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To the Student

These notes are provided for your benefit as an attempt to organise the salient points of the course. They are a
very terse account of the main ideas of the course, and are to be used mostly to refer to central definitions and
theorems. The number of examples is minimal, and here you will find few exercises. The motivation or informal
ideas of looking at a certain topic, the ideas linking a topic with another, the worked-out examples, etc., are given
in class. Hence these notes are not a substitute to lectures: you must always attend to lectures. The order of
the notes may not necessarily be the order followed in the class.

There is a certain algebraic fluency that is necessary for a course at this level. These algebraic prerequisites
would be difficult to codify here, as they vary depending on class response and the topic lectured. If at any stage
you stumble in Algebra, seek help! I am here to help you!

Tutoring can sometimes help, but bear in mind that whoever tutors you may not be familiar with my conventions.
Again, I am here to help! On the same vein, other books may help, but the approach presented here is at times
unorthodox and finding alternative sources might be difficult.

Here are more recommendations:� Read a section before class discussion, in particular, read the definitions.� Class provides the informal discussion, and you will profit from the comments of your classmates, as well as
gain confidence by providing your insights and interpretations of a topic. Don’t be absent!� Once the lecture of a particular topic has been given, take a fresh look at the notes of the lecture topic.� Try to understand a single example well, rather than ill-digest multiple examples.� Start working on the distributed homework ahead of time.� Ask questions during the lecture. There are two main types of questions that you are likely to ask.

1. Questions of Correction: Is that a minus sign there? If you think that, for example, I have missed
out a minus sign or wrote P where it should have been Q,1 then by all means, ask. No one likes to carry
an error till line XLV because the audience failed to point out an error on line I. Don’t wait till the end
of the class to point out an error. Do it when there is still time to correct it!

2. Questions of Understanding: I don’t get it! Admitting that you do not understand something is an act
requiring utmost courage. But if you don’t, it is likely that many others in the audience also don’t. On
the same vein, if you feel you can explain a point to an inquiring classmate, I will allow you time in the
lecture to do so. The best way to ask a question is something like: “How did you get from the second
step to the third step?” or “What does it mean to complete the square?” Asseverations like “I don’t
understand” do not help me answer your queries. If I consider that you are asking the same questions
too many times, it may be that you need extra help, in which case we will settle what to do outside the
lecture.� Don’t fall behind! The sequence of topics is closely interrelated, with one topic leading to another.� The use of calculators is allowed, especially in the occasional lengthy calculations. However, when graphing, you

will need to provide algebraic/analytic/geometric support of your arguments. The questions on assignments
and exams will be posed in such a way that it will be of no advantage to have a graphing calculator.� Presentation is critical. Clearly outline your ideas. When writing solutions, outline major steps and write in
complete sentences. As a guide, you may try to emulate the style presented in the scant examples furnished
in these notes.

1My doctoral adviser used to say “I said A, I wrote B, I meant C and it should have been D!



Chapter 1
Preliminaries

1.1 Sets and Notation

1 Definition We will mean by a set a collection of well defined members or elements.

2 Definition The following sets have special symbols.

N = {0, 1, 2, 3, . . .} denotes the set of natural numbers.

Z = {. . . , −3, −2, −1, 0, 1, 2, 3, . . .} denotes the set of integers.

Q denotes the set of rational numbers.

R denotes the set of real numbers.

C denotes the set of complex numbers.

∅ denotes the empty set.

3 Definition (Implications) The symbol =⇒ is read “implies”, and the symbol ⇐⇒ is read “if and only if.”

4 Example Prove that between any two rational numbers there is always a rational number.

Solution: Let (a, c) ∈ Z2, (b, d) ∈ (N \ {0})2, a
b

< c
d

. Then da < bc. Now

ab + ad < ab + bc =⇒ a(b + d) < b(a + c) =⇒
a

b
<

a + c

b + d
,

da + dc < cb + cd =⇒ d(a + c) < c(b + d) =⇒
a + c

b + d
<

c

d
,

whence the rational number
a + c

b + d
lies between a

b
and c

d
.

☞ We can also argue that the average of two distinct numbers lies between the numbers and so

if r1 < r2 are rational numbers, then
r1 + r2

2
lies between them.

5 Definition Let A be a set. If a belongs to the set A, then we write a ∈ A, read “a is an element of A.” If a does
not belong to the set A, we write a 6∈ A, read “a is not an element of A.”

1



2 Chapter 1

6 Definition (Conjunction, Disjunction, and Negation) The symbol ∨ is read “or” (disjunction), the symbol ∧ is
read “and” (conjunction), and the symbol ¬ is read “not.”

7 Definition (Quantifiers) The symbol ∀ is read “for all” (the universal quantifier), and the symbol ∃ is read “there
exists” (the existential quantifier).

We have
¬(∀x ∈ A, P(x)) ⇐⇒ (∃ ∈ A, ¬P(x)) (1.1)

¬(∃ ∈ A, P(x)) ⇐⇒ (∀x ∈ A, ¬P(x)) (1.2)

8 Definition (Subset) If ∀a ∈ A we have a ∈ B, then we write A ⊆ B, which we read “A is a subset of B.”

In particular, notice that for any set A, ∅ ⊆ A and A ⊆ A. Also

N ⊆ Z ⊆ Q ⊆ R ⊆ C.

☞ A = B ⇐⇒ (A ⊆ B) ∧ (B ⊆ A).

9 Definition The union of two sets A and B, is the set

A ∪ B = {x : (x ∈ A) ∨ (x ∈ B)}.

This is read “A union B.” See figure 1.1.

10 Definition The intersection of two sets A and B, is

A ∩ B = {x : (x ∈ A) ∧ (x ∈ B)}.

This is read “A intersection B.” See figure 1.2.

11 Definition The difference of two sets A and B, is

A \ B = {x : (x ∈ A) ∧ (x 6∈ B)}.

This is read “A set minus B.” See figure 1.3.

A B

Figure 1.1: A ∪ B

A B

Figure 1.2: A ∩ B

A B

Figure 1.3: A \ B

12 Example Prove by means of set inclusion that

(A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C).
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Solution: We have,

x ∈ (A ∪ B) ∩ C ⇐⇒ x ∈ (A ∪ B) ∧ x ∈ C

⇐⇒ (x ∈ A ∨ x ∈ B) ∧ x ∈ C

⇐⇒ (x ∈ A ∧ x ∈ C) ∨ (x ∈ B ∧ x ∈ C)

⇐⇒ (x ∈ A ∩ C) ∨ (x ∈ B ∩ C)

⇐⇒ x ∈ (A ∩ C) ∪ (B ∩ C),

which establishes the equality.

13 Definition Let A1, A2, . . . , An, be sets. The Cartesian Product of these n sets is defined and denoted by

A1 × A2 × · · · × An = {(a1, a2, . . . , an) : ak ∈ Ak},

that is, the set of all ordered n-tuples whose elements belong to the given sets.

☞ In the particular case when all the Ak are equal to a set A, we write

A1 × A2 × · · · × An = An.

If a ∈ A and b ∈ A we write (a, b) ∈ A2.

14 Definition Let x ∈ R. The absolute value of x—denoted by |x|—is defined by

|x| =






−x if x < 0,

x if x ≥ 0.

It follows from the definition that for x ∈ R,
− |x| ≤ x ≤ |x|. (1.3)

t ≥ 0 =⇒ |x| ≤ t ⇐⇒ −t ≤ x ≤ t. (1.4)

∀a ∈ R =⇒
√

a2 = |a|. (1.5)

15 Theorem (Triangle Inequality) Let (a, b) ∈ R2. Then

|a + b| ≤ |a| + |b|. (1.6)

Proof: From 1.3, by addition,
−|a| ≤ a ≤ |a|

to
−|b| ≤ b ≤ |b|

we obtain
−(|a| + |b|) ≤ a + b ≤ (|a| + |b|),

whence the theorem follows by 1.4. ❑
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16 Problem Prove that between any two rational numbers
there is an irrational number.

17 Problem Prove that X \ (X \ A) = X ∩ A.

18 Problem Prove that X \ (A ∪ B) = (X \ A) ∩ (X \ B).

19 Problem Prove that X \ (A ∩ B) = (X \ A) ∪ (X \ B).

20 Problem Prove that (A∪B)\(A∩B) = (A\B)∪(B\A).

21 Problem Shew how to write the union A ∪ B ∪ C as a
disjoint union of sets.

22 Problem Prove that a set with n ≥ 0 elements has 2n

subsets.

23 Problem Let (a, b) ∈ R2 . Prove that ||a|− |b|| ≤ |a−b|.

1.2 Partitions and Equivalence Relations

24 Definition Let S 6= ∅ be a set. A partition of S is a collection of non-empty, pairwise disjoint subsets of S whose
union is S.

25 Example Let
2Z = {. . . , −6, −4, −2, 0, 2, 4, 6, . . .} = 0

be the set of even integers and let

2Z + 1 = {. . . , −5, −3, −1, 1, 3, 5, . . .} = 1

be the set of odd integers. Then

(2Z) ∪ (2Z + 1) = Z, (2Z) ∩ (2Z + 1) = ∅,

and so {2Z, 2Z + 1} is a partition of Z.

26 Example Let
3Z = {. . . − 9, , −6, −3, 0, 3, 6, 9, . . .} = 0

be the integral multiples of 3, let

3Z + 1 = {. . . , −8, −5, −2, 1, 4, 7, . . .} = 1

be the integers leaving remainder 1 upon division by 3, and let

3Z + 2 = {. . . , −7, −4, −1, 2, 5, 8, . . .} = 2

be integers leaving remainder 2 upon division by 3. Then

(3Z) ∪ (3Z + 1) ∪ (3Z + 2) = Z,

(3Z) ∩ (3Z + 1) = ∅, (3Z) ∩ (3Z + 2) = ∅, (3Z + 1) ∩ (3Z + 2) = ∅,

and so {3Z, 3Z + 1, 3Z + 2} is a partition of Z.

☞ Notice that 0 and 1 do not mean the same in examples 25 and 26. Whenever we make use
of this notation, the integral divisor must be made explicit.

27 Example Observe
R = (Q) ∪ (R \ Q), ∅ = (Q) ∩ (R \ Q),

which means that the real numbers can be partitioned into the rational and irrational numbers.

28 Definition Let A, B be sets. A relation R is a subset of the Cartesian product A × B. We write the fact that
(x, y) ∈ R as x ∼ y.



Partitions and Equivalence Relations 5

29 Definition Let A be a set and R be a relation on A × A. Then R is said to be� reflexive if (∀x ∈ A), x ∼ x,� symmetric if (∀(x, y) ∈ A2), x ∼ y =⇒ y ∼ x,� anti-symmetric if (∀(x, y) ∈ A2), (x ∼ y) ∧ (y ∼ x) =⇒ x = y,� transitive if (∀(x, y, z) ∈ A3), (x ∼ y) ∧ (y ∼ z) =⇒ (x ∼ z).

A relation R which is reflexive, symmetric and transitive is called an equivalence relation on A. A relation R which
is reflexive, anti-symmetric and transitive is called a partial order on A.

30 Example Let S ={All Human Beings}, and define ∼ on S as a ∼ b if and only if a and b have the same
mother. Then a ∼ a since any human a has the same mother as himself. Similarly, a ∼ b =⇒ b ∼ a and
(a ∼ b) ∧ (b ∼ c) =⇒ (a ∼ c). Therefore ∼ is an equivalence relation.

31 Example Let L be the set of all lines on the plane and write l1 ∼ l2 if l1||l2 (the line l1 is parallel to the line
l2). Then ∼ is an equivalence relation on L.

32 Example In Q define the relation a
b

∼ x
y

⇐⇒ ay = bx, where we will always assume that the denominators
are non-zero. Then ∼ is an equivalence relation. For a

b
∼ a

b
since ab = ab. Clearly

a

b
∼

x

y
=⇒ ay = bx =⇒ xb = ya =⇒

x

y
∼

a

b
.

Finally, if a
b

∼ x
y

and x
y

∼ s
t

then we have ay = bx and xt = sy. Multiplying these two equalities ayxt = bxsy.
This gives

ayxt − bxsy = 0 =⇒ xy(at − bs) = 0.

Now if x = 0, we will have a = s = 0, in which case trivially at = bs. Otherwise we must have at − bs = 0 and so
a
b

∼ s
t
.

33 Example Let X be a collection of sets. Write A ∼ B if A ⊆ B. Then ∼ is a partial order on X.

34 Example For (a, b) ∈ R2 define
a ∼ b ⇔ a2 + b2 > 2.

Determine, with proof, whether ∼ is reflexive, symmetric, and/or transitive. Is ∼ an equivalence relation?

Solution: Since 02 + 02 ≯ 2, we have 0 ≁ 0 and so ∼ is not reflexive. Now,

a ∼ b ⇔ a2 + b2

⇔ b2 + a2

⇔ b ∼ a,

so ∼ is symmetric. Also 0 ∼ 3 since 02 + 32 > 2 and 3 ∼ 1 since 32 + 12 > 2. But 0 ≁ 1 since 02 + 12 ≯ 2. Thus
the relation is not transitive. The relation, therefore, is not an equivalence relation.

35 Definition Let ∼ be an equivalence relation on a set S. Then the equivalence class of a is defined and denoted
by

[a] = {x ∈ S : x ∼ a}.

36 Lemma Let ∼ be an equivalence relation on a set S. Then two equivalence classes are either identical or disjoint.
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Proof: We prove that if (a, b) ∈ S2, and [a] ∩ [b] 6= ∅ then [a] = [b]. Suppose that x ∈ [a] ∩ [b].
Now x ∈ [a] =⇒ x ∼ a =⇒ a ∼ x, by symmetry. Similarly, x ∈ [b] =⇒ x ∼ b. By transitivity

(a ∼ x) ∧ (x ∼ b) =⇒ a ∼ b.

Now, if y ∈ [b] then b ∼ y. Again by transitivity, a ∼ y. This means that y ∈ [a]. We have shewn
that y ∈ [b] =⇒ y ∈ [a] and so [b] ⊆ [a]. In a similar fashion, we may prove that [a] ⊆ [b]. This
establishes the result. ❑

37 Theorem Let S 6= ∅ be a set. Any equivalence relation on S induces a partition of S. Conversely, given a
partition of S into disjoint, non-empty subsets, we can define an equivalence relation on S whose equivalence classes
are precisely these subsets.

Proof: By Lemma 36, if ∼ is an equivalence relation on S then

S =
[

a∈S

[a],

and [a] ∩ [b] = ∅ if a ≁ b. This proves the first half of the theorem.

Conversely, let

S =
[
α

Sα, Sα ∩ Sβ = ∅ if α 6= β,

be a partition of S. We define the relation ≈ on S by letting a ≈ b if and only if they belong to
the same Sα. Since the Sα are mutually disjoint, it is clear that ≈ is an equivalence relation on
S and that for a ∈ Sα, we have [a] = Sα. ❑

38 Problem For (a, b) ∈ (Q \ {0})2 define the relation ∼ as
follows: a ∼ b ⇔ a

b
∈ Z. Determine whether this relation is

reflexive, symmetric, and/or transitive.

39 Problem Give an example of a relation on Z \ {0} which is
reflexive, but is neither symmetric nor transitive.

40 Problem Define the relation ∼ in R by x ∼ y ⇐⇒ xey =

yex. Prove that ∼ is an equivalence relation.

41 Problem Define the relation ∼ in Q by x ∼ y ⇐⇒ ∃h ∈ Z

such that x =
3y + h

3
. [A] Prove that ∼ is an equivalence re-

lation. [B] Determine [x], the equivalence of x ∈ Q. [C] Is
2
3

∼ 4
5
?

1.3 Binary Operations

42 Definition Let S, T be sets. A binary operation is a function

⊗ :
S × S → T

(a, b) 7→ (a, b)

.

We usually use the “infix” notation a ⊗ b rather than the “prefix” notation ⊗(a, b). If S = T then we say that the
binary operation is internal or closed and if S 6= T then we say that it is external. If

a ⊗ b = b ⊗ a

then we say that the operation ⊗ is commutative and if

a ⊗ (b ⊗ c) = (a ⊗ b) ⊗ c,

we say that it is associative. If ⊗ is associative, then we can write

a ⊗ (b ⊗ c) = (a ⊗ b) ⊗ c = a ⊗ b ⊗ c,

without ambiguity.
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☞We usually omit the sign ⊗ and use juxtaposition to indicate the operation ⊗. Thus we write
ab instead of a ⊗ b.

43 Example The operation + (ordinary addition) on the set Z × Z is a commutative and associative closed binary
operation.

44 Example The operation − (ordinary subtraction) on the set N × N is a non-commutative, non-associative non-
closed binary operation.

45 Example The operation ⊗ defined by a ⊗ b = 1 + ab on the set Z × Z is a commutative but non-associative
internal binary operation. For

a ⊗ b = 1 + ab = 1 + ba = ba,

proving commutativity. Also, 1 ⊗ (2 ⊗ 3) = 1 ⊗ (7) = 8 and (1 ⊗ 2) ⊗ 3 = (3) ⊗ 3 = 10, evincing non-associativity.

46 Definition Let S be a set and ⊗ : S × S → S be a closed binary operation. The couple 〈S, ⊗〉 is called an
algebra.

☞ When we desire to drop the sign ⊗ and indicate the binary operation by juxtaposition, we
simply speak of the “algebra S.”

47 Example Both 〈Z, +〉 and 〈Q, ·〉 are algebras. Here + is the standard addition of real numbers and · is the
standard multiplication.

48 Example 〈Z, −〉 is a non-commutative, non-associative algebra. Here − is the standard subtraction operation
on the real numbers

49 Example (Putnam Exam, 1972) Let S be a set and let ∗ be a binary operation of S satisfying the laws ∀(x, y) ∈
S2

x ∗ (x ∗ y) = y, (1.7)

(y ∗ x) ∗ x = y. (1.8)

Shew that ∗ is commutative, but not necessarily associative.

Solution: By (1.8)
x ∗ y = ((x ∗ y) ∗ x) ∗ x.

By (1.8) again
((x ∗ y) ∗ x) ∗ x = ((x ∗ y) ∗ ((x ∗ y) ∗ y)) ∗ x.

By (1.7)
((x ∗ y) ∗ ((x ∗ y) ∗ y)) ∗ x = (y) ∗ x = y ∗ x,

which is what we wanted to prove.

To shew that the operation is not necessarily associative, specialise S = Z and x ∗ y = −x − y (the opposite of
x minus y). Then clearly in this case ∗ is commutative, and satisfies (1.7) and (1.8) but

0 ∗ (0 ∗ 1) = 0 ∗ (−0 − 1) = 0 ∗ (−1) = −0 − (−1) = 1,

and
(0 ∗ 0) ∗ 1 = (−0 − 0) ∗ 1 = (0) ∗ 1 = −0 − 1 = −1,

evincing that the operation is not associative.

50 Definition Let S be an algebra. Then l ∈ S is called a left identity if ∀s ∈ S we have ls = s. Similarly r ∈ S

is called a right identity if ∀s ∈ S we have sr = s.
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51 Theorem If an algebra S possesses a left identity l and a right identity r then l = r.

Proof: Since l is a left identity
r = lr.

Since r is a right identity
l = lr.

Combining these two, we gather
r = lr = l,

whence the theorem follows. ❑

52 Example In 〈Z, +〉 the element 0 ∈ Z acts as an identity, and in 〈Q, ·〉 the element 1 ∈ Q acts as an identity.

53 Definition Let S be an algebra. An element a ∈ S is said to be left-cancellable or left-regular if ∀(x, y) ∈ S2

ax = ay =⇒ x = y.

Similarly, element b ∈ S is said to be right-cancellable or right-regular if ∀(x, y) ∈ S2

xb = yb =⇒ x = y.

Finally, we say an element c ∈ S is cancellable or regular if it is both left and right cancellable.

