Then we know that A = XDX ™! and so we need to find X~'. But this is readily obtained by performing R1 — R2 — Ry and

R2 — R3 — R3 in the augmented matrix

getting
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Thus

-1 0 4
= lo -1 4
0o 0 3

666 The determinant is 1, A = A~ ', and the characteristic polynomial is (A> — 1)2.
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