54 Definition Let 〈S, ⊗〉 and 〈S, ⊤〉 be algebras. We say that ⊤ is left-distributive with respect to ⊗ if

∀(x, y, z) ∈ S3, x⊤(y ⊗ z) = (x⊤y) ⊗ (x⊤z).

Similarly, we say that ⊤ is right-distributive with respect to ⊗ if

∀(x, y, z) ∈ S3, (y ⊗ z)⊤x = (y⊤x) ⊗ (z⊤x).

We say that ⊤ is distributive with respect to ⊗ if it is both left and right distributive with respect to ⊗.

55 Problem Let

S = {x ∈ Z : ∃(a, b) ∈ Z2
, x = a

3
+ b

3
+ c

3
− 3abc}.

Prove that S is closed under multiplication, that is, if x ∈ S

and y ∈ S then xy ∈ S.

56 Problem Let 〈S, ⊗〉 be an associative algebra, let a ∈ S

be a fixed element and define the closed binary operation ⊤
by

x⊤y = x ⊗ a ⊗ y.

Prove that ⊤ is also associative over S × S.

57 Problem On Q∩] − 1; 1[ define the a binary operation ⊗

a ⊗ b =
a + b

1 + ab
,

where juxtaposition means ordinary multiplication and + is
the ordinary addition of real numbers. Prove that

➊ Prove that ⊗ is a closed binary operation on Q∩]−1; 1[.

➋ Prove that ⊗ is both commutative and associative.

➌ Find an element e ∈ R such that (∀a ∈ Q∩] −

1; 1[) (e ⊗ a = a).

➍ Given e as above and an arbitrary element a ∈
Q∩] − 1; 1[, solve the equation a ⊗ b = e for b.

58 Problem On R \ {1} define the a binary operation ⊗

a ⊗ b = a + b − ab,

where juxtaposition means ordinary multiplication and + is
the ordinary addition of real numbers. Clearly ⊗ is a closed
binary operation. Prove that

➊ Prove that ⊗ is both commutative and associative.

➋ Find an element e ∈ R \ {1} such that (∀a ∈
R \ {1}) (e ⊗ a = a).

➌ Given e as above and an arbitrary element a ∈ R \ {1},
solve the equation a ⊗ b = e for b.
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59 Problem (Putnam Exam, 1971) Let S be a set and let
◦ be a binary operation on S satisfying the two laws

(∀x ∈ S)(x ◦ x = x),

and

(∀(x, y, z) ∈ S
3
)((x ◦ y) ◦ z = (y ◦ z) ◦ x).

Shew that ◦ is commutative.

60 Problem Define the symmetric difference of the sets A, B

as A△B = (A \ B) ∪ (B \ A). Prove that △ is commutative
and associative.

1.4 Zn

61 Theorem (Division Algorithm) Let n > 0 be an integer. Then for any integer a there exist unique integers q

(called the quotient) and r (called the remainder) such that a = qn + r and 0 ≤ r < q.

Proof: In the proof of this theorem, we use the following property of the integers, called the
well-ordering principle: any non-empty set of non-negative integers has a smallest element.

Consider the set
S = {a − bn : b ∈ Z ∧ a ≥ bn}.

Then S is a collection of nonnegative integers and S 6= ∅ as ±a−0 ·n ∈ S and this is non-negative
for one choice of sign. By the Well-Ordering Principle, S has a least element, say r. Now, there
must be some q ∈ Z such that r = a − qn since r ∈ S. By construction, r ≥ 0. Let us prove
that r < n. For assume that r ≥ n. Then r > r − n = a − qn − n = a − (q + 1)n ≥ 0, since
r − n ≥ 0. But then a − (q + 1)n ∈ S and a − (q + 1)n < r which contradicts the fact that r is the
smallest member of S. Thus we must have 0 ≤ r < n. To prove that r and q are unique, assume
that q1n + r1 = a = q2n + r2, 0 ≤ r1 < n, 0 ≤ r2 < n. Then r2 − r1 = n(q1 − q2), that is, n

divides (r2 − r1). But |r2 − r1| < n, whence r2 = r1. From this it also follows that q1 = q2. This
completes the proof. ❑

62 Example If n = 5 the Division Algorithm says that we can arrange all the integers in five columns as follows:

...
...

...
...

...

−10 −9 −8 −7 −6

−5 −4 −3 −2 −1

0 1 2 3 4

5 6 7 8 9

...
...

...
...

...

The arrangement above shews that any integer comes in one of 5 flavours: those leaving remainder 0 upon division
by 5, those leaving remainder 1 upon division by 5, etc. We let

5Z = {. . . , −15, −10, −5, 0, 5, 10, 15, . . .} = 0,

5Z + 1 = {. . . , −14, −9, −4, 1, 6, 11, 16, . . .} = 1,

5Z + 2 = {. . . , −13, −8, −3, 2, 7, 12, 17, . . .} = 2,

5Z + 3 = {. . . , −12, −7, −2, 3, 8, 13, 18, . . .} = 3,

5Z + 4 = {. . . , −11, −6, −1, 4, 9, 14, 19, . . .} = 4,

and
Z5 = {0, 1, 2, 3, 4}.
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Let n be a fixed positive integer. Define the relation ≡ by x ≡ y if and only if they leave the same remainder upon
division by n. Then clearly ≡ is an equivalence relation. As such it partitions the set of integers Z into disjoint
equivalence classes by Theorem 37. This motivates the following definition.

63 Definition Let n be a positive integer. The n residue classes upon division by n are

0 = nZ, 1 = nZ + 1, 2 = nZ + 2, . . . , n − 1 = nZ + n − 1.

The set of residue classes modulo n is
Zn = {0, 1, . . . , n − 1}.

Our interest is now to define some sort of “addition” and some sort of “multiplication” in Zn.

64 Theorem (Addition and Multiplication Modulo n) Let n be a positive integer. For (a, b) ∈ (Zn)2 define
a + b = r, where r is the remainder of a + b upon division by n. and a · b = t, where t is the remainder of ab

upon division by n. Then these operations are well defined.

Proof: We need to prove that given arbitrary representatives of the residue classes, we always
obtain the same result from our operations. That is, if a = a ′ and b = b ′ then we have a + b =

a ′ + b ′ and a · b = a ′ · b ′.

Now

a = a ′
=⇒ ∃(q, q ′) ∈ Z2, r ∈ N, a = qn + r, a ′ = q ′n + r, 0 ≤ r < n,

b = b
′

=⇒ ∃(q1, q ′
1) ∈ Z2, r1 ∈ N, b = q1n + r1, b ′ = q ′

1n + r1, 0 ≤ r1 < n.

Hence
a + b = (q + q1)n + r + r1, a ′ + b ′ = (q ′ + q ′

1)n + r + r1,

meaning that both a + b and a ′ + b ′ leave the same remainder upon division by n, and therefore

a + b = a + b = a ′ + b ′ = a ′ + b ′.

Similarly

ab = (qq1n + qr1 + rq1)n + rr1, a ′b ′ = (q ′q ′
1n + q ′r1 + rq ′

1)n + rr1,

and so both ab and a ′b ′ leave the same remainder upon division by n, and therefore

a · b = ab = a ′b ′ = a ′ · b ′.

This proves the theorem. ❑

65 Example Let
Z6 = {0, 1, 2, 3, 4, 5}

be the residue classes modulo 6. Construct the natural addition + table for Z6. Also, construct the natural
multiplication · table for Z6.

Solution: The required tables are given in tables 1.1 and 1.2.

We notice that even though 2 6= 0 and 3 6= 0 we have 2 · 3 = 0. This prompts the following definition.

66 Definition (Zero Divisor) An element a 6= 0 of Zn is called a zero divisor if ab = 0 for some b ∈ Zn.
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+ 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 4 5 0

2 2 3 4 5 0 1

3 3 4 5 0 1 2

4 4 5 0 1 2 3

5 5 0 1 2 3 4

Table 1.1: Addition table for Z6 .

· 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 2 3 4 5

2 0 2 4 0 2 4

3 0 3 0 3 0 3

4 0 4 2 0 4 2

5 0 5 4 3 2 1

Table 1.2: Multiplication table for Z6 .

We will extend the concept of zero divisor later on to various algebras.

67 Example Let
Z7 = {0, 1, 2, 3, 4, 5, 6}

be the residue classes modulo 7. Construct the natural addition + table for Z7. Also, construct the natural multi-
plication · table for Z7

Solution: The required tables are given in tables 1.3 and 1.4.

+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5

Table 1.3: Addition table for Z7 .

· 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

Table 1.4: Multiplication table for Z7 .

68 Example Solve the equation
5x = 3

in Z11.
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Solution: Multiplying by 9 on both sides
45x = 27,

that is,
x = 5.

We will use the following result in the next section.

69 Definition Let a, b be integers with one of them different from 0. The greatest common divisor d of a, b,
denoted by d = gcd(a, b) is the largest positive integer that divides both a and b.

70 Theorem (Bachet-Bezout Theorem) The greatest common divisor of any two integers a, b can be written as a
linear combination of a and b, i.e., there are integers x, y with

gcd(a, b) = ax + by.

Proof: Let A = {ax + by : ax + by > 0, x, y ∈ Z}. Clearly one of ±a, ±b is in A, as one of
a, b is not zero. By the Well Ordering Principle, A has a smallest element, say d. Therefore,
there are x0, y0 such that d = ax0 + by0. We prove that d = gcd(a, b). To do this we prove that
d divides a and b and that if t divides a and b, then t must also divide then d.

We first prove that d divides a. By the Division Algorithm, we can find integers q, r, 0 ≤ r < d

such that a = dq + r. Then
r = a − dq = a(1 − qx0) − by0.

If r > 0, then r ∈ A is smaller than the smaller element of A, namely d, a contradiction. Thus
r = 0. This entails dq = a, i.e. d divides a. We can similarly prove that d divides b.

Assume that t divides a and b. Then a = tm, b = tn for integers m, n. Hence d = ax0 + bx0 =

t(mx0 + ny0), that is, t divides d. The theorem is thus proved. ❑

71 Problem Write the addition and multiplication tables of
Z11 under natural addition and multiplication modulo 11.

72 Problem Solve the equation

5x
2

= 3

in Z11.

73 Problem Prove that if n > 0 is a composite integer, Zn has
zero divisors.

1.5 Fields

74 Definition Let F be a set having at least two elements 0F and 1F (0F 6= 1F) together with two operations
· (multiplication, which we usually represent via juxtaposition) and + (addition). A field 〈F, ·, +〉 is a triplet
satisfying the following axioms ∀(a, b, c) ∈ F3:

F1 Addition and multiplication are associative:

(a + b) + c = a + (b + c), (ab)c = a(bc) (1.9)

F2 Addition and multiplication are commutative:

a + b = b + a, ab = ba (1.10)

F3 The multiplicative operation distributes over addition:

a(b + c) = ab + ac (1.11)
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F4 0F is the additive identity:
0F + a = a + 0F = a (1.12)

F5 1F is the multiplicative identity:
1Fa = a1F = a (1.13)

F6 Every element has an additive inverse:

∃ − a ∈ F, a + (−a) = (−a) + a = 0F (1.14)

F7 Every non-zero element has a multiplicative inverse: if a 6= 0F

∃a−1 ∈ F, aa−1 = a−1a = 1F (1.15)

The elements of a field are called scalars.

An important property of fields is the following.

75 Theorem A field does not have zero divisors.

Proof: Assume that ab = 0F. If a 6= 0F then it has a multiplicative inverse a−1. We deduce

a−1ab = a−10F =⇒ b = 0F.

This means that the only way of obtaining a zero product is if one of the factors is 0F. ❑

76 Example 〈Q, ·, +〉, 〈R, ·, +〉, and 〈C, ·, +〉 are all fields. The multiplicative identity in each case is 1 and the
additive identity is 0.

77 Example Let
Q(

√
2) = {a +

√
2b : (a, b) ∈ Q2}

and define addition on this set as

(a +
√

2b) + (c +
√

2d) = (a + c) +
√

2(b + d),

and multiplication as
(a +

√
2b)(c +

√
2d) = (ac + 2bd) +

√
2(ad + bc).

Then 〈Q +
√

2Q, , +〉 is a field. Observe 0F = 0, 1F = 1, that the additive inverse of a +
√

2b is −a −
√

2b, and
the multiplicative inverse of a +

√
2b, (a, b) 6= (0, 0) is

(a +
√

2b)−1 =
1

a +
√

2b
=

a −
√

2b

a2 − 2b2
=

a

a2 − 2b2
−

√
2b

a2 − 2b2
.

Here a2 − 2b2 6= 0 since
√

2 is irrational.

78 Theorem If p is a prime, 〈Zp, ·, +〉 is a field under · multiplication modulo p and + addition modulo p.

Proof: Clearly the additive identity is 0 and the multiplicative identity is 1. The additive
inverse of a is p − a. We must prove that every a ∈ Zp \ {0} has a multiplicative inverse. Such
an a satisfies gcd(a, p) = 1 and by the Bachet-Bezout Theorem 70, there exist integers x, y with
px + ay = 1. In such case we have

1 = px + ay = ay = a · y,

whence (a)−1 = y. ❑
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79 Definition A field is said to be of characteristic p 6= 0 if for some positive integer p we have ∀a ∈ F, pa = 0F,
and no positive integer smaller than p enjoys this property.

If the field does not have characteristic p 6= 0 then we say that it is of characteristic 0. Clearly Q, R and C are of
characteristic 0, while Zp for prime p, is of characteristic p.

80 Theorem The characteristic of a field is either 0 or a prime.

Proof: If the characteristic of the field is 0, there is nothing to prove. Let p be the least positive
integer for which ∀a ∈ F, pa = 0F. Let us prove that p must be a prime. Assume that instead we
had p = st with integers s > 1, t > 1. Take a = 1F. Then we must have (st)1F = 0F, which entails
(s1F)(t1F) = 0F. But in a field there are no zero-divisors by Theorem 75, hence either s1F = 0F or
t1F = 0F. But either of these equalities contradicts the minimality of p. Hence p is a prime. ❑

81 Problem Consider the set of numbers

Q(
√

2,
√

3,
√

6) = {a+b
√

2+c
√

3+d
√

6 : (a, b, c, d) ∈ Q4
}.

Assume that Q(
√

2,
√

3,
√

6) is a field under ordinary addi-
tion and multiplication. What is the multiplicative inverse of
the element

√
2 + 2

√
3 + 3

√
6?

82 Problem Let F be a field and a, b two non-zero elements
of F. Prove that

−(ab
−1

) = (−a)b
−1

= a(−b
−1

).

83 Problem Let F be a field and a 6= 0F. Prove that

(−a)
−1

= −(a
−1

).

84 Problem Let F be a field and a, b two non-zero elements
of F. Prove that

ab
−1

= (−a)(−b
−1

).

1.6 Functions

85 Definition By a function or a mapping from one set to another, we mean a rule or mechanism that assigns to
every input element of the first set a unique output element of the second set. We shall call the set of inputs the
domain of the function, the set of possible outputs the target set of the function, and the set of actual outputs the
image of the function.

We will generally refer to a function with the following notation:

f :
D → T

x 7→ f(x)

.

Here f is the name of the function, D is its domain, T is its target set, x is the name of a typical input and f(x) is
the output or image of x under f. We call the assignment x 7→ f(x) the assignment rule of the function. Sometimes
x is also called the independent variable. The set f(D) = {f(a)|a ∈ D} is called the image of f. Observe that
f(D) ⊆ T.

α
1 2
2 8
3 4

Figure 1.4: An injection.

β

2 2
1 4

3

Figure 1.5: Not an injection
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86 Definition A function f :
X → Y

x 7→ f(x)

is said to be injective or one-to-one if ∀(a, b) ∈ X2, we have

a 6= b =⇒ f(a) 6= f(b).

This is equivalent to saying that
f(a) = f(b) =⇒ a = b.

87 Example The function α in the diagram 1.4 is an injective function. The function β represented by the diagram
1.5, however, is not injective, β(3) = β(1) = 4, but 3 6= 1.

88 Example Prove that

t :
R \ {1} → R \ {1}

x 7→ x + 1

x − 1

is an injection.

Solution: Assume t(a) = t(b). Then

t(a) = t(b) =⇒
a + 1

a − 1
=

b + 1

b − 1

=⇒ (a + 1)(b − 1) = (b + 1)(a − 1)

=⇒ ab − a + b − 1 = ab − b + a − 1

=⇒ 2a = 2b

=⇒ a = b

We have proved that t(a) = t(b) =⇒ a = b, which shews that t is injective.

2
1

3
2
4

β

Figure 1.6: A surjection

8

γ

2 2
1 4

Figure 1.7: Not a surjection

89 Definition A function f : A → B is said to be surjective or onto if (∀b ∈ B) (∃a ∈ A) : f(a) = b. That is,
each element of B has a pre-image in A.

☞A function is surjective if its image coincides with its target set. It is easy to see that a
graphical criterion for a function to be surjective is that every horizontal line passing through a
point of the target set (a subset of the y-axis) of the function must also meet the curve.

90 Example The function β represented by diagram 1.6 is surjective. The function γ represented by diagram 1.7 is
not surjective as 8 does not have a preimage.
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91 Example Prove that t :
R → R

x 7→ x3

is a surjection.

Solution: Since the graph of t is that of a cubic polynomial with only one zero, every horizontal line passing through
a point in R will eventually meet the graph of g, whence t is surjective. To prove this analytically, proceed as follows.
We must prove that (∀ b ∈ R) (∃a) such that t(a) = b. We choose a so that a = b1/3. Then

t(a) = t(b1/3) = (b1/3)3 = b.

Our choice of a works and hence the function is surjective.

92 Definition A function is bijective if it is both injective and surjective.

93 Problem Prove that

h :
R → R

x 7→ x
3

is an injection.

94 Problem Shew that

f :
R \

{
3

2

}
→ R \ {3}

x 7→ 6x

2x − 3

is a bijection.



Chapter 2
Matrices and Matrix Operations

2.1 The Algebra of Matrices

95 Definition Let 〈F, ·, +〉 be a field. An m × n (m by n) matrix A with m rows and n columns with entries over
F is a rectangular array of the form

A =

266666666664
a11 a12 · · · a1n

a21 a22 · · · a2n

...
... · · ·

...

am1 am2 · · · amn

377777777775 ,

where ∀(i, j) ∈ {1, 2, . . . , m} × {1, 2, . . . , n}, aij ∈ F.

☞ As a shortcut, we often use the notation A = [aij] to denote the matrix A with entries aij.
Notice that when we refer to the matrix we put parentheses—as in “ [aij],” and when we refer to a
specific entry we do not use the surrounding parentheses—as in “aij.”

96 Example

A =

26640 −1 1

1 2 3

3775
is a 2 × 3 matrix and

B =

26666664−2 1

1 2

0 3

37777775
is a 3 × 2 matrix.

97 Example Write out explicitly the 4 × 4 matrix A = [aij] where aij = i2 − j2.

17
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Solution: This is

A =

266666666664
12 − 11 12 − 22 12 − 32 12 − 42

22 − 12 22 − 22 22 − 32 22 − 42

32 − 12 32 − 22 32 − 32 32 − 42

42 − 12 42 − 22 42 − 32 42 − 42

377777777775 =

266666666664
0 −3 −8 −15

3 0 −5 −12

8 5 0 −7

15 12 7 0

377777777775 .

98 Definition Let 〈F, ·, +〉 be a field. We denote by Mm×n(F) the set of all m × n matrices with entries over F.
If m = n we use the abbreviated notation Mn(F) = Mn×n(F). Mn(F) is thus the set of all square matrices of size
n with entries over F.

99 Definition The m × n zero matrix 0m×n ∈ Mm×n(F) is the matrix with 0F’s everywhere,

0m×n =

26666666666666664
0F 0F 0F · · · 0F

0F 0F 0F · · · 0F

0F 0F 0F · · · 0F

...
...

... · · ·
...

0F 0F 0F · · · 0F

37777777777777775 .

When m = n we write 0n as a shortcut for 0n×n.

100 Definition The n × n identity matrix In ∈ Mn(F) is the matrix with 1F’s on the main diagonal and 0F’s
everywhere else,

In =

26666666666666664
1F 0F 0F · · · 0F

0F 1F 0F · · · 0F

0F 0F 1F · · · 0F

...
...

... · · ·
...

0F 0F 0F · · · 1F

37777777777777775 .

101 Definition (Matrix Addition and Multiplication of a Matrix by a Scalar) Let A = [aij] ∈ Mm×n(F), B =

[bij] ∈ Mm×n(F) and α ∈ F. The matrix A + αB is the matrix C ∈ Mm×n(F) with entries C = [cij] where
cij = aij + αbij.
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102 Example For A =

26666664 1 1

−1 1

0 2

37777775 and B =

26666664−1 1

2 1

0 −1

37777775 we have

A + 2B =

26666664−1 3

3 3

0 0.

37777775 .

103 Theorem Let (A, B, C) ∈ (Mm×n(F))3 and (α, β) ∈ F2. Then

M1 Mm×n(F) is close under matrix addition and scalar multiplication

A + B ∈ Mm×n(F), αA ∈ Mm×n(F) (2.1)

M2 Addition of matrices is commutative
A + B = B + A (2.2)

M3 Addition of matrices is associative
A + (B + C) = (A + B) + C (2.3)

M4 There is a matrix 0m×n such that
A + 0m×n (2.4)

M5 There is a matrix −A such that
A + (−A) = (−A) + A = 0m×n (2.5)

M6 Distributive law
α(A + B) = αA + αB (2.6)

M7 Distributive law
(α + β)A = αA + βB (2.7)

M8
1FA = A (2.8)

M9
α(βA) = (αβ)A (2.9)

Proof: The theorem follows at once by reducing each statement to an entry-wise and appealing
to the field axioms. ❑

104 Problem Write out explicitly the 3 × 3 matrix A = [aij ]

where aij = ij.

105 Problem Write out explicitly the 3 × 3 matrix A = [aij ]

where aij = ij.

106 Problem Let

M =

2666664 a −2a c

0 −a b

a + b 0 −1

3777775 , N =

2666664 1 2a c

a b − a −b

a − b 0 −1

3777775
be square matrices with entries over R. Find M+N and 2M.
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107 Problem Determine x and y such that2643 x 1

1 2 0

375+ 2

2642 1 3

5 x 4

375 =

264 7 3 7

11 y 8

375 .

108 Problem Determine 2 × 2 matrices A and B such that

2A − 5B =

2641 −2

0 1

375 , −2A + 6B =

2644 2

6 0

375 .

109 Problem Let A = [aij ] ∈ Mn(R). Prove that

min
j

max
i

aij ≥ max
i

min
j

aij.

110 Problem A person goes along the rows of a movie theater
and asks the tallest person of each row to stand up. Then
he selects the shortest of these people, who we will call the

shortest giant. Another person goes along the rows and asks
the shortest person to stand up and from these he selects the
tallest, which we will call the tallest midget. Who is taller,
the tallest midget or the shortest giant?

111 Problem (Putnam Exam, 1959) Choose five elements
from the matrix 266666666666664

11 17 25 19 16

24 10 13 15 3

12 5 14 2 18

23 4 1 8 22

6 20 7 21 9

377777777777775 ,

no two coming from the same row or column, so that the
minimum of these five elements is as large as possible.

2.2 Matrix Multiplication

112 Definition Let A = [aij] ∈ Mm×n(F) and B = [bij] ∈ Mn×p(F). Then the matrix product AB is defined as
the matrix C = [cij] ∈ Mm×p(F) with entries cij =

∑n
l=1 ailblj:266666666666666666664

a11 a12 · · · a1n

a21 a22 · · · a2n

...
... · · ·

...

ai1 ai2 · · · ain

...
... · · ·

...

am1 am2 · · · amn

377777777777777777775
266666666664

b11 · · · b1j · · · b1p

b21 · · · b2j · · · b2p

... · · ·
... · · ·

...

bn1 · · · bnj · · · bnp

377777777775 =

266666666666666666664
c11 · · · c1p

c21 · · · c2p

... · · ·
...

· · · cij · · ·
... · · ·

...

cm1 · · · cmp

377777777777777777775 .

☞ Observe that we use juxtaposition rather than a special symbol to denote matrix multiplica-
tion. This will simplify notation.In order to obtain the ij-th entry of the matrix AB we multiply
elementwise the i-th row of A by the j-th column of B. Observe that AB is a m × p matrix.

113 Example Let M =

26641 2

3 4

3775 and N =

26645 6

7 8

3775 be matrices over R. Then

MN =

26641 2

3 4

3775 26645 6

7 8

3775 =

26641 · 5 + 2 · 7 1 · 6 + 2 · 8

3 · 5 + 4 · 7 3 · 6 + 4 · 8

3775 =

266419 22

43 50

3775 ,
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and

NM =

26645 6

7 8

3775 26641 2

3 4

3775 =

26645 · 1 + 6 · 3 5 · 2 + 6 · 4

7 · 1 + 8 · 3 7 · 2 + 8 · 4

3775 =

266423 34

31 46

3775 .

Hence, in particular, matrix multiplication is not necessarily commutative.

114 Example We have 266666641 1 1

1 1 1

1 1 1

37777775 266666664 2 −1 −1

−1 2 −1

−1 −1 2

377777775 =

2666666640 0 0

0 0 0

0 0 0

377777775 ,

over R. Observe then that the product of two non-zero matrices may be the zero matrix.

115 Example Consider the matrix

A =

266666642 1 3

0 1 1

4 4 0

37777775
with entries over Z5. Then

A2 =

266666642 1 3

0 1 1

4 4 0

37777775266666642 1 3

0 1 1

4 4 0

37777775
=

266666641 0 2

4 0 1

3 3 1

37777775 .

☞ Even though matrix multiplication is not necessarily commutative, it is associative.

116 Theorem If (A, B, C) ∈ Mm×n(F) × Mn×r(F) × Mr×s(F) we have

(AB)C = A(BC),

i.e., matrix multiplication is associative.

Proof: To shew this we only need to consider the ij-th entry of each side, appeal to the associa-
tivity of the underlying field F and verify that both sides are indeed equal to

n∑

k=1

r∑

k ′=1

aikbkk ′ck ′j.

❑



22 Chapter 2

☞ By virtue of associativity, a square matrix commutes with its powers, that is, if A ∈ Mn(F),
and (r, s) ∈ N2, then (Ar)(As) = (As)(Ar) = Ar+s.

117 Example Let A ∈ M3(R) be given by

A =

266666641 1 1

1 1 1

1 1 1

37777775 .

Demonstrate, using induction, that An = 3n−1A for n ∈ N, n ≥ 1.

Solution: The assertion is trivial for n = 1. Assume its truth for n − 1, that is, assume An−1 = 3n−2A. Observe
that

A2 =

266666641 1 1

1 1 1

1 1 1

37777775266666641 1 1

1 1 1

1 1 1

37777775 =

266666643 3 3

3 3 3

3 3 3

37777775 = 3A.

Now

An = AAn−1 = A(3n−2A) = 3n−2A2 = 3n−23A = 3n−1A,

and so the assertion is proved by induction.

118 Theorem Let A ∈ Mn(F). Then there is a unique identity matrix. That is, if E ∈ Mn(F) is such that
AE = EA = A, then E = In.

Proof: It is clear that for any A ∈ Mn(F), AIn = InA = A. Now because E is an identity,
EIn = In. Because In is an identity, EIn = E. Whence

In = EIn = E,

demonstrating uniqueness. ❑

119 Example Let A = [aij] ∈ Mn(R) be such that aij = 0 for i > j and aij = 1 if i ≤ j. Find A2.

Solution: Let A2 = B = [bij]. Then

bij =

n∑

k=1

aikakj.

Observe that the i-th row of A has i − 1 0’s followed by n − i + 1 1’s, and the j-th column of A has j 1’s followed
by n − j 0’s. Therefore if i − 1 > j, then bij = 0. If i ≤ j + 1, then

bij =

j∑

k=i

aikakj = j − i + 1.
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This means that

A2 =

266666666666666666664
1 2 3 4 · · · n − 1 n

0 1 2 3 · · · n − 2 n − 1

0 0 1 2 · · · n − 3 n − 2

...
...

...
... · · ·

...
...

0 0 0 0 · · · 1 2

0 0 0 0 · · · 0 1

377777777777777777775 .

120 Problem Determine the product2641 −1

1 1

375264−2 1

0 −1

3752641 1

1 2

375
.

121 Problem Let A =

26666641 0 0

1 1 0

1 1 1

3777775 , B =

2666664a b c

c a b

b c a

3777775. Find

AB and BA.

122 Problem Let

A =

266666666642 3 4 1

1 2 3 4

4 1 2 3

3 4 1 2

37777777775 , B =

266666666641 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

37777777775
be matrices in M4(Z5) . Find the products AB and BA.

123 Problem Solve the equation264−4 x

−x 4

3752

=

264−1 0

0 −1

375
over R.

124 Problem Prove or disprove! If (A, B) ∈ (Mn(F))2 are
such that AB = 0n , then also BA = 0n.

125 Problem Prove or disprove! For all matrices (A, B) ∈
(Mn(F))2 ,

(A + B)(A − B) = A
2

− B
2
.

126 Problem Prove, using mathematical induction, that2641 1

0 1

375n

=

2641 n

0 1

375.

127 Problem Let M =

264 1 −1

−1 1

375. Find M6 .

128 Problem Let A =

2640 3

2 0

375. Find, with proof, A2003.

129 Problem Let (A, B, C) ∈ Ml×m(F) × Mm×n(F) ×
Mm×n(F) and α ∈ F. Prove that

A(B + C) = AB + AC,

(A + B)C = AC + BC,

α(AB) = (αA)B = A(αB).

130 Problem Let A ∈ M2(R) be given by

A =

264cos α − sin α

sin α cos α

375 .

Demonstrate, using induction, that for n ∈ N, n ≥ 1.

A
n

=

264cos nα − sin nα

sin nα cos nα

375 .

131 Problem A matrix A = [aij ] ∈ Mn(R) is said to be
checkered if aij = 0 when (j − i) is odd. Prove that the sum
and the product of two checkered matrices is checkered.
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132 Problem Let A ∈ M3(R),

A =

26666641 1 1

0 1 1

0 0 1

3777775 .

Prove that

A
n

=

26666641 n
n(n+1)

2

0 1 n

0 0 1

3777775 .

133 Problem Prove, by means of induction that for the fol-
lowing n × n we have266666666666664

1 1 1 · · · 1

0 1 1 · · · 1

0 0 1 · · · 1

...
...

... · · ·
...

0 0 0 · · · 1

377777777777775
3

=

266666666666664
1 3 6 · · · n(n+1)

2

0 1 3 · · · (n−1)n

2

0 0 1 · · · (n−2)(n−1)

2

...
... · · · · · ·

...

0 0 0 · · · 1

377777777777775 .

134 Problem Let (A, B) ∈ (Mn(F))2 and k be a positive
integer such that Ak = 0n. If AB = B prove that B = 0n .

135 Problem Let A =

264a b

c d

375. Demonstrate that

A
2

− (a + d)A + (ad − bc)I2 = 02

.

136 Problem Let A ∈ M2(F) and let k ∈ Z, k > 2. Prove
that Ak = 02 if and only if A2 = 02 .

137 Problem Find all matrices A ∈ M2(R) such that A2 =

02

138 Problem Find all matrices A ∈ M2(R) such that A2 = I2

139 Problem Find a solution X ∈ M2(R) for

X
2

− 2X =

264 −1 0

6 3

375 .

2.3 Trace and Transpose

140 Definition Let A = [aij] ∈ Mn(F). Then the trace of A, denoted by tr (A) is the sum of the diagonal elements
of A, that is

tr (A) =

n∑

k=1

akk.

141 Theorem Let A = [aij] ∈ Mn(F), B = [bij] ∈ Mn(F). Then

tr (A + B) = tr (A) + tr (B) , (2.10)

tr (AB) = tr (BA) . (2.11)

Proof: The first assertion is trivial. To prove the second, observe that AB = (
∑n

k=1 aikbkj) and
BA = (

∑n
k=1 bikakj). Then

tr (AB) =

n∑

i=1

n∑

k=1

aikbki =

n∑

k=1

n∑

i=1

bkiaik = tr (BA) ,

whence the theorem follows. ❑

142 Example Let A ∈ Mn(R). Shew that A can be written as the sum of two matrices whose trace is different
from 0.
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Solution: Write
A = (A − αIn) + αIn.

Now, tr (A − αIn) = tr (A) − nα and tr (αIn) = nα. Thus it suffices to take α 6= tr (A)

n
, α 6= 0. Since R has

infinitely many elements, we can find such an α.

143 Example Let A, B be square matrices of the same size and over the same field of characteristic 0. Is it possible
that AB − BA = In? Prove or disprove!

Solution: This is impossible. For if, taking traces on both sides

0 = tr (AB) − tr (BA) = tr (AB − BA) = tr (In) = n

a contradiction, since n > 0.

144 Definition The transpose of a matrix of a matrix A = [aij] ∈ Mm×n(F) is the matrix AT = B = [bij] ∈
Mn×m(F), where bij = aji.

145 Example If

M =

26666664a b c

d e f

g h i

37777775 ,

with entries in R, then

MT =

26666664a d g

b e h

c f i

37777775 .

146 Theorem Let

A = [aij] ∈ Mm×n(F), B = [bij] ∈ Mm×n(F), C = [cij] ∈ Mn×r(F), α ∈ F, u ∈ N.

Then
ATT = A, (2.12)

(A + αB)T = AT + αBT , (2.13)

(AC)T = CT AT , (2.14)

(Au)T = (AT )u. (2.15)

Proof: The first two assertions are obvious, and the fourth follows from the third by using
induction. To prove the third put AT = (αij), αij = aji, CT = (γij), γij = cji, AC = (uij) and
CTAT = (vij). Then

uij =

n∑

k=1

aikckj =

n∑

k=1

αkiγjk =

n∑

k=1

γjkαki = vji,

whence the theorem follows. ❑

147 Definition A square matrix A ∈ Mn(F) is symmetric if AT = A. A matrix B ∈ Mn(F) is skew-symmetric
if BT = −B.
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148 Example Let A, B be square matrices of the same size, with A symmetric and B skew-symmetric. Prove that
the matrix A2BA2 is skew-symmetric.

Solution: We have
(A2BA2)T = (A2)T (B)T (A2)T = A2(−B)A2 = −A2BA2.

149 Theorem Let F be a field of characteristic different from 2. Then any square matrix A can be written as the
sum of a symmetric and a skew-symmetric matrix.

Proof: Observe that
(A + AT )T = AT + ATT = AT + A,

and so A + AT is symmetric. Also,

(A − AT )T = AT − ATT = −(A − AT ),

and so A − AT is skew-symmetric. We only need to write A as

A = (2−1)(A + AT ) + (2−1)(A − AT )

to prove the assertion. ❑

150 Problem Write

A =

26666641 2 3

2 3 1

3 1 2

3777775 ∈ M3(R)

as the sum of two 3 × 3 matrices E1, E2 , with tr (E2) = 10.

151 Problem Shew that there are no matrices (A, B, C, D) ∈
(Mn(R))4 such that

AC + DB = In,

CA + BD = 0n .

152 Problem Let (A, B) ∈ (M2(R))2 be symmetric matri-
ces. Must their product AB be symmetric? Prove or disprove!

153 Problem Given square matrices (A, B) ∈ (M7(R))2

such that tr
�
A2
�

= tr
�
B2
�

= 1, and

(A − B)
2

= 3I7,

find tr (BA).

154 Problem Consider the matrix A =

264a b

c d

375 ∈ M2(R).

Find necessary and sufficient conditions on a, b, c, d so that
tr
�
A2
�

= (tr (A))2 .

155 Problem Given a square matrix A ∈ M4(R) such that
tr
�
A2
�

= −4, and

(A − I4)
2

= 3I4,

find tr (A).

156 Problem Prove or disprove! If A, B are square matri-
ces of the same size, then it is always true that tr (AB) =

tr (A) tr (B).

157 Problem Prove or disprove! If (A, B, C) ∈ (M3(F))3

then tr (ABC) = tr (BAC).

158 Problem Let A be a square matrix. Prove that the matrix
AAT is symmetric.

159 Problem Let A, B be square matrices of the same size,
with A symmetric and B skew-symmetric. Prove that the
matrix AB − BA is symmetric.

160 Problem Let A ∈ Mn(F), A = [aij ]. Prove that
tr
�
AAT

�
=

∑n

i=1

∑n

j=1 a2
ij .

161 Problem Let X ∈ Mn(R). Prove that if XXT = 0n then
X = 0n .

162 Problem Let m, n, p be positive integers and A ∈
Mm×n(R), B ∈ Mn×p(R), C ∈ Mp×m(R). Prove that
(BA)T A = (CA)T A =⇒ BA = CA.

2.4 Special Matrices

163 Definition The main diagonal of a square matrix A = [aij] ∈ Mn(F) is the set {aii : i ≤ n}. The counter
diagonal of a square matrix A = [aij] ∈ Mn(F) is the set {a(n−i+1)i : i ≤ n}.
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164 Example The main diagonal of the matrix

A =

266666640 1 5

3 2 4

9 8 7

37777775
is the set {0, 2, 7}. The counter diagonal of A is the set {5, 2, 9}.

165 Definition A square matrix is a diagonal matrix if every entry off its main diagonal is 0F.

166 Example The matrix

A =

266666641 0 0

0 2 0

0 0 3

37777775
is a diagonal matrix.

167 Definition A square matrix is a scalar matrix if it is of the form αIn for some scalar α.

168 Example The matrix

A =

266666644 0 0

0 4 0

0 0 4

37777775 = 4I3

is a scalar matrix.

169 Definition A ∈ Mm×n(F) is said to be upper triangular if

(∀(i, j) ∈ {1, 2, · · · , n}2), (i > j, aij = 0F),

that is, every element below the main diagonal is 0F. Similarly, A is lower triangular if

(∀(i, j) ∈ {1, 2, · · · , n}2), (i < j, aij = 0F),

that is, every element above the main diagonal is 0F.

170 Example The matrix A ∈ M3×4(R) shewn is upper triangular and B ∈ M4(R) is lower triangular.

A =

266666641 a b c

0 2 3 0

0 0 0 1

37777775 B =

266666666664
1 0 0 0

1 a 0 0

0 2 3 0

1 1 t 1

377777777775
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171 Definition The Kronecker delta δij is defined by

δij =






1F if i = j

0F if i 6= j

172 Definition The set of matrices Eij ∈ Mm×n(F), Eij = (ers) such that eij = 1F and ei ′j ′ = 0F, (i ′, j ′) 6= (i, j)

is called the set of elementary matrices. Observe that in fact ers = δirδsj.

Elementary matrices have interesting effects when we pre-multiply and post-multiply a matrix by them.

173 Example Let

A =

266666641 2 3 4

5 6 7 8

9 10 11 12

37777775 , E23 =

266666666664
0 0 0

0 0 1

0 0 0

0 0 0

377777777775 .

Then

E23A =

266666640 0 0 0

9 10 11 12

0 0 0 0

37777775 , AE23 =

266666640 0 2

0 0 6

0 0 10

37777775 .

174 Theorem (Multiplication by Elementary Matrices) Let Eij ∈ Mm×n(F) be an elementary matrix, and let
A ∈ Mn×m(F). Then EijA has as its i-th row the j-th row of A and 0F’s everywhere else. Similarly, AEij has as
its j-th column the i-th column of A and 0F’s everywhere else.

Proof: Put (αuv) = EijA. To obtain EijA we multiply the rows of Eij by the columns of A.
Now

αuv =

n∑

k=1

eukakv =

n∑

k=1

δuiδkjakv = δuiajv.

Therefore, for u 6= i, αuv = 0F, i.e., off of the i-th row the entries of EijA are 0F, and αiv = αjv,
that is, the i-th row of EijA is the j-th row of A. The case for AEij is similarly argued.❑

The following corollary is immediate.

175 Corollary Let (Eij, Ekl) ∈ (Mn(F))2, be square elementary matrices. Then

EijEkl = δjkEil.

176 Example Let M ∈ Mn(F) be a matrix such that AM = MA for all matrices A ∈ Mn(F). Demonstrate that
M = aIn for some a ∈ F, i.e. M is a scalar matrix.
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Solution: Assume (s, t) ∈ {1, 2, . . . , n}2. Let M = (mij) and Est ∈ Mn(F). Since M commutes with Est we have26666666666666664
0 0 . . . 0

...
... . . .

...

mt1 mt2 . . . mtn

...
... . . .

...

0 0 . . . 0

37777777777777775 = EstM = MEst =

26666666666666664
0 0 . . . m1s . . . 0

0 0
... m2s

... 0

...
...

...
...

...
...

0 0
... m(n−1)s

... 0

0 0
... mns

... 0

37777777777777775
For arbitrary s 6= t we have shown that mst = mts = 0, and that mss = mtt. Thus the entries off the main diagonal
are zero and the diagonal entries are all equal to one another, whence M is a scalar matrix.

177 Definition Let λ ∈ F and Eij ∈ Mn(F). A square matrix in Mn(F) of the form In + λEij is called a
transvection.

178 Example The matrix

T = I3 + 4E13 =

266666641 0 4

0 1 0

0 0 1

37777775
is a transvection. Observe that if

A =

266666641 1 1

5 6 7

1 2 3

37777775
then

TA =

266666641 0 4

0 1 0

0 0 1

37777775 266666641 1 1

5 6 7

1 2 3

37777775 =

266666645 9 13

5 6 7

1 2 3

37777775 ,

that is, pre-multiplication by T adds 4 times the third row of A to the first row of A. Similarly,

AT =

266666641 1 1

5 6 7

1 2 3

37777775 266666641 0 4

0 1 0

0 0 1

37777775 =

266666641 1 5

5 6 27

1 2 7

37777775 ,

that is, post-multiplication by T adds 4 times the first column of A to the third row of A.

In general, we have the following theorem.

179 Theorem (Multiplication by a Transvection Matrix) Let In + λEij ∈ Mn(F) be a transvection and let A ∈
Mn×m(F). Then (In + λEij)A adds the j-th row of A to its i-th row and leaves the other rows unchanged.
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Similarly, if B ∈ Mp×n(F), B(In + λEij) adds the i-th column of B to the j-th column and leaves the other
columns unchanged.

Proof: Simply observe that (In + λEij)A = A + λEijA and A(In + λEij) = A + λAEij and apply
Theorem 174. ❑

Observe that the particular transvection In + (λ − 1F)Eii ∈ Mn(F) consists of a diagonal matrix with 1F’s
everywhere on the diagonal, except on the ii-th position, where it has a λ.

180 Definition If λ 6= 0F, we call the matrix In + (λ − 1F)Eii a dilatation matrix.

181 Example The matrix

S = I3 + (4 − 1)E11 =

266666644 0 0

0 1 0

0 0 1

37777775
is a dilatation matrix. Observe that if

A =

266666641 1 1

5 6 7

1 2 3

37777775
then

SA =

266666644 0 0

0 1 0

0 0 1

37777775266666641 1 1

5 6 7

1 2 3

37777775 =

266666644 4 4

5 6 7

1 2 3

37777775 ,

that is, pre-multiplication by S multiplies by 4 the first row of A. Similarly,

AS =

266666641 1 1

5 6 7

1 2 3

37777775266666644 0 0

0 1 0

0 0 1

37777775 =

26666664 4 1 1

20 6 7

4 2 3

37777775 ,

that is, post-multiplication by S multiplies by 4 the first column of A.

182 Theorem (Multiplication by a Dilatation Matrix) Pre-multiplication of
the matrixA ∈ Mn×m(F) by the dilatation matrix In + (λ − 1F)Eii ∈ Mn(F) multiplies the i-th row of A by λ

and leaves the other rows of A unchanged. Similarly, if B ∈ Mp×n(F) post-multiplication of B by In +(λ−1F)Eii

multiplies the i-th column of B by λ and leaves the other columns of B unchanged.

Proof: This follows by direct application of Theorem 179. ❑

183 Definition We write Iij
n for the matrix which permutes the i-th row with the j-th row of the identity matrix.

We call Iij
n a transposition matrix.
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184 Example We have

I(23)

4 =

266666666664
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

377777777775 .

If

A =

266666666664
1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

377777777775 ,

then

I(23)

4 A =

266666666664
1 2 3 4

9 10 11 12

5 6 7 8

13 14 15 16

377777777775 ,

and

AI
(23)

4 =

266666666664
1 3 2 4

5 7 6 8

9 11 10 12

13 15 14 16

377777777775 .

185 Theorem (Multiplication by a Transposition Matrix) If A ∈ Mn×m(F), then Iij
nA is the matrix obtained

from A permuting the the i-th row with the j-th row of A. Similarly, if B ∈ Mp×n(F), then BIij
n is the matrix

obtained from B by permuting the i-th column with the j-th column of B.

Proof: We must prove that Iij
nA exchanges the i-th and j-th rows but leaves the other rows

unchanged. But this follows upon observing that

Iij
n = In + Eij + Eji − Eii − Ejj

and appealing to Theorem 174.

❑

186 Definition A square matrix which is either a transvection matrix, a dilatation matrix or a transposition matrix
is called an elimination matrix.

☞ In a very loose way, we may associate pre-multiplication of a matrix A by another matrix
with an operation on the rows of A, and post-multiplication of a matrix A by another with an
operation on the columns of A.
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187 Problem Consider the matrices

A =

26666666664 1 0 1 0

0 1 0 1

−1 1 1 1

1 −1 1 1

37777777775 , B =

266666666644 −2 4 2

0 1 0 1

1 1 −1 1

1 −1 1 1

37777777775 .

Find a specific dilatation matrix D, a specific transposition
matrix P, and a specific transvection matrix T such that
B = TDAP.

188 Problem The matrix

A =

2666664a b c

d e f

g h i

3777775

is transformed into the matrix

B =

2666664 h − g g i

e − d d f

2b − 2a 2a 2c

3777775
by a series of row and column operations. Find explicit per-
mutation matrices P, P ′, an explicit dilatation matrix D, and
an explicit transvection matrix T such that

B = DPAP
′
T.

189 Problem Let A ∈ Mn(F). Prove that if

(∀X ∈ Mn(F)), (tr (AX) = tr (BX)),

then A = B.

190 Problem Let A ∈ Mn(R) be such that

(∀X ∈ Mn(R)), ((XA)
2

= 0n).

Prove that A = 0n .

2.5 Matrix Inversion

191 Definition Let A ∈ Mm×n(F). Then A is said to be left-invertible if ∃L ∈ Mn×m(F) such that LA = In. A

is said to be right-invertible if ∃R ∈ Mn×m(F) such that AR = Im. A matrix is said to be invertible if it possesses
a right and a left inverse. A matrix which is not invertible is said to be singular.

192 Example The matrix A ∈ M2×3(R)

A =

26641 0 0

0 1 0

3775
has infinitely many right-inverses of the form

R(x,y) =

266666641 0

0 1

x y

37777775 .

For 26641 0 0

0 1 0

3775266666641 0

0 1

x y

37777775 =

26641 0

0 1

3775 ,
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regardless of the values of x and y. Observe, however, that A does not have a left inverse, for26666664a b

c d

f g

3777777526641 0 0

0 1 0

3775 =

26666664a b 0

c d 0

f g 0

37777775 ,

which will never give I3 regardless of the values of a, b, c, d, f, g.

193 Example If λ 6= 0, then the scalar matrix λIn is invertible, for

(λIn)
�
λ−1In

�
= In =

�
λ−1In

�
(λIn) .

194 Example The zero matrix 0n is singular.

195 Theorem Let A ∈ Mn(F) a square matrix possessing a left inverse L and a right inverse R. Then L = R. Thus
an invertible square matrix possesses a unique inverse.

Proof: Observe that we have LA = In = AR. Then

L = LIn = L(AR) = (LA)R = InR = R.

❑

196 Definition The subset of Mn(F) of all invertible n × n matrices is denoted by GLn(F), read “the linear group
of rank n over F.”

197 Corollary Let (A, B) ∈ (GLn(F))2. Then AB is also invertible and

(AB)−1 = B−1A−1.

Proof: Since AB is a square matrix, it suffices to notice that

B−1A−1(AB) = (AB)B−1A−1 = In

and that since the inverse of a square matrix is unique, we must have B−1A−1 = (AB)−1. ❑

198 Corollary If a square matrix S ∈ Mn(F) is invertible, then S−1 is also invertible and (S−1)−1 = S, in view of
the uniqueness of the inverses of square matrices.

199 Corollary If a square matrix A ∈ Mn(F) is invertible, then AT is also invertible and (AT )−1 = (A−1)T .

Proof: We claim that (AT )−1 = (A−1)T . For

AA−1 = In =⇒ (AA−1)T = IT
n =⇒ (A−1)T AT = In,

where we have used Theorem 146. ❑

The next few theorems will prove that elimination matrices are invertible matrices.

200 Theorem (Invertibility of Transvections) Let In + λEij ∈ Mn(F) be a transvection, and let i 6= j. Then

(In + λEij)
−1 = In − λEij.
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Proof: Expanding the product

(In + λEij)(In − λEij) = In + λEij − λEij − λ2EijEij

= In − λ2δijEij

= In,

since i 6= j. ❑

201 Example By Theorem 200, we have266666641 0 3

0 1 0

0 0 1

37777775 266666641 0 −3

0 1 0

0 0 1

37777775 =

266666641 0 0

0 1 0

0 0 1

37777775 .

202 Theorem (Invertibility of Dilatations) Let λ 6= 0F. Then

(In + (λ − 1F)Eii)
−1 = In + (λ−1 − 1F)Eii.

Proof: Expanding the product

(In + (λ − 1F)Eii)(In + (λ−1 − 1F)Eii) = In + (λ − 1F)Eii

+(λ−1 − 1F)Eii

+(λ − 1F)(λ−1 − 1F)Eii

= In + (λ − 1F)Eii

+(λ−1 − 1F)Eii

+(λ − 1F)(λ−1 − 1F))Eii

= In + (λ − 1F + λ−1 − 1F + 1F

−λ − λ−1 − 1F))Eii

= In,

proving the assertion. ❑

203 Example By Theorem 202, we have266666641 0 0

0 2 0

0 0 1

37777775266666641 0 0

0 1
2

0

0 0 1

37777775 =

266666641 0 0

0 1 0

0 0 1

37777775 .
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Repeated applications of Theorem 202 gives the following corollary.

204 Corollary If λ1λ2λ3 · · · λn 6= 0F, then26666666666666664
λ1 0 0 0 · · · 0

0 λ2 0 0 · · · 0

0 0 λ3 0 · · · 0

...
...

...
... · · ·

...

0 0 0 0 · · · λn

37777777777777775
is invertible and 26666666666666664

λ1 0 0 0 · · · 0

0 λ2 0 0 · · · 0

0 0 λ3 0 · · · 0

...
...

...
... · · ·

...

0 0 0 0 · · · λn

37777777777777775
−1

=

26666666666666664
λ−1

1 0 0 0 · · · 0

0 λ−1
2 0 0 · · · 0

0 0 λ−1
3 0 · · · 0

...
...

...
... · · ·

...

0 0 0 0 · · · λ−1
n

37777777777777775
205 Theorem (Invertibility of Permutation Matrices) Let τ ∈ Sn be a permutation. Then

(Iij
n )−1 = (Iij

n )T .

Proof: By Theorem 185 pre-multiplication of Iij
n by Iij

n exchanges the i-th row with the j-th row,
meaning that they return to the original position in In. Observe in particular that Iij

n = (Iij
n )T , and

so Iij
n (Iij

n )T = In. ❑

206 Example By Theorem 205, we have266666641 0 0

0 0 1

0 1 0

37777775 266666641 0 0

0 0 1

0 1 0

37777775 =

266666641 0 0

0 1 0

0 0 1

37777775 .

207 Corollary If a square matrix can be represented as the product of elimination matrices of the same size, then it
is invertible.

Proof: This follows from Corollary 197, and Theorems 200, 202, and 205. ❑

208 Example Observe that

A =

266666641 0 0

0 3 4

0 0 1

37777775
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is the transvection I3 + 4E23 followed by the dilatation of the second column of this transvection by 3. Thus266666641 0 0

0 3 4

0 0 1

37777775 =

266666641 0 0

0 1 4

0 0 1

37777775266666641 0 0

0 3 0

0 0 1

37777775 ,

and so

266666641 0 0

0 3 4

0 0 1

37777775−1

=

266666641 0 0

0 3 0

0 0 1

37777775−1 266666641 0 0

0 1 4

0 0 1

37777775−1

=

266666641 0 0

0 1
3

0

0 0 1

37777775266666641 0 0

0 1 −4

0 0 1

37777775
=

266666641 0 0

0 1
3

−4
3

0 0 1

37777775 .

209 Example We have 266666641 1 1

0 1 1

0 0 1

37777775 =

266666641 1 0

0 1 0

0 0 1

37777775266666641 0 0

0 1 1

0 0 1

37777775 ,
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hence 266666641 1 1

0 1 1

0 0 1

37777775−1

=

266666641 0 0

0 1 1

0 0 1

37777775−1 266666641 1 0

0 1 0

0 0 1

37777775−1

=

266666641 0 0

0 1 −1

0 0 1

37777775266666641 −1 0

0 1 0

0 0 1

37777775
=

266666641 −1 0

0 1 −1

0 0 1

37777775 .

In the next section we will give a general method that will permit us to find the inverse of a square matrix when
it exists.

210 Example Let T =

2664a b

c d

3775 ∈ M2(R). Then2664a b

c d

3775 2664 d −b

−c a

3775 = (ad − bc)

26641 0

0 1

3775
Thus if ad − bc 6= 0 we see that

T−1 =

2664 d
ad−bc

− b
ad−bc

− c
ad−bc

a
ad−bc

3775 .

211 Example If

A =

266666666664
1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

377777777775 ,
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then A is invertible, for an easy computation shews that

A2 =

266666666664
1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

377777777775
2

= 4I4,

whence the inverse sought is

A−1 =
1

4
A =

1

4

266666666664
1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

377777777775 =

266666666664
1/4 1/4 1/4 1/4

1/4 1/4 −1/4 −1/4

1/4 −1/4 1/4 −1/4

1/4 −1/4 −1/4 1/4

377777777775 .

212 Example A matrix A ∈ Mn(R) is said to be nilpotent of index k if satisfies A 6= 0n, A2 6= 0n, . . . , Ak−1 6= 0n

and Ak = 0n for integer k ≥ 1. Prove that if A is nilpotent, then In − A is invertible and find its inverse.

Solution: To motivate the solution, think that instead of a matrix, we had a real number x with |x| < 1. Then the
inverse of 1 − x is

(1 − x)−1 =
1

1 − x
= 1 + x + x2 + x3 + · · · .

Notice now that since Ak = 0n, then Ap = 0n for p ≥ k. We conjecture thus that

(In − A)−1 = In + A + A2 + · · · + Ak−1.

The conjecture is easily verified, as

(In − A)(In + A + A2 + · · · + Ak−1) = In + A + A2 + · · · + Ak−1

−(A + A2 + A3 + · · · + Ak)

= In

and

(In + A + A2 + · · · + Ak−1)(In − A) = In − A + A − A2 + A3 − A4 + · · ·

· · · + Ak−2 − Ak−1 + Ak−1 − Ak

= In.

213 Example The inverse of A ∈ M3(Z5),

A =

266666642 0 0

0 3 0

0 0 4

37777775
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is

A−1 =

266666643 0 0

0 2 0

0 0 4

37777775 ,

as

AA−1 =

266666642 0 0

0 3 0

0 0 4

37777775 266666643 0 0

0 2 0

0 0 4

37777775 =

266666641 0 0

0 1 0

0 0 1

37777775
214 Example (Putnam Exam, 1991) Let A and B be different n × n matrices with real entries. If A3 = B3 and
A2B = B2A, prove that A2 + B2 is not invertible.

Solution: Observe that
(A2 + B2)(A − B) = A3 − A2B + B2A − B3 = 0n.

If A2 + B2 were invertible, then we would have

A − B = (A2 + B2)−1(A2 + B2)(A − B) = 0n,

contradicting the fact that A and B are different matrices.

215 Lemma If A ∈ Mn(F) has a row or a column consisting all of 0F’s, then A is singular.

Proof: If A were invertible, the (i, i)-th entry of the product of its inverse with A would be 1F.
But if the i-th row of A is all 0F’s, then

∑n
k=1 aikbki = 0F, so the (i, i) entry of any matrix product

with A is 0F, and never 1F. ❑

216 Problem The inverse of the matrix A =

26666641 1 1

1 1 2

1 2 3

3777775 is

the matrix A−1 =

2666664 a 1 −1

1 b 1

−1 1 0

3777775. Determine a and b.

217 Problem A square matrix A satisfies A3 6= 0n but
A4 = 0n . Demonstrate that In + A is invertible and find,
with proof, its inverse.

218 Problem Prove or disprove! If (A, B, A + B) ∈
(GLn(R))3 then (A + B)−1 = A−1 + B−1 .

219 Problem Let S ∈ GLn(F), (A, B) ∈ (Mn(F))2 , and

k a positive integer. Prove that if B = SAS−1 then Bk =

SAkS−1 .

220 Problem Let A ∈ Mn(F) and let k be a positive integer.
Prove that A is invertible if and only if Ak is invertible.

221 Problem Let S ∈ GLn(C), A ∈ Mn(C) with Ak = 0n

for some positive integer k. Prove that both In −SAS−1 and
In − S−1AS are invertible and find their inverses.

222 Problem Let A and B be square matrices of the same
size such that both A − B and A + B are invertible. Put
C = (A − B)−1 + (A + B)−1 . Prove that

ACA − ACB + BCA − BCB = 2A.

223 Problem Let A, B, C be non-zero square matrices of the
same size over the same field and such that ABC = 0n . Prove
that at least two of these three matrices are not invertible.

224 Problem Let (A, B) ∈ (Mn(F))2 be such that A2 =

B2 = (AB)2 = In . Prove that AB = BA.
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225 Problem Let A =

266666666666664
a b b · · · b

b a b · · · b

b b a · · · b

...
...

... · · ·
...

b b b · · · a

377777777777775 ∈ Mn(F),

n > 1, (a, b) ∈ F2 . Determine when A is invertible and
find this inverse when it exists.

226 Problem Let (A, B) ∈ (Mn(F))2 be matrices such that

A + B = AB. Demonstrate that A − In is invertible and find
this inverse.

227 Problem Let S ∈ GLn(F) and A ∈ Mn(F). Prove that
tr (A) = tr

�
SAS−1

�
.

228 Problem Let A ∈ Mn(R) be a skew-symmetric ma-
trix. Prove that In + A is invertible. Furthermore, if
B = (In − A)(In + A)−1 , prove that B−1 = BT .

229 Problem A matrix A ∈ Mn(F) is said to be a magic
square if the sum of each individual row equals the sum of
each individual column. Assume that A is a magic square
and invertible. Prove that A−1 is also a magic square.

2.6 Block Matrices

230 Definition Let A ∈ Mm×n(F), B ∈ Mm×s(F), C ∈ Mr×n(F), D ∈ Mr×s(F). We use the notation

L =

2664A B

C D

3775
for the block matrix L ∈ M(m+r)×(n+s)(F).

☞ If (A, A ′) ∈ (Mm(F))2, (B, B ′) ∈ (Mm×n(F))2, (C, C ′) ∈ (Mn×m(F))2, (D, D ′) ∈
(Mm(F))2, and

S =

2664A B

C D

3775 , T =

2664A ′ B ′

C ′ D ′

3775 ,

then it is easy to verify that

ST =

2664AA ′ + BC ′ AB ′ + BD ′

CA ′ + DC ′ CB ′ + DD ′

3775 .

231 Lemma Let L ∈ M(m+r)×(m+r)(F) be the square block matrix

L =

2664 A C

0r×m B

3775 ,

with square matrices A ∈ Mm(F) and B ∈ Mr(F), and a matrix C ∈ Mm×r(F). Then L is invertible if and only
if A and B are, in which case

L−1 =

2664 A−1 −A−1CB−1

0r×m B−1

3775
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Proof: Assume first that A, and B are invertible. Direct calculation yields2664 A C

0r×m B

37752664 A−1 −A−1CB−1

0r×m B−1

3775 =

2664AA−1 −AA−1CB−1 + CB−1

0r×m BB−1

3775
=

2664 Im 0m×r

0r×m Ir

3775
= Im+r.

Assume now that L is invertible, L−1 =

2664E H

J K

3775, with E ∈ Mm(F) and K ∈ Mr(F), but that, say,

B is singular. Then 2664 Im 0m×r

0r×m Ir

3775 = LL−1

=

2664 A C

0r×m B

37752664E H

J K

3775
=

2664AE + CJ AH + BK

BJ BK

3775 ,

which gives BK = Ir, i.e., B is invertible, a contradiction. ❑

2.7 Rank of a Matrix

232 Definition Let (A, B) ∈ (Mm×n(F))2. We say that A is row-equivalent to B if there exists a matrix R ∈
GLm(F) such that B = RA. Similarly, we say that A is column-equivalent to B if there exists a matrix C ∈ GLm(F)

such that B = AC. We say that A and B are equivalent if ∃(P, Q) ∈ GLm(F) × GLn(F) such that B = PAQ.

233 Theorem Row equivalence, column equivalence, and equivalence are equivalence relations.

Proof: We prove the result for row equivalence. The result for column equivalence, and equiva-
lence are analogously proved.

Since Im ∈ GLm(F) and A = ImA, row equivalence is a reflexive relation. Assume (A, B) ∈
(Mm×n(F))2 and that ∃P ∈ GLm(F) such that B = PA. Then A = P−1B and since P−1 ∈
GLm(F), we see that row equivalence is a symmetric relation. Finally assume (A, B, C) ∈
(Mm×n(F))3 and that ∃P ∈ GLm(F), ∃P ′ ∈ GLm(F) such that A = PB, B = P ′C. Then
A = PP ′C. But PP ′ ∈ GLm(F) in view of Corollary 197. This completes the proof. ❑

234 Theorem Let A ∈ Mm×n(F). Then A can be reduced, by means of pre-multiplication and post-multiplication
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by elimination matrices, to a unique matrix of the form

Dm,n,r =

2664 Ir 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

3775 , (2.16)

called the Hermite normal form of A. Thus there exist P ∈ GLm(F), Q ∈ GLn(F) such that Dm,n,r = PAQ.
The integer r ≥ 0 is called the rank of the matrix A which we denote by rank (A).

Proof: If A is the m × n zero matrix, then the theorem is obvious, taking r = 0. Assume hence
that A is not the zero matrix. We proceed as follows using the Gauß-Jordan Algorithm.

GJ-1 Since A is a non-zero matrix, it has a non-zero column. By means of permutation matrices
we move this column to the first column.

GJ-2 Since this column is a non-zero column, it must have an entry a 6= 0F. Again, by means of
permutation matrices, we move the row on which this entry is to the first row.

GJ-3 By means of a dilatation matrix with scale factor a−1, we make this new (1, 1) entry into a
1F.

GJ-4 By means of transvections (adding various multiples of row 1 to the other rows) we now
annihilate every entry below the entry (1, 1).

This process ends up in a matrix of the form

P1AQ1 =

26666666666666664
1F ∗ ∗ · · · ∗

0F b22 b23 · · · b2n

0F b32 b33 · · · b3n

0F

...
... · · ·

...

0F bm2 bm3 · · · bmn

37777777777777775 . (2.17)

Here the asterisks represent unknown entries. Observe that the b’s form a (m − 1) × (n − 1)

matrix.

GJ-5 Apply GJ-1 through GJ-4 to the matrix of the b’s.

Observe that this results in a matrix of the form

P2AQ2 =

26666666666666664
1F ∗ ∗ · · · ∗

0F 1F ∗ · · · ∗

0F 0F c33 · · · c3n

0F

...
... · · ·

...

0F 0F cm3 · · · cmn

37777777777777775 . (2.18)

GJ-6 Add the appropriate multiple of column 1 to column 2, that is, apply a transvection, in order
to make the entry in the (1, 2) position 0F.
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This now gives a matrix of the form

P3AQ3 =

26666666666666664
1F 0F ∗ · · · ∗

0F 1F ∗ · · · ∗

0F 0F c33 · · · c3n

0F

...
... · · ·

...

0F 0F cm3 · · · cmn

37777777777777775 . (2.19)

The matrix of the c’s has size (m − 2) × (n − 2).

GJ-7 Apply GJ-1 through GJ-6 to the matrix of the c’s, etc.

Observe that this process eventually stops, and in fact, it is clear that rank (A) ≤ min(m, n).

Suppose now that A were equivalent to a matrix Dm,n,s with s > r. Since matrix equivalence is an
equivalence relation, Dm,n,s and Dm,n,r would be equivalent, and so there would be R ∈ GLm(F),
S ∈ GLn(F), such that RDm,n,rS = Dm,n,s, that is, RDm,n,r = Dm,n,sS−1. Partition R and S−1

as follows

R =

2664R11 R12

R21 R22

3775 , S−1 =

26666664S11 S12 S13

S21 S22 S23

S31 S32 S33

37777775 ,

with (R11, S11)2 ∈ (Mr(F))2, S22 ∈ M(s−r)×(s−r)(F). We have

RDm,n,r =

2664R11 R12

R21 R22

37752664 Ir 0(m−r)×r

0(m−r)×r 0r×(m−r)

3775 =

2664R11 0(m−r)×r

R21 0r×(m−r)

3775 ,

and

Dm,n,sS
−1 =

26666664 Ir 0r×(s−r) 0r×(n−s)

0(s−r)×r Is−r 0(s−r)×(n−s)

0(m−s)×r 0(m−s)×(s−r) 0(m−s)×(n−s)

3777777526666664S11 S12 S13

S21 S22 S23

S31 S32 S33

37777775
=

26666664 S11 S12 S13

S21 S22 S23

0(m−s)×r 0(m−s)×(s−r) 0(m−s)×(n−s)

37777775 .

Since we are assuming2664R11 0(m−r)×r

R21 0r×(m−r)

3775 =

26666664 S11 S12 S13

S21 S22 S23

0(m−s)×r 0(m−s)×(s−r) 0(m−s)×(n−s)

37777775 ,
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we must have S12 = 0r×(s−r), S13 = 0r×(n−s), S22 = 0(s−r)×(s−r), S23 = 0(s−r)×(n−s). Hence

S−1 =

26666664S11 0r×(s−r) 0r×(n−s)

S21 0(s−r)×(s−r) 0(s−r)×(n−s)

S31 S32 S33

37777775 .

The matrix 26640(s−r)×(s−r) 0(s−r)×(n−s)

S32 S33

3775
is non-invertible, by virtue of Lemma 215. This entails that S−1 is non-invertible by virtue of
Lemma 231. This is a contradiction, since S is assumed invertible, and hence S−1 must also be
invertible. ❑

☞ Albeit the rank of a matrix is unique, the matrices P and Q appearing in Theorem 234 are
not necessarily unique. For example, the matrix266666641 0

0 1

0 0

37777775
has rank 2, the matrix 266666641 0 x

0 1 y

0 0 1

37777775
is invertible, and an easy computation shews that266666641 0 x

0 1 y

0 0 1

37777775266666641 0

0 1

0 0

3777777526641 0

0 1

3775 =

266666641 0

0 1

0 0

37777775 ,

regardless of the values of x and y.

235 Corollary Let A ∈ Mm×n(F). Then rank (A) = rank
�
AT
�
.

Proof: Let P, Q, Dm,n,r as in Theorem 234. Observe that PT , QT are invertible. Then

PAQ = Dm,n,r =⇒ QT AT PT = DT
m,n,r = Dn,m,r,

and since this last matrix has the same number of 1F’s as Dm,n,r, the corollary is proven. ❑



Rank of a Matrix 45

236 Example Shew that

A =

26640 2 3

0 1 0

3775
has rank (A) = 2 and find invertible matrices P ∈ GL2(R) and Q ∈ GL3(R) such that

PAQ =

26641 0 0

0 1 0

3775 .

Solution: We first transpose the first and third columns by effecting26640 2 3

0 1 0

3775 266666640 0 1

0 1 0

1 0 0

37777775 =

26643 2 0

0 1 0

3775 .

We now subtract twice the second row from the first, by effecting26641 −2

0 1

377526643 2 0

0 1 0

3775 =

26643 0 0

0 1 0

3775 .

Finally, we divide the first row by 3, 26641/3 0

0 1

377526643 0 0

0 1 0

3775 =

26641 0 0

0 1 0

3775 .

We conclude that 26641/3 0

0 1

3775 26641 −2

0 1

377526640 2 3

0 1 0

3775 266666640 0 1

0 1 0

1 0 0

37777775 =

26641 0 0

0 1 0

3775 ,

from where we may take

P =

26641/3 0

0 1

377526641 −2

0 1

3775 =

26641/3 −2/3

0 1

3775
and

Q =

266666640 0 1

0 1 0

1 0 0

37777775 .
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In practice it is easier to do away with the multiplication by elimination matrices and perform row and column
operations on the augmented (m + n) × (m + n) matrix2664In 0n×m

A Im

3775 .

237 Definition Denote the rows of a matrix A ∈ Mm×n(F) by R1, R2, . . . , Rm, and its columns by C1, C2, . . . , Cn.
The elimination operations will be denoted as follows.� Exchanging the i-th row with the j-th row, which we denote by Ri ↔ Rj, and the s-th column by the t-th

column by Cs ↔ Ct.� A dilatation of the i-th row by a non-zero scalar α ∈ F \ {0F}, we will denote by αRi → Ri. Similarly,
βCj → Cj denotes the dilatation of the j-th column by the non-zero scalar β.� A transvection on the rows will be denoted by Ri + αRj → Ri, and one on the columns by Cs + βCt → Cs.

238 Example Find the Hermite normal form of

A =

266666666664
−1 0

0 0

1 1

1 2

377777777775 .

Solution: First observe that rank (A) ≤ min(4, 2) = 2, so the rank can be either 1 or 2 (why not 0?). Form the
augmented matrix 266666666666666666664

1 0 0 0 0 0

0 1 0 0 0 0

−1 0 1 0 0 0

0 0 0 1 0 0

1 1 0 0 1 0

1 2 0 0 0 1

377777777777777777775 .

Perform R5 + R3 → R5 and R6 + R3 → R6 successively, obtaining266666666666666666664
1 0 0 0 0 0

0 1 0 0 0 0

−1 0 1 0 0 0

0 0 0 1 0 0

0 1 1 0 1 0

0 2 1 0 0 1

377777777777777777775 .
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Perform R6 − 2R5 → R6 266666666666666666664
1 0 0 0 0 0

0 1 0 0 0 0

−1 0 1 0 0 0

0 0 0 1 0 0

0 1 1 0 1 0

0 0 −1 0 −2 1

377777777777777777775 .

Perform R4 ↔ R5 266666666666666666664
1 0 0 0 0 0

0 1 0 0 0 0

−1 0 1 0 0 0

0 1 1 0 1 0

0 0 0 1 0 0

0 0 −1 0 −2 1

377777777777777777775 .

Finally, perform −R3 → R3 266666666666666666664
1 0 0 0 0 0

0 1 0 0 0 0

1 0 −1 0 0 0

0 1 1 0 1 0

0 0 0 1 0 0

0 0 −1 0 −2 1

377777777777777777775 .

We conclude that 266666666664
−1 0 0 0

1 0 1 0

0 1 0 0

−1 0 −2 1

377777777775
266666666664

−1 0

0 0

1 1

1 2

377777777775 26641 0

0 1

3775 =

266666666664
1 0

0 1

0 0

0 0

377777777775 .

239 Theorem Let A ∈ Mm×n(F), B ∈ Mn×p(F). Then

rank (AB) ≤ min(rank (A) , rank (B)).
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Proof: We prove that rank (A) ≥ rank (AB). The proof that rank (B) ≥ rank (AB) is similar
and left to the reader. Put r = rank (A) , s = rank (AB). There exist matrices P ∈ GLm(F),
Q ∈ GLn(F), S ∈ GLm(F), T ∈ GLp(F) such that

PAQ = Dm,n,r, SABT = Dm,p,s.

Now

Dm,p,s = SABT = SP−1Dm,n,rQ
−1BT,

from where it follows that

PS−1Dm,p,s = Dm,n,rQ−1BT.

Now the proof is analogous to the uniqueness proof of Theorem 234. Put U = PS−1 ∈ GLm(R)

and V = Q−1BT ∈ Mn×p(F), and partition U and V as follows:

U =

2664U11 U12

U21 U22

3775 , V =

2664V11 V12

V21 V22

3775 ,

with U11 ∈ Ms(F), V11 ∈ Mr(F). Then

UDm,p,s =

2664U11 U12

U21 U22

3775 2664 Is 0s×(p−s)

0(m−s)×s 0(m−s)×(p−s)

3775 ∈ Mm×p(F),

and

Dm,p,sV =

2664 Ir 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

37752664V11 V12

V21 V22

3775 ∈ Mm×p(F).

From the equality of these two m × p matrices, it follows that2664U11 0s×(p−s)

U21 0(m−s)×(p−s)

3775 =

2664 V11 V12

0(m−r)×r 0(m−r)×(n−r)

3775 .

If s > r then (i) U11 would have at least one row of 0F’s meaning that U11 is non-invertible
by Lemma 215. (ii) U21 = 0(m−s)×s. Thus from (i) and (ii) and from Lemma 231, U is not
invertible, which is a contradiction. ❑

240 Corollary Let A ∈ Mm×n(F), B ∈ Mn×p(F). If A is invertible then rank (AB) = rank (B). If B is invertible
then rank (AB) = rank (A).

Proof: Using Theorem 239, if A is invertible

rank (AB) ≤ rank (B) = rank
�
A−1AB

�
≤ rank (AB) ,

and so rank (B) = rank (AB). A similar argument works when B is invertible.

❑
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241 Example Study the various possibilities for the rank of the matrix

A =

26666664 1 1 1

b + c c + a a + b

bc ca ab

37777775 .

Solution: Performing R2 − (b + c)R1 → R2 and R3 − bcR1 → R3, we find266666641 1 1

0 a − b a − c

0 0 (b − c)(a − c)

37777775 .

Performing C2 − C1 → C2 and C3 − C1 → C3, we find266666641 0 0

0 a − b a − c

0 0 (b − c)(a − c)

37777775 .

We now examine the various ways of getting rows consisting only of 0’s. If a = b = c, the last two rows are 0-rows
and so rank (A) = 1. If exactly two of a, b, c are equal, the last row is a 0-row, but the middle one is not, and so
rank (A) = 2 in this case. If none of a, b, c are equal, then the rank is clearly 3.

242 Problem On a symmetric matrix A ∈ Mn(R) with
n ≥ 3,

R3 − 3R1 → R3

successively followed by

C3 − 3C1 → C3

are performed. Is the resulting matrix still symmetric?

243 Problem Find the rank of26666666664a + 1 a + 2 a + 3 a + 4 a + 5

a + 2 a + 3 a + 4 a + 5 a + 6

a + 3 a + 4 a + 5 a + 6 a + 7

a + 4 a + 5 a + 6 a + 7 a + 8

37777777775 ∈ M5(R).

244 Problem Let A, B be arbitrary n × n matrices over R.
Prove or disprove! rank (AB) = rank (BA) .

245 Problem Study the various possibilities for the rank of

the matrix 266666666641 a 1 b

a 1 b 1

1 b 1 a

b 1 a 1

37777777775
when (a, b) ∈ R2 .

246 Problem Find the rank of

26666666664 1 −1 0 1

m 1 −1 −1

1 −m 1 0

1 −1 m 2

37777777775 as a

function of m ∈ C.

247 Problem Determine the rank of the matrix



50 Chapter 226666666664a2 ab ab b2

ab a2 b2 ab

ab b2 a2 ab

b2 ab ab a2

37777777775 .

248 Problem Determine the rank of the matrix26666666664 1 1 1 1

a b a b

c c d d

ac bc ad bd

37777777775 .

249 Problem Let A ∈ M3×2(R), B ∈ M2(R), and C ∈

M2×3(R) be such that ABC =

2666664 1 1 2

−2 x 1

1 −2 1

3777775. Find x.

250 Problem Let A, B be matrices of the same size. Prove
that rank (A + B) ≤ rank (A) + rank (B).

251 Problem Let B be the matrix obtained by adjoining a
row (or column) to a matrix A. Prove that either rank (B) =

rank (A) or rank (B) = rank (A) + 1.

252 Problem Let A ∈ Mn(R). Prove that rank (A) =

rank
�
AAT

�
. Find a counterexample in the case A ∈

Mn(C).

253 Problem Prove that the rank of a skew-symmetric matrix
is an even number.

2.8 Rank and Invertibility

254 Theorem A matrix A ∈ Mm×n(F) is left-invertible if and only if rank (A) = n. A matrix A ∈ Mm×n(F) is
right-invertible if and only if rank (A) = m.

Proof: Observe that we always have rank (A) ≤ n. If A is left invertible, then ∃L ∈ Mn×m(F)

such that LA = In. By Theorem 239,

n = rank (In) = rank (LA) ≤ rank (A) ,

whence the two inequalities give rank (A) = n.

Conversely, assume that rank (A) = n. Then rank
�
AT
�

= n by Corollary 235, and so by Theorem
234 there exist P ∈ GLm(F), Q ∈ GLn(F), such that

PAQ =

2664 In

0(m−n)×n

3775 , QT AT PT =

�
In 0n×(m−n)

�
.

This gives

QT AT PT PAQ = In =⇒ AT PT PA = (QT )−1Q−1

=⇒ ((QT )−1Q−1)−1AT PT PA = In,

and so ((QT )−1Q−1)−1AT PT P is a left inverse for A.

The right-invertibility case is argued similarly. ❑

By combining Theorem 254 and Theorem 195, the following corollary is thus immediate.

255 Corollary If A ∈ Mm×n(F) possesses a left inverse L and a right inverse R then m = n and L = R.
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We use Gauß-Jordan Reduction to find the inverse of A ∈ GLn(F). We form the augmented matrix T = [A|In]

which is obtained by putting A side by side with the identity matrix In. We perform permissible row operations
on T until instead of A we obtain In, which will appear if the matrix is invertible. The matrix on the right will be
A−1. We finish with [In|A−1].

☞ If A ∈ Mn(R) is non-invertible, then the left hand side in the procedure above will not reduce
to In.

256 Example Find the inverse of the matrix B ∈ M3(Z7),

B =

266666646 0 1

3 2 0

1 0 1

37777775 .

Solution: We have 266666646 0 1 1 0 0

3 2 0 0 1 0

1 0 1 0 0 1

37777775 R1↔R3

 

266666641 0 1 0 0 1

3 2 0 0 1 0

6 0 1 1 0 0

37777775
R3−6R1→R3

 

R2−3R1→R2

266666641 0 1 0 0 1

0 2 4 0 1 4

0 0 2 1 0 1

37777775
R2−2R3→R2

 

5R1+R3→R1

266666645 0 0 1 0 6

0 2 0 5 1 2

0 0 2 1 0 1

37777775
3R1→R1; 4R3→R3

 

4R2→R2

266666641 0 0 3 0 4

0 1 0 6 4 1

0 0 1 4 0 4

37777775 .

We conclude that 266666646 0 1

3 2 0

1 0 1

37777775−1

=

266666643 0 4

6 4 1

4 0 4

37777775 .
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257 Example Use Gauß-Jordan reduction to find the inverse of the matrix A =

266666664 0 1 −1

4 −3 4

3 −3 4

377777775 . Also, find A2001.

Solution: Operating on the augmented matrix266666640 1 −1 1 0 0

4 −3 4 0 1 0

3 −3 4 0 0 1

37777775 R2−R3→R2

 

266666640 1 −1 1 0 0

1 0 0 0 1 −1

3 −3 4 0 0 1

37777775
R3−3R2→R3

 

266666640 1 −1 1 0 0

1 0 0 0 1 −1

0 −3 4 0 −3 4

37777775
R3+3R1→R3

 

266666640 1 −1 1 0 0

1 0 0 0 1 −1

0 0 1 3 −3 4

37777775
R1+R3→R1

 

266666640 1 0 4 −3 4

1 0 0 0 1 −1

0 0 1 3 −3 4

37777775
R1↔R2

 

266666641 0 0 0 1 −1

0 1 0 4 −3 4

0 0 1 3 −3 4

37777775 .

Thus we deduce that

A−1 =

266666640 1 −1

4 −3 4

3 −3 4

37777775 = A.

From A−1 = A we deduce A2 = In. Hence A2000 = (A2)1000 = I1000
n = In and A2001 = A(A2000) = AIn = A.
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258 Example Find the inverse of the triangular matrix A ∈ Mn(R),

A =

26666666666666664
1 1 1 · · · 1

0 1 1 · · · 1

0 0 1 · · · 1

...
...

... · · ·
...

0 0 0 · · · 1

37777777777777775 .

Solution: Form the augmented matrix26666666666666664
1 1 1 · · · 1 1 0 0 · · · 0

0 1 1 · · · 1 0 1 0 · · · 0

0 0 1 · · · 1 0 0 1 · · · 0

...
...

... · · ·
...

...
...

... · · ·
...

0 0 0 · · · 1 0 0 0 · · · 1

37777777777777775 ,

and perform Rk − Rk+1 → Rk successively for k = 1, 2, . . . , n − 1, obtaining26666666666666664
1 0 0 · · · 0 1 −1 0 · · · 0

0 1 0 · · · 0 0 1 −1 · · · 0

0 0 1 · · · 0 0 0 1 · · · 0

...
...

... · · ·
...

...
...

... · · ·
...

0 0 0 · · · 1 0 0 0 · · · 1

37777777777777775 ,

whence

A−1 =

26666666666666664
1 −1 0 · · · 0

0 1 −1 · · · 0

0 0 1 · · · 0

...
...

... · · ·
...

0 0 0 · · · 1

37777777777777775 ,

that is, the inverse of A has 1’s on the diagonal and −1’s on the superdiagonal.

259 Theorem Let A ∈ Mn(F) be a triangular matrix such that a11a22 · · · ann 6= 0F. Then A is invertible.

Proof: Since the entry akk 6= 0F we multiply the k-th row by a−1
kk and then proceed to subtract

the appropriate multiples of the preceding k − 1 rows at each stage. ❑
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260 Example (Putnam Exam, 1969) Let A and B be matrices of size 3 × 2 and 2 × 3 respectively. Suppose that
their product AB is given by

AB =

26666664 8 2 −2

2 5 4

−2 4 5

37777775 .

Demonstrate that the product BA is given by

BA =

26649 0

0 9

3775 .

Solution: Observe that

(AB)2 =

26666664 8 2 −2

2 5 4

−2 4 5

37777775 26666664 8 2 −2

2 5 4

−2 4 5

37777775 =

26666664 72 18 −18

18 45 36

−18 36 45

37777775 = 9AB.

Performing R3 + R2 → R3, R1 − 4R2 → R2, and 2R3 + R1 → R3 in succession we see that26666664 8 2 −2

2 5 4

−2 4 5

37777775  266666640 −18 −18

2 5 4

0 0 0

37777775  266666640 −18 0

2 5 −1

0 0 0

37777775  266666640 −18 0

0 5 −1

0 0 0

37777775 ,

and so rank (AB) = 2. This entails that rank
�
(AB)2

�
= 2. Now, since BA is a 2 × 2 matrix, rank (BA) ≤ 2.

Also
2 = rank

�
(AB)2

�
= rank (ABAB) ≤ rank (ABA) ≤ rank (BA) ,

and we must conclude that rank (BA) = 2. This means that BA is invertible and so

(AB)2 = 9AB =⇒ A(BA − 9I2)B = 03

=⇒ BA(BA − 9I2)BA = B03A

=⇒ BA(BA − 9I2)BA = 02

=⇒ (BA)−1BA(BA − 9I2)BA(BA)−1 = (BA)−102(BA)−1

=⇒ BA − 9I2 = 02

261 Problem Find the inverse of the matrix26666641 2 3

2 3 1

3 1 2

3777775 ∈ M3(Z7).
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262 Problem Let (A, B) ∈ M3(R) be given by

A =

2666664a b c

1 0 0

0 1 0

3777775 , B =

2666664 0 0 −1

0 −1 a

−1 a b

3777775 .

Find B−1 and prove that AT = BAB−1 .

263 Problem Find all the values of the parameter a for which
the matrix B given below is not invertible.

B =

2666664 −1 a + 2 2

0 a 1

2 1 a

3777775
264 Problem Find the inverse of the triangular matrix2666664a 2a 3a

0 b 2b

0 0 c

3777775 ∈ M3(R)

assuming that abc 6= 0.

265 Problem Under what conditions is the matrix2666664b a 0

c 0 a

0 c b

3777775
invertible? Find the inverse under these conditions.

266 Problem Find the inverse of the matrix26666641 + a 1 1

1 1 + b 1

1 1 1 + c

3777775

267 Problem Prove that for the n × n (n > 1) matrix266666666666664
0 1 1 . . . 1

1 0 1 . . . 1

1 1 0 . . . 1

...
...

... . . .
...

1 1 1 . . . 0

377777777777775
−1

=
1

n − 1

266666666666664
2 − n 1 1 . . . 1

2 − n 1 1 . . . 1

1 1 2 − n . . . 1

...
...

... . . .
...

1 1 1 . . . 2 − n

377777777777775
268 Problem Prove that the n × n (n > 1) matrix266666666666664

1 + a 1 1 . . . 1

1 1 + a 1 . . . 1

1 1 1 + a . . . 1

...
...

... . . .
...

1 1 1 . . . 1 + a

377777777777775
has inverse

−
1

a(n + a)

266666666666664
1 − n − a 1 1 . . . 1

1 − n − a 1 1 . . . 1

1 1 1 − n − a . . . 1

...
...

... . . .
...

1 1 1 . . . 1 − n − a

377777777777775
269 Problem Prove that266666666666664

1 3 5 7 · · · (2n − 1)

(2n − 1) 1 3 5 · · · (2n − 3)

(2n − 3) (2n − 1) 1 3 · · · (2n − 5)

...
...

...
...

...
...

3 5 7 9 · · · 1

377777777777775
has inverse

1

2n3

266666666666664
2 − n2 2 + n2 2 2 · · · 2

2 2 − n2 2 + n2 2 · · · 2

2 2 2 − n2 2 + n2 · · · 2

...
...

...
...

...
...

2 + n2 2 2 2 · · · 2 − n2

377777777777775 .
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270 Problem Prove that the n × n (n > 1) matrix266666666666664
1 + a1 1 1 . . . 1

1 1 + a2 1 . . . 1

1 1 1 + a3 . . . 1

...
...

... . . .
...

1 1 1 . . . 1 + an

377777777777775
has inverse

−
1

s

2666666666666664
1 − a1s

a2
1

1

a1a2

1

a1a3

. . .
1

a1an

1

a2a1

1 − a2s

a2
2

1

a2a3

. . .
1

a2an

1

a3a1

1

a3a2

1 − a3s

a2
3

. . .
1

a3a1n

...
...

... . . .
...

1

ana1

1

ana2

1

ana3

. . .
1 − ans

a2
n

3777777777777775 ,

where s = 1 + 1
a1

+ 1
a2

+ · · · + 1
an

.

271 Problem Let A ∈ M5(R). Shew that if rank
�
A2
�

< 5,
then rank (A) < 5.

272 Problem Let A ∈ M3,2(R) and B ∈ M2,3(R) be matri-

ces such that AB =

2666664 0 −1 −1

−1 0 −1

1 1 2

3777775. Prove that BA = I2 .
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Linear Equations

3.1 Definitions

We can write a system of m linear equations in n variables over a field F

a11x1 + a12x2 + a13x3 + · · · + a1nxn = y1,

a21x1 + a22x2 + a23x3 + · · · + a2nxn = y2,

...

am1x1 + am2x2 + am3x3 + · · · + amnxn = ym,

in matrix form as 266666666664
a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
...

am1 am2 · · · amn

377777777775
266666666664

x1

x2

...

xn

377777777775 =

266666666664
y1

y2

...

ym

377777777775 . (3.1)

We write the above matrix relation in the abbreviated form

AX = Y, (3.2)

where A is the matrix of coefficients, X is the matrix of variables and Y is the matrix of constants. Most often we
will dispense with the matrix of variables X and will simply write the augmented matrix of the system as

[A|Y ] =

266666666664
a11 a12 · · · a1n y1

a21 a22 · · · a2n y2

...
...

...
...

...

am1 am2 · · · amn ym

377777777775 . (3.3)

273 Definition Let AX = Y be as in 3.1. If Y = 0m×1, then the system is called homogeneous, otherwise it is called
inhomogeneous. The set

{X ∈ Mn×1(F) : AX = 0m×1}

is called the kernel or nullspace of A and it is denoted by ker (A).

57
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☞ Observe that we always have 0n×1 ∈ ker (A) ∈ Mm×n(F).

274 Definition A system of linear equations is consistent if it has a solution. If the system does not have a solution
then we say that it is inconsistent.

275 Definition If a row of a matrix is non-zero, we call the first non-zero entry of this row a pivot for this row.

276 Definition A matrix M ∈ Mm×n(F) is a row-echelon matrix if� All the zero rows of M, if any, are at the bottom of M.� For any two consecutive rows Ri and Ri+1, either Ri+1 is all 0F’s or the pivot of Ri+1 is immediately to the
right of the pivot of Ri.

The variables accompanying these pivots are called the leading variables. Those variables which are not leading
variables are the free parameters.

277 Example The matrices 266666666664
1 0 1 1

0 0 2 2

0 0 0 3

0 0 0 0

377777777775 ,

266666666664
1 0 1 1

0 0 0 1

0 0 0 0

0 0 0 0

377777777775 ,

are in row-echelon form, with the pivots circled, but the matrices266666666664
1 0 1 1

0 0 1 2

0 0 1 1

0 0 0 0

377777777775 ,

266666666664
1 0 1 1

0 0 0 0

0 0 0 1

0 0 0 0

377777777775 ,

are not in row-echelon form.

☞ Observe that given a matrix A ∈ Mm×n(F), by following Gauß-Jordan reduction à la Theorem
234, we can find a matrix P ∈ GLm(F) such that PA = B is in row-echelon form.

278 Example Solve the system of linear equations266666666664
1 1 1 1

0 2 1 0

0 0 1 −1

0 0 0 2

377777777775
266666666664

x

y

z

w

377777777775 =

266666666664
−3

−1

4

−6

377777777775 .
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Solution: Observe that the matrix of coefficients is already in row-echelon form. Clearly every variable is a leading
variable, and by back substitution

2w = −6 =⇒ w = −
6

2
= −3,

z − w = 4 =⇒ z = 4 + w = 4 − 3 = 1,

2y + z = −1 =⇒ y = −
1

2
−

1

2
z = −1,

x + y + z + w = −3 =⇒ x = −3 − y − z − w = 0.

The (unique) solution is thus 266666666664
x

y

z

w

377777777775 =

266666666664
0

−1

1

−3

377777777775 .

279 Example Solve the system of linear equations266666641 1 1 1

0 2 1 0

0 0 1 −1

37777775
266666666664

x

y

z

w

377777777775 =

26666664−3

−1

4

37777775 .

Solution: The system is already in row-echelon form, and we see that x, y, z are leading variables while w is a free
parameter. We put w = t. Using back substitution, and operating from the bottom up, we find

z − w = 4 =⇒ z = 4 + w = 4 + t,

2y + z = −1 =⇒ y = −
1

2
−

1

2
z = −

1

2
− 2 −

1

2
t = −

5

2
−

1

2
t,

x + y + z + w = −3 =⇒ x = −3 − y − z − w = −3 +
5

2
+

1

2
t − 4 − t − t = −

9

2
−

3

2
t.

The solution is thus 266666666664
x

y

z

w

377777777775 =

266666666664
−9

2
− 3

2
t

−5
2

− 1
2
t

4 + t

t

377777777775 , t ∈ R.
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280 Example Solve the system of linear equations26641 1 1 1

0 2 1 0

3775266666666664
x

y

z

w

377777777775 =

2664−3

−1

3775 .

Solution: We see that x, y are leading variables, while z, w are free parameters. We put z = s, w = t. Operating
from the bottom up, we find

2y + z = −1 =⇒ y = −
1

2
−

1

2
z = −

1

2
−

1

2
s,

x + y + z + w = −3 =⇒ x = −3 − y − z − w = −
5

2
−

3

2
s − t.

The solution is thus 266666666664
x

y

z

w

377777777775 =

266666666664
−5

2
− 3

2
s − t

−1
2

− 1
2
s

s

t

377777777775 , (s, t) ∈ R2.

281 Example Find all the solutions of the system

x + 2y + 2z = 0,

y + 2z = 1,

working in Z3.

Solution: The augmented matrix of the system is26641 2 2 0

0 1 2 1

3775 .

The system is already in row-echelon form and x, y are leading variables while z is a free parameter. We find

y = 1 − 2z = 1 + 1z,

and
x = −2y − 2z = 1 + 2z.

Thus 26666664x

y

z

37777775 =

266666641 + 2z

1 + 1z

z

37777775 , z ∈ Z3.
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Letting z = 0, 1, 2 successively, we find the three solutions26666664x

y

z

37777775 =

266666641

1

0

37777775 ,26666664x

y

z

37777775 =

266666640

2

1

37777775 ,

and 26666664x

y

z

37777775 =

266666642

0

2

37777775 .

282 Problem Find all the solutions in Z3 of the system

x + y + z + w = 0,

2y + w = 2.

283 Problem In Z7 , given that26666641 2 3

2 3 1

3 1 2

3777775−1

=

26666644 2 0

2 0 4

0 4 2

3777775 ,

find all solutions of the system

1x + 2y + 3z = 5;

2x + 3y + 1z = 6;

3x + 1y + 2z = 0.

3.2 Existence of Solutions

We now answer the question of deciding when a system of linear equations is solvable.

284 Lemma Let A ∈ Mm×n(F) be in row-echelon form, and let X ∈ Mn×1(F) be a matrix of variables. The
homogeneous system AX = 0m×1 of m linear equations in n variables has (i) a unique solution if m = n, (ii)
multiple solutions if m < n.

Proof: If m = n then A is a square triangular matrix whose diagonal elements are different
from 0F. As such, it is invertible by virtue of Theorem 259. Thus

AX = 0n×1 =⇒ X = A−10n×1 = 0n×1

so there is only the unique solution X = 0n×1, called the trivial solution.

If m < n then there are n − m free variables. Letting these variables run through the elements of
the field, we obtain multiple solutions. Thus if the field has infinitely many elements, we obtain
infinitely many solutions, and if the field has k elements, we obtain kn−m solutions. Observe that
in this case there is always a non-trivial solution.

❑
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285 Theorem Let A ∈ Mm×n(F), and let X ∈ Mn×1(F) be a matrix of variables. The homogeneous system
AX = 0m×1 of m linear equations in n variables always has a non-trivial solution if m < n.

Proof: We can find a matrix P ∈ GLm(F) such that B = PA is in row-echelon form. Now

AX = 0m×1 ⇐⇒ PAX = 0m×1 ⇐⇒ BX = 0m×1.

That is, the systems AX = 0m×1 and BX = 0m×1 have the same set of solutions. But by Lemma
284 there is a non-trivial solution. ❑

286 Theorem (Kronecker-Capelli) Let A ∈ Mm×n(F), Y ∈ Mm×1(F) be constant matrices and X ∈ Mn×1(F)

be a matrix of variables. The matrix equation AX = Y is solvable if and only if

rank (A) = rank ([A|Y ]) .

Proof: Assume first that AX = Y,

X =

266666666664
x1

x2

...

xn

377777777775 .

Let the columns of [A|X] be denoted by Ci, 1 ≤ i ≤ n. Observe that that [A|X] ∈ Mm×(n+1)(F)

and that the (n + 1)-th column of [A|X] is

Cn+1 = AX =

266666666664
x1a11 + x2a12 + · · · + xna1n

x1a21 + x2a22 + · · · + xna2n

...

x1an1 + x2an2 + · · · + xnann

377777777775 =

n∑

i=1

xiCi.

By performing Cn+1−
∑n

j=1 xjCj → Cn+1 on [A|Y ] = [A|AX] we obtain [A|0n×1]. Thus rank ([A|Y ]) =

rank ([A|0n×1]) = rank (A).

Now assume that r = rank (A) = rank ([A|Y ]). This means that adding an extra column to A does
not change the rank, and hence, by a sequence column operations [A|Y ] is equivalent to [A|0n×1].
Observe that none of these operations is a permutation of the columns, since the first n columns of
[A|Y ] and [A|0n×1] are the same. This means that Y can be obtained from the columns Ci, 1 ≤ i ≤ n

of A by means of transvections and dilatations. But then

Y =

n∑

i=1

xiCi.

The solutions sought is thus

X =

266666666664
x1

x2

...

xn

377777777775 .

❑



Examples of Linear Systems 63

287 Problem Let A ∈ Mn×p(F), B ∈ Mn×q(F) and put
C = [A B] ∈ Mn×(p+q)(F) Prove that rank (A) =

rank (C) ⇐⇒ ∃P ∈ Mp(q) such that B = AP.

3.3 Examples of Linear Systems

288 Example Use row reduction to solve the system

x + 2y + 3z + 4w = 8

x + 2y + 4z + 7w = 12

2x + 4y + 6z + 8w = 16

Solutions: Form the expanded matrix of coefficients and apply row operations to obtain266666641 2 3 4 8

1 2 4 7 12

2 4 6 8 16

37777775 R3−2R1→R3

 

R2−R1→R2

266666641 2 3 4 8

0 0 1 3 4

0 0 0 0 0

37777775 .

The matrix is now in row-echelon form. The variables x and z are the pivots, so w and y are free. Setting
w = s, y = t we have

z = 4 − 3s,

x = 8 − 4w − 3z − 2y = 8 − 4s − 3(4 − 3s) − 2t = −4 + 5s − 2t.

Hence the solution is given by 266666666664
x

y

z

w

377777777775 =

266666666664
−4 + 5s − 2t

t

4 − 3s

s

377777777775 .

289 Example Find α ∈ R such that the system

x + y − z = 1,

2x + 3y + αz = 3,

x + αy + 3z = 2,

posses (i) no solution, (ii) infinitely many solutions, (iii) a unique solution.

Solution: The augmented matrix of the system is266666641 1 −1 1

2 3 α 3

1 α 3 2

37777775 .
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By performing R2 − 2R1 → R2 and R3 − R1 → R3 we obtain

 

266666641 1 −1 1

0 1 α + 2 1

0 α − 1 4 1

37777775 .

By performing R3 − (α − 1)R2 → R3 on this last matrix we obtain

 

266666641 1 −1 1

0 1 α + 2 1

0 0 (α − 2)(α + 3) α − 2

37777775 .

If α = −3, we obtain no solution. If α = 2, there is an infinity of solutions26666664x

y

z

37777775 =

26666664 5t

1 − 4t

t

37777775 , t ∈ R.

If α 6= 2 and α 6= 3, there is a unique solution 26666664x

y

z

37777775 =

266666664 1

1

α + 3
1

α + 3

377777775 .

290 Example Solve the system 266666646 0 1

3 2 0

1 0 1

3777777526666664x

y

z

37777775 =

266666641

0

2

37777775 ,

for (x, y, z) ∈ (Z7)3.

Solution: Performing operations on the augmented matrix we have266666646 0 1 1

3 2 0 0

1 0 1 2

37777775 R1↔R3

 

266666641 0 1 2

3 2 0 0

6 0 1 1

37777775
R3−6R1→R3

 

R2−3R1→R2

266666641 0 1 2

0 2 4 1

0 0 2 3

37777775
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This gives
2z = 3 =⇒ z = 5,

2y = 1 − 4z = 2 =⇒ y = 1,

x = 2 − z = 4.

The solution is thus
(x, y, z) = (4, 1, 5).

291 Problem Find the general solution to the system266666666666664
1 1 1 1 1

1 0 1 0 1

2 1 2 1 2

4 2 4 2 4

1 0 0 0 1

377777777777775
266666666666664

a

b

c

d

f

377777777777775 =

266666666666664
1

−1

0

0

0

377777777777775
or shew that there is no solution.

292 Problem Find all solutions of the system266666666666664
1 1 1 1 1

1 1 1 1 2

1 1 1 3 3

1 1 4 4 4

1 2 3 4 5

377777777777775
266666666666664

a

b

c

d

f

377777777777775 =

266666666666664
3

4

7

6

9

377777777777775 ,

if any.

293 Problem Study the system

x + 2my + z = 4m;

2mx + y + z = 2;

x + y + 2mz = 2m
2
,

with real parameter m. You must determine, with proof, for
which m this system has (i) no solution, (ii) exactly one so-
lution, and (iii) infinitely many solutions.

294 Problem Study the following system of linear equations
with parameter a.

(2a − 1)x + ay − (a + 1)z = 1,

ax + y − 2z = 1,

2x + (3 − a)y + (2a − 6)z = 1.

You must determine for which a there is: (i) no solution, (ii)
a unique solution, (iii) infinitely many solutions.

295 Problem Determine the values of the parameter m for
which the system

x + y + (1 − m)z = m + 2

(1 + m)x − y + 2z = 0

2x − my + 3z = m + 2

is solvable.

296 Problem Determine the values of the parameter m for
which the system

x + y + z + t = 4a

x − y − z + t = 4b

−x − y + z + t = 4c

x − y + z − t = 4d

is solvable.

297 Problem It is known that the system

ay + bx = c;

cx + az = b;

bz + cy = a

possesses a unique solution. What conditions must
(a, b, c) ∈ R3 fulfill in this case? Find this unique solution.

298 Problem Find strictly positive real numbers x, y, z such
that

x3y2z6 = 1

x4y5z12 = 2

x2y2z5 = 3.

299 Problem (Leningrad Mathematical Olympiad, 1987, Grade 5)
The numbers 1, 2, . . . , 16 are arranged in a 4 × 4 matrix A

as shewn below. We may add 1 to all the numbers of any row
or subtract 1 from all numbers of any column. Using only the
allowed operations, how can we obtain AT ?
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A =

26666666664 1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

37777777775
300 Problem (International Mathematics Olympiad, 1963)
Find all solutions x1, x2, x3, x4, x5 of the system

x5 + x2 = yx1 ;

x1 + x3 = yx2 ;

x2 + x4 = yx3 ;

x3 + x5 = yx4 ;

x4 + x1 = yx5,

where y is a parameter.



Chapter 4
R2, R3 and Rn

4.1 Points and Bi-points in R2

R2 is the set of all points A =

0BB�a1

a2

1CCA with real number coordinates on the plane, as in figure 4.1. We use the

notation O =

0BB�0

0

1CCA to denote the origin.

x

y

b

b

A =

0BB�a1

a2

1CCA
O

Figure 4.1: Rectangular coordinates in R
2 .

Given A =

0BB�a1

a2

1CCA ∈ R2 and B =

0BB�b1

b2

1CCA ∈ R2 we define their addition as

A + B =

0BB�a1

a2

1CCA+

0BB�b1

b2

1CCA =

0BB�a1 + b1

a2 + b2

1CCA . (4.1)

67
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Similarly, we define the scalar multiplication of a point of R2 by the scalar α ∈ R as

αA = α

0BB�a1

a2

1CCA =

0BB�αa1

αa2

1CCA . (4.2)

☞ Throughout this chapter, unless otherwise noted, we will use the convention that a point
A ∈ R2 will have its coordinates named after its letter, thus

A =

0BB�a1

a2

1CCA .

301 Definition Consider the points A ∈ R2, B ∈ R2. By the bi-point starting at A and ending at B, denoted by
[A, B], we mean the directed line segment from A to B. We define

[A, A] = O =

0BB�0

0

1CCA .

☞ The bi-point [A, B] can be thus interpreted as an arrow starting at A and finishing, with the
arrow tip, at B. We say that A is the tail of the bi-point [A, B] and that B is its head. Some
authors use the terminology “fixed vector” instead of “bi-point.”

302 Definition Let A 6= B be points on the plane and let L be the line passing through A and B. The direction
of the bi-point [A, B] is the direction of the line L, that is, the angle θ ∈

�
−π

2
; π

2

�
that the line L makes with the

horizontal. See figure 4.2.

303 Definition Let A, B lie on line L, and let C, D lie on line L ′. If L||L ′ then we say that [A, B] has the same
direction as [C, D]. We say that the bi-points [A, B] and [C, D] have the same sense if they have the same direction
and if both their heads lie on the same half-plane made by the line joining their tails. They have opposite sense
if they have the same direction and if both their heads lie on alternative half-planes made by the line joining their
tails. See figures 4.3 and 4.4 .

b θ

A

B

Figure 4.2: Direction of

a bi-point

A

B

C

D

Figure 4.3: Bi-points

with the same sense.

A

B

C

D

Figure 4.4: Bi-points

with opposite sense.
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☞ Bi-point [B, A] has the opposite sense of [A, B] and so we write

[B, A] = −[A, B].

304 Definition Let A 6= B. The Euclidean length or norm of bi-point [A, B] is simply the distance between A and
B and it is denoted by

||[A, B]|| =

q
(a1 − b1)2 + (a2 − b2)2.

We define

||[A, A]|| = ||O|| = 0.

A bi-point is said to have unit length if it has norm 1.

☞ A bi-point is completely determined by three things: (i) its norm, (ii) its direction, and (iii)
its sense.

305 Definition (Chasles’ Rule) Two bi-points are said to be contiguous if one has as tail the head of the other. In
such case we define the sum of contiguous bi-points [A, B] and [B, C] by Chasles’ Rule

[A, B] + [B, C] = [A, C].

See figure 4.5.

306 Definition (Scalar Multiplication of Bi-points) Let λ ∈ R \ {0} and A 6= B. We define

0[A, B] = O

and

λ[A, A] = O.

We define λ[A, B] as follows.

1. λ[A, B] has the direction of [A, B].

2. λ[A, B] has the sense of [A, B] if λ > 0 and sense opposite [A, B] if λ < 0.

3. λ[A, B] has norm |λ|||[A, B]|| which is a contraction of [A, B] if 0 < |λ| < 1 or a dilatation of [A, B] if |λ| > 1.

See figure 4.6 for some examples.

A

B

C

Figure 4.5: Chasles’ Rule.

[A, B]

1

2
[A, B]

−2[A, B]

Figure 4.6: Scalar multiplication of bi-points.
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4.2 Vectors in R2

307 Definition (Midpoint) Let A, B be points in R2. We define the midpoint of the bi-point [A, B] as

A + B

2
=

0BB�a1+b1

2

a2+b2

2

1CCA .

308 Definition (Equipollence) Two bi-points [X, Y ] and [A, B] are said to be equipollent written [X, Y ] ∼ [A, B] if
the midpoints of the bi-points [X, B] and [Y, A] coincide, that is,

[X, Y ] ∼ [A, B] ⇔
X + B

2
=

Y + A

2
.

See figure 4.7.

Geometrically, equipollence means that the quadrilateral XYBA is a parallelogram. Thus the bi-points [X, Y ] and
[A, B] have the same norm, sense, and direction.

||
||

−

−

X

Y

A

B

Figure 4.7: Equipollent bi-points.

309 Lemma Two bi-points [X, Y ] and [A, B] are equipollent if and only if0BB�y1 − x1

y2 − x2

1CCA =

0BB�b1 − a1

b2 − a2

1CCA .

Proof: This is immediate, since

[X, Y ] ∼ [A, B] ⇐⇒

0BBB�a1+y1

2

a2+y2

2

1CCCA =

0BB�b1+x1

2

b2+x2

2

1CCA
⇐⇒

0BB�y1 − x1

y2 − x2

1CCA =

0BB�b1 − a1

b2 − a2

1CCA ,

as desired. ❑

☞ From Lemma 309, equipollent bi-points have the same norm, the same direction, and the
same sense.

310 Theorem Equipollence is an equivalence relation.
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Proof: Write [X, Y ] ∼ [A, B] if [X, Y ] if equipollent to [A, B]. Now [X, Y ] ∼ [X, Y ] since

0BB�y1 − x1

y2 − x2

1CCA =0BB�y1 − x1

y2 − x2

1CCA and so the relation is reflexive. Also

[X, Y ] ∼ [A, B] ⇐⇒

0BB�y1 − x1

y2 − x2

1CCA =

0BB�b1 − a1

b2 − a2

1CCA
⇐⇒

0BB�b1 − a1

b2 − a2

1CCA =

0BB�y1 − x1

y2 − x2

1CCA
⇐⇒ [A, B] ∼ [X, Y ],

and the relation is symmetric. Finally

[X, Y ] ∼ [A, B] ∧ [A, B] ∼ [U, V] ⇐⇒

0BB�y1 − x1

y2 − x2

1CCA =

0BB�b1 − a1

b2 − a2

1CCA
∧

0BB�b1 − a1

b2 − a2

1CCA =

0BB� v1 − u1

v2 − au2

1CCA
⇐⇒

0BB�y1 − x1

y2 − x2

1CCA =

0BB�v1 − u1

v2 − u2

1CCA
⇐⇒ [X, Y ] ∼ [U, V],

and the relation is transitive. ❑

311 Definition (Vectors on the Plane) The equivalence class in which the bi-point [X, Y ] falls is called the vector

(or free vector) from X to Y , and is denoted by
−−→
XY . Thus we write

[X, Y ] ∈ −−→
XY =

2664y1 − x1

y2 − x2

3775 .

If we desire to talk about a vector without mentioning a bi-point representative, we write, say, v, thus denoting
vectors with boldface lowercase letters. If it is necessary to mention the coordinates of v we will write

v =

2664v1

v2

3775 .
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☞ For any point X on the plane, we have
−−→
XX = 0, the zero vector. If [X, Y ] ∈ v then [Y, X] ∈ −v.

312 Definition (Position Vector) For any particular point P =

0BB�p1

p2

1CCA ∈ R2 we may form the vector
−−→
OP =

2664p1

p2

3775.

We call
−−→
OP the position vector of P and we use boldface lowercase letters to denote the equality

−−→
OP = p.

313 Example The vector into which the bi-point with tail at A =

0BB�−1

2

1CCA and head at B =

0BB�3

4

1CCA falls is

−−→
AB =

26643 − (−1)

4 − 2

3775 =

26644

2

3775 .

314 Example The bi-points [A, B] and [X, Y ] with

A =

0BB�−1

2

1CCA , B =

0BB�3

4

1CCA ,

X =

0BB�3

7

1CCA , Y =

0BB�7

9

1CCA
represent the same vector

−−→
AB =

26643 − (−1)

4 − 2

3775 =

26644

2

3775 =

26647 − 3

9 − 7

3775 =
−−→
XY.

In fact, if S =

0BB�−1 + n

2 + m

1CCA , T =

0BB�3 + n

4 + m

1CCA then the infinite number of bi-points [S, T ] are representatives of of the

vectors
−−→
AB =

−−→
XY =

−→
ST .

Given two vectors u, v we define their sum u + v as follows. Find a bi-point representative
−−→
AB ∈ u and a

contiguous bi-point representative
−−→
BC ∈ v. Then by Chasles’ Rule

u + v =
−−→
AB +

−−→
BC =

−−→
AC.

Again, by virtue of Chasles’ Rule we then have

−−→
AB =

−−→
AO +

−−→
OB = −

−−→
OA +

−−→
OB = b − a (4.3)

Similarly we define scalar multiplication of a vector by scaling one of its bi-point representatives.We define the
norm of a vector v ∈ R2 to be the norm of any of its bi-point representatives.
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Componentwise we may see that given vectors u =

2664u1

u2

3775, v =

2664v1

v2

3775, and a scalar λ ∈ R then their sum and

scalar multiplication take the form

u + v =

2664u1

u2

3775+

2664v1

v2

3775 , λu =

2664λu1

λu2

3775 .

A

B

C

vu

u + v

Figure 4.8: Addition of Vectors.

u

1

2
u

−2u

Figure 4.9: Scalar multiplication of vectors.

315 Example Diagonals are drawn in a rectangle ABCD. If
−−→
AB = x and

−−→
AC = y, then

−−→
BC = y − x,

−−→
CD = −x,

−−→
DA = x − y, and

−−→
BD = y − 2x.

316 Definition (Parallel Vectors) Two vectors u and v are said to be parallel if there is a scalar λ such that u = λv.
If u is parallel to v we write u||v. We denote by Rv = {αv : α ∈ R}, the set of all vectors parallel to v.

☞ 0 is parallel to every vector.

317 Definition If u =

2664u1

u2

3775, then we define its norm as ||u|| =

q
u2

1 + u2
2. The distance between two vectors u and

v is d〈u, v〉 = ||u − v||.

318 Example Let a ∈ R, a > 0 and let v 6= 0. Find a vector with norm a and parallel to v.

Solution: Observe that
v

||v||
has norm 1 as �������� v

||v||

�������� =
||v||

||v||
= 1.

Hence the vector a
v

||v||
has norm a and it is in the direction of v. One may also take −a

v

||v||
.

319 Example If M is the midpoint of the bi-point [X, Y ] then
−−→
XM =

−−→
MY from where

−−→
XM = 1

2

−−→
XY . Moreover, if T
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is any point, by Chasles’ Rule
−→
TX +

−→
TY =

−−→
TM +

−−→
MX +

−−→
TM +

−−→
MY

= 2
−−→
TM −

−−→
XM +

−−→
MY

= 2
−−→
TM.

320 Example Let △ABC be a triangle on the plane. Prove that the line joining the midpoints of two sides of the
triangle is parallel to the third side and measures half its length.

Solution: Let the midpoints of [A, B] and [A, C] be MC and MB, respectively. We shew that
−−→
BC = 2

−−−−−−→
MCMB. We

have 2
−−−−→
AMC =

−−→
AB and 2

−−−−→
AMB =

−−→
AC. Thus

−−→
BC =

−−→
BA +

−−→
AC

= −
−−→
AB +

−−→
AC

= −2
−−−−→
AMC + 2

−−−−→
AMB

= 2
−−−−→
MCA + 2

−−−−→
AMB

= 2(
−−−−→
MCA +

−−−−→
AMB)

= 2
−−−−−−→
MCMB,

as we wanted to shew.

321 Example In △ABC, let MC be the midpoint of side AB. Shew that

−−−−→
CMC =

1

2

�
−−→
CA +

−−→
CB
�

.

Solution: Since
−−−−→
AMC =

−−−−→
MCB, we have

−−→
CA +

−−→
CB =

−−−−→
CMC +

−−−−→
MCA +

−−−−→
CMC +

−−−−→
MCB

= 2
−−−−→
CMC −

−−−−→
AMC +

−−−−→
MCB

= 2
−−−−→
CMC,

which yields the desired result.

322 Theorem (Section Formula) Let APB be a straight line and λ and µ be real numbers such that

||[A, P]||

||[P, B]||
=

λ

µ
.

With a =
−−→
OA, b =

−−→
OB, and p =

−−→
OP, then

p =
λb + µa

λ + µ
. (4.4)
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Proof: Using Chasles’ Rule for vectors,

−−→
AB =

−−→
AO +

−−→
OB = −a + b,

−−→
AP =

−−→
AO +

−−→
OP = −a + p.

Also, using Chasles’ Rule for bi-points,

[A, P]µ = λ([P, B]) = λ([P, A] + [A, B]) = λ(−[A, P] + [A, B]),

whence

[A, P] =
λ

λ + µ
[A, B] =⇒

−−→
AP =

λ

λ + µ

−−→
AB =⇒ p − a =

λ

λ + µ
(b − a).

On combining these formulæ

(λ + µ)(p − a) = λ(b − a) =⇒ (λ + µ)p = λb + µa,

from where the result follows. ❑

a

b c

Figure 4.10: [A]. Problem 328.

a

bc

Figure 4.11: [B]. Problem 328.

a

b

c d

Figure 4.12: [C]. Problem 328.

a

b

c d

Figure 4.13: [D]. Problem 328.

a

b

c d

Figure 4.14: [E]. Problem 328.

a d

b c

f e

Figure 4.15: [F]. Problem 328.

323 Problem Let a be a real number. Find the distance be-

tween

2641

a

375 and

2641 − a

1

375.

324 Problem Find all scalars λ for which ||λv|| = 1
2
, where

v =

264 1

−1

375.

325 Problem Given a pentagon ABCDE, find
−−→
AB +

−−→
BC +

−−→
CD +

−−→
DE +

−−→
EA.

326 Problem For which values of a will the vectors

a =

264 a + 1

a2 − 1

375 , b =

264 2a + 5

a2 − 4a + 3

375
will be parallel?

327 Problem In △ABC let the midpoints of [A, B] and [A, C]

be MC and MB , respectively. Put
−−−−→
MCB = x,

−−−−→
MBC =

y, and
−−→
CA = z. Express [A]

−−→
AB +

−−→
BC +

−−−−−−→
MCMB , [B]

−−−−→
AMC +

−−−−−−→
MCMB +

−−−−→
MBC, [C]

−−→
AC +

−−−−→
MCA −

−−−−→
BMB in terms

of x, y, and z.
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328 Problem A circle is divided into three, four equal, or six
equal parts (figures 4.10 through 4.15). Find the sum of the
vectors. Assume that the divisions start or stop at the centre
of the circle, as suggested in the figures.

329 Problem Diagonals are drawn in a square (figures ??
through ??). Find the vectorial sum a + b + c. Assume that
the diagonals either start, stop, or pass through the centre of
the square, as suggested by the figures.

330 Problem Prove that the mid-points of the sides of a skew
quadrilateral form the vertices of a parallelogram.

331 Problem ABCD is a parallelogram. E is the midpoint of
[B, C] and F is the midpoint of [D, C]. Prove that

−−→
AC +

−−→
BD = 2

−−→
BC.

332 Problem Let A, B be two points on the plane. Construct
two points I and J such that

−→
IA = −3

−→
IB,

−→
JA = −

1

3

−→
JB,

and then demonstrate that for any arbitrary point M on the
plane

−−−→
MA + 3

−−→
MB = 4

−−→
MI

and
3
−−−→
MA +

−−→
MB = 4

−−→
MJ.

333 Problem You find an ancient treasure map in your great-
grandfather’s sea-chest. The sketch indicates that from the
gallows you should walk to the oak tree, turn right 90◦ and
walk a like distance, putting and x at the point where you
stop; then go back to the gallows, walk to the pine tree, turn
left 90◦ , walk the same distance, mark point Y . Then you
will find the treasure at the midpoint of the segment XY . So
you charter a sailing vessel and go to the remote south-seas
island. On arrival, you readily locate the oak and pine trees,
but unfortunately, the gallows was struck by lightning, burned
to dust and dispersed to the winds. No trace of it remains.
What do you do?

4.3 Dot Product in R2

334 Definition Let (a, b) ∈ (R2)2. The dot product a•b of a and b is defined by

a•b =

2664a1

a2

3775 •

2664b1

b2

3775 = a1b1 + a2b2.

The following properties of the dot product are easy to deduce from the definition.

DP1 Bilinearity
(x + y)•z = x•z + y•z, x•(y + z) = x•y + x•z (4.5)

DP2 Scalar Homogeneity
(αx)•y = x•(αy) = α(x•y), α ∈ R. (4.6)

DP3 Commutativity
x•y = y•x (4.7)

DP4
x•x ≥ 0 (4.8)

DP5
x•x = 0 ⇔ x = 0 (4.9)

DP6
||x|| =

√
x•x (4.10)

335 Example If we put

i =

26641

0

3775 , j =

26640

1

3775 ,
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then we can write any vector a =

2664a1

a2

3775 as a sum

a = a1i + a2j.

The vectors

i =

26641

0

3775 , j =

26640

1

3775 ,

satisfy i•j = 0, and ||i|| = ||j|| = 1.

336 Definition Given vectors a and b, we define the angle between them, denoted by (̂a, b), as the angle between
any two contiguous bi-point representatives of a and b.

337 Theorem
a•b = ||a||||b|| cos (̂a, b).

Proof: Using Al-Kashi’s Law of Cosines on the length of the vectors, we have

||b − a||2 = ||a||2 + ||b||2 − 2||a||||b|| cos (̂a, b)

⇔ (b − a)•(b − a) = ||a||2 + ||b||2 − 2||a||||b|| cos (̂a, b)

⇔ b•b − 2a•b + a•a = ||a||2 + ||b||2 − 2||a||||b|| cos (̂a, b)

⇔ ||b||2 − 2a•b + ||b||2 = ||a||2 + ||b||2 − 2||a||||b|| cos (̂a, b)

⇔ a•b = ||a||||b|| cos (̂a, b),

as we wanted to shew. ❑

Putting (̂a, b) = π
2

in Theorem 337 we obtain the following corollary.

338 Corollary Two vectors in R2 are perpendicular if and only if their dot product is 0.

a
b − a

b

Figure 4.19: Theorem 337.

339 Definition Two vectors are said to be orthogonal if they are perpendicular. If a is orthogonal to b, we write
a ⊥ b.
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340 Definition If a ⊥ b and ||a|| = ||b|| = 1 we say that a and b are orthonormal.

☞ It follows that the vector 0 is simultaneously parallel and perpendicular to any vector!

341 Definition Let a ∈ R2 be fixed. Then the orthogonal space to a is defined and denoted by

a⊥ = {x ∈ R2 : x ⊥ a}.

Since | cos θ| ≤ 1 we also have

342 Corollary (Cauchy-Bunyakovsky-Schwarz Inequality)

|a•b| ≤ ||a||||b||.

343 Corollary (Triangle Inequality)

||a + b|| ≤ ||a|| + ||b||.

Proof:

||a + b||2 = (a + b)•(a + b)

= a•a + 2a•b + b•b

≤ ||a||2 + 2||a||||b|| + ||b||2

= (||a|| + ||b||)2,

from where the desired result follows. ❑

344 Corollary (Pythagorean Theorem) If a ⊥ b then

||a + b||2 = ||a||
2

+ ||b||
2
.

Proof: Since a•b = 0, we have

||a + b||2 = (a + b)•(a + b)

= a•a + 2a•b + b•b

= a•a + 0 + b•b

= ||a||2 + ||b||2,

from where the desired result follows. ❑

345 Definition The projection of t onto v (or the v-component of t) is the vector

projtv = (cos (̂t, v))||t||
1

||v||
v,

where (̂v, t) ∈ [0; π] is the convex angle between v and t read in the positive sense.
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☞ Given two vectors t and vector v 6= 0, find bi-point representatives of them having a common
tail and join them together at their tails. The projection of t onto v is the “shadow” of t in the
direction of v. To obtain projtv we prolong v if necessary and drop a perpendicular line to it from
the head of t. The projection is the portion between the common tails of the vectors and the point
where this perpendicular meets t. See figure 4.20.

b b

Figure 4.20: Vector Projections.

346 Corollary Let a 6= 0. Then

projxa = cos (̂x, a)||x||
1

||a||
a =

x•a

||a||
2
a.

347 Theorem Let a ∈ R2 \ {0}. Then any x ∈ R2 can be decomposed as

x = u + v,

where u ∈ Ra and v ∈ a⊥.

Proof: We know that projxa is parallel to a, so we take u = projxa. This means that we must
then take v = x − projxa. We must demonstrate that v is indeed perpendicular to a. But this is
clear, as

a•v = a•x − a•projxa

= a•x − a•
x•a

||a||2
a

= a•x − x•a

= 0,

completing the proof. ❑

348 Corollary Let v ⊥ w be non-zero vectors in R2. Then any vector a ∈ R2 has a unique representation as a
linear combination of v, w ,

a = sv + tw, (s, t) ∈ R2.

Proof: By Theorem 347, there exists a decomposition

a = sv + s ′v ′,

where v ′ is orthogonal to v. But then v ′||w and hence there exists α ∈ R with v ′ = αw. Taking
t = s ′α we achieve the decomposition

a = sv + tw.

To prove uniqueness, assume
sv + tw = a = pv + qw.

Then (s − p)v = (q − t)w. We must have s = p and q = t since otherwise v would be parallel to
w. This completes the proof. ❑
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349 Corollary Let p, q be non-zero, non-parallel vectors in R2. Then any vector a ∈ R2 has a unique representation
as a linear combination of p, q ,

a = lp + mq, (l, m) ∈ R2.

Proof: Consider z = q − projqp. Clearly p ⊥ z and so by Corollary 348, there exists unique

(s, t) ∈ R2 such that

a = sp + tz

= sp − tprojqp + tq

=
�
s − t q•p

||p||2

�
p + tq,

establishing the result upon choosing l = s − t q•p

||p||2
and m = t. ❑

350 Example Let p =

26641

1

3775, q =

26641

2

3775. Write p as the sum of two vectors, one parallel to q and the other perpendicular

to q.

Solution: We use Theorem 347. We know that projpq is parallel to q, and we find

projpq =
p•q

||q||
2
q =

3

5
q =

26643
5

6
5

3775 .

We also compute

p − projpq =

26641 − 3
5

1 − 6
5

3775 =

2664 2
5

−1
5

3775 .

Observe that 26643
5

6
5

3775 •

2664 2
5

−1
5

3775 =
6

25
−

6

25
= 0,

and the desired decomposition is 26641

1

3775 =

26643
5

6
5

3775+

2664 2
5

−1
5

3775 .

b

A

bB

b C

b H

Figure 4.21: Orthocentre.
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351 Example Prove that the altitudes of a triangle △ABC on the plane are concurrent. This point is called the
orthocentre of the triangle.

Solution: Put a =
−−→
OA, b =

−−→
OB, c =

−−→
OC. First observe that for any x, we have, upon expanding,

(x − a)•(b − c) + (x − b)•(c − a) + (x − c)•(a − b) = 0. (4.11)

Let H be the point of intersection of the altitude from A and the altitude from B. Then

0 =
−−→
AH•

−−→
CB = (

−−→
OH −

−−→
OA)•(

−−→
OB −

−−→
OC) = (

−−→
OH − a)•(b − c), (4.12)

and
0 =

−−→
BH•

−−→
AC = (

−−→
OH −

−−→
OB)•(

−−→
OC −

−−→
OA) = (

−−→
OH − b)•(c − a). (4.13)

Putting x =
−−→
OH in (4.11) and subtracting from it (4.12) and (4.13), we gather that

0 = (
−−→
OH − c)•(a − b) =

−−→
CH•

−−→
AB,

which gives the result.

352 Problem Determine the value of a so that

264 a

1 − a

375 be

perpendicular to

264 1

−1

375 .

353 Problem Demonstrate that

(b + c = 0) ∧ (||a|| = ||b||) ⇐⇒ (a − b)•(a − c) = 0.

354 Problem Let p =

2644

5

375, r =

264−1

1

375, s =

2642

1

375. Write p as

the sum of two vectors, one parallel to r and the other parallel
to s.

355 Problem Prove that

||a||
2

= (a•i)2
+ (a•j)2

.

356 Problem Let a 6= 0 6= b be vectors in R2 such that
a•b = 0. Prove that

αa + βb = 0 =⇒ α = β = 0.

357 Problem Let (x, y) ∈ (R2)2 with ||x|| = 3
2
||y||. Shew

that 2x + 3y and 2x − 3y are perpendicular.

358 Problem Let a, b be fixed vectors in R2 . Prove that if

∀v ∈ R2
, v•a = v•b,

then a = b.

359 Problem Let (a, b) ∈ (R2)2 . Prove that

||a + b||
2

+ ||a − b||
2

= 2||a||
2

+ 2||b||
2
.

360 Problem Let u, v be vectors in R2 . Prove the polarisa-
tion identity:

u • v =
1

4

�
||u + v||

2
− ||u − v||

2
�

.

361 Problem Let x, a be non-zero vectors in R2 . Prove that

proj
projax

a

= αa,

with 0 ≤ α ≤ 1.

362 Problem Let (λ, a) ∈ R×R2 be fixed. Solve the equation

a•x = λ

for x ∈ R2 .

4.4 Lines on the Plane

363 Definition Three points A, B, and C are collinear if they lie on the same line.

It is clear that the points A, B, and C are collinear if and only if
−−→
AB is parallel to

−−→
AC. Thus we have the following

definition.
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364 Definition The parametric equation with parameter t ∈ R of the straight line passing through the point

P =

0BB�p1

p2

1CCA in the direction of the vector v 6= 0 is2664x − p1

y − p2

3775 = tv.

If r =

2664x

y

3775, then the equation of the line can be written in the form

r − p = tv. (4.14)

The Cartesian equation of a line is an equation of the form ax + by = c, where a2 + b2 6= 0. We write (AB) for
the line passing through the points A and B.

365 Theorem Let v 6= 0 and let n ⊥ v. An alternative form for the equation of the line r − p = tv is

(r − p)•n = 0.

Moreover, the vector

2664a

b

3775 is perpendicular to the line with Cartesian equation ax + by = c.

Proof: The first part follows at once by observing that v•n = 0 and taking dot products to both
sides of 4.14. For the second part observe that at least one of a and b is 6= 0. First assume that
a 6= 0. Then we can put y = t and x = −b

a
t + c

a
and the parametric equation of this line is2664x − c

a

y

3775 = t

2664−b
a

1

3775 ,

and we have 2664−b
a

1

3775 •

2664a

b

3775 = −
b

a
· a + b = 0.

Similarly if b 6= 0 we can put x = t and y = −a
b

t + c
b

and the parametric equation of this line is2664 x

y − c
b

3775 = t

2664 1

−a
b

3775 ,

and we have 2664 1

−a
b

3775 •

2664a

b

3775 = a −
a

b
· b = 0,

proving the theorem in this case. ❑
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☞ The vector

2664 a√
a2+b2

b√
a2+b2

3775 has norm 1 and is orthogonal to the line ax + by = c.

366 Example The equation of the line passing through A =

0BB�2

3

1CCA and in the direction of v =

2664−4

5

3775 is2664x − 2

y − 3

3775 = λ

2664−4

5

3775 .

367 Example Find the equation of the line passing through A =

0BB�−1

1

1CCA and B =

0BB�−2

3

1CCA.

Solution: The direction of this line is that of

−−→
AB =

2664−2 − (−1)

3 − 1

3775 =

2664−1

2

3775 .

The equation is thus 2664x + 1

y − 1

3775 = λ

2664−1

2

3775 , λ ∈ R.

368 Example Suppose that (m, b) ∈ R2. Write the Cartesian equation of the line y = mx + b in parametric form.

Solution: Here is a way. Put x = t. Then y = mt + b and so the desired parametric form is2664 x

y − b

3775 = t

2664 1

m

3775 .

369 Example Let (m1, m2, b1, b2) ∈ R4, m1m2 6= 0. Consider the lines L1 : y = m1x + b1 and L2 : y =

m2x + b2. By translating this problem in the language of vectors in R2, shew that L1 ⊥ L2 if and only if
m1m2 = −1.

Solution: The parametric equations of the lines are

L1 :

2664 x

y − b1

3775 = s

2664 1

m1

3775 , L2 :

2664 x

y − b2

3775 = t

2664 1

m2

3775 .
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Put v =

2664 1

m1

3775 and w =

2664 1

m2

3775. Since the lines are perpendicular we must have v•w = 0, which yields

0 = v•w = 1(1) + m1(m2) =⇒ m1m2 = −1.

370 Theorem (Distance Between a Point and a Line) Let (r − a)•n = 0 be a line passing through the point A

and perpendicular to vector n. If B is not a point on the line, then the distance from B to the line is

|(a − b)•n|

||n||
.

If the line has Cartesian equation ax + by = c, then this distance is

|ab1 + bb2 − c|
√

a2 + b2
.

Proof: Let R0 be the point on the line that is nearest to B. Then
−−−→
BR0 = r0 − b is orthogonal to

the line, and the distance we seek is

||projr0−b
n || =

����������(r0 − b)•n

||n||
2

n

���������� =
|(r0 − b)•n|

||n||
.

Since R0 is on the line, r0•n = a•n, and so

||projr0−b
n || =

|r0•n − b•n|

||n|||
=

|a•n − b•n|

||n||
=

|(a − b)•n|

||n||
,

as we wanted to shew.

If the line has Cartesian equation ax + by = c, then at least one of a and b is 6= 0. Let us suppose
a 6= 0, as the argument when a = 0 and b 6= 0 is similar. Then ax + by = c is equivalent to0BB�2664x

y

3775−

2664 c
a

0

37751CCA •

2664a

b

3775 = 0.

We use the result obtained above with a =

2664 c
a

0

3775, n =

2664a

b

3775, and B =

0BB�b1

b2

1CCA. Then ||n|| =
√

a2 + b2

and

|(a − b)•n| =

��������2664 c
a

− b1

−b2

3775 •

2664a

b

3775�������� = |c − ab1 − bb2| = |ab1 + bb2 − c|,

giving the result. ❑

371 Example Recall that the medians of △ABC are lines joining the vertices of △ABC with the midpoints of the
side opposite the vertex. Prove that the medians of a triangle are concurrent, that is, that they pass through a
common point.

☞ This point of concurrency is called, alternatively, the isobarycentre, centroid, or centre of gravity
of the triangle.
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Solution: Let MA, MB, and MC denote the midpoints of the lines opposite A, B, and C, respectively. The equation

of the line passing through A and in the direction of
−−−−→
AMA is (with r =

2664x

y

3775)

r =
−−→
OA + r

−−−−→
AMA.

Similarly, the equation of the line passing through B and in the direction of
−−−−→
BMB is

r =
−−→
OB + s

−−−−→
BMA.

These two lines must intersect at a point G inside the triangle. We will shew that
−−→
GC is parallel to

−−−−→
CMC, which

means that the three points G, C, MC are collinear.
Now, ∃(r0, s0) ∈ R2 such that

−−→
OA + r0

−−−−→
AMA =

−−→
OG =

−−→
OB + s0

−−−−→
BMB,

that is
r0

−−−−→
AMA − s0

−−−−→
BMB =

−−→
OB −

−−→
OA,

or
r0(

−−→
AB +

−−−−→
BMA) − s0(

−−→
BA +

−−−−→
AMB) =

−−→
AB.

Since MA and MB are the midpoints of [B, C] and [C, A] respectively, we have 2
−−−−→
BMA =

−−→
BC and 2

−−−−→
AMB =

−−→
AC =

−−→
AB +

−−→
BC. The relationship becomes

r0(
−−→
AB +

1

2

−−→
BC) − s0(−

−−→
AB +

1

2

−−→
AB +

1

2

−−→
BC) =

−−→
AB,

(r0 +
s0

2
− 1)

−−→
AB = (−

r0

2
+

s0

2
)
−−→
BC.

We must have
r0 +

s0

2
− 1 = 0,

−
r0

2
+

s0

2
= 0,

since otherwise the vectors
−−→
AB and

−−→
BC would be parallel, and the triangle would be degenerate. Solving, we find

s0 = r0 = 2
3
. Thus we have

−−→
OA + 2

3

−−−−→
AMA =

−−→
OG, or

−−→
AG = 2

3

−−−−→
AMA, and similarly,

−−→
BG = 2

3

−−−−→
BMB.

From
−−→
AG = 2

3

−−−−→
AMA, we deduce

−−→
AG = 2

−−−−→
GMA. Since MA is the midpoint of [B, C], we have

−−→
GB +

−−→
GC =

2
−−−−→
GMA =

−−→
AG, which is equivalent to

−−→
GA +

−−→
GB +

−−→
GC = 0.

As MC is the midpoint of [A, B] we have
−−→
GA +

−−→
GB = 2

−−−−→
GMC. Thus

0 =
−−→
GA +

−−→
GB +

−−→
GC = 2

−−−−→
GMC +

−−→
GC.

This means that
−−→
GC = −2

−−−−→
GMC, that is, that they are parallel, and so the points G, C and MC all lie on the same

line. This achieves the desired result.

☞ The centroid of △ABC satisfies thus

−−→
GA +

−−→
GB +

−−→
GC = 0,

and divides the medians on the ratio 2 : 1, reckoning from a vertex.



86 Chapter 4

372 Problem Find the angle between the lines 2x−y = 1 and
x − 3y = 1.

373 Problem Find the equation of the line passing through0B� 1

−1

1CA and in a direction perpendicular to

2642

1

375.

374 Problem △ABC has centroid G, and △A ′B ′C ′ satisfies

−−−→
AA

′
+

−−→
BB

′
+

−−−→
CC

′
= 0.

Prove that G is also the centroid of △A ′B ′C ′ .

375 Problem Let ABCD be a trapezoid, with bases [A, B]

and [C, D]. The lines (AC) and (BD) meet at E and the
lines (AD) and (BC) meet at F. Prove that the line (EF)

passes through the midpoints of [A, B] and [C, D] by proving
the following steps.

➊ Let I be the midpoint of [A, B] and let J be the point of
intersection of the lines (FI) and (DC). Prove that J is
the midpoint of [C, D]. Deduce that F, I, J are collinear.

➋ Prove that E, I, J are collinear.

376 Problem Let ABCD be a parallelogram.

➊ Let E and F be points such that

−−→
AE =

1

4

−−→
AC and

−→
AF =

3

4

−−→
AC.

Demonstrate that the lines (BE) and (DF) are parallel.

➋ Let I be the midpoint of [A, D] and J be the midpoint
of [B, C]. Demonstrate that the lines (AB) and (IJ) are
parallel. What type of quadrilateral is IEJF?

377 Problem ABCD is a parallelogram; point I is the mid-

point of [A, B]. Point E is defined by the relation
−→
IE = 1

3

−→
ID.

Prove that
−−→
AE =

1

3

�
−−→
AB +

−−→
AD

�
and prove that the points A, C, E are collinear.

378 Problem Put
−−→
OA = a,

−−→
OB = b,

−−→
OC = c. Prove that

A, B, C are collinear if and only if there exist real numbers
α, β, γ, not all zero, such that

αa + βb + γc = 0, α + β + γ = 0.

379 Problem Prove Desargues’ Theorem: If △ABC and
△A ′B ′C ′ (not necessarily in the same plane) are so posi-
tioned that (AA ′), (BB ′), (CC ′) all pass through the same
point V and if (BC) and (B ′C ′) meet at L, (CA) and (C ′A ′)
meet at M, and (AB) and (A ′B ′) meet at N, then L, M, N

are collinear.

4.5 Vectors in R3

We now extend the notions studied for R2 to R3. The rectangular coordinate form of a vector in R3 is

a =

26666664a1

a2

a3

37777775 .

In particular, if

i =

266666641

0

0

37777775 , j =

266666640

1

0

37777775 , k =

266666640

0

1

37777775
then we can write any vector a =

26666664a1

a2

a3

37777775 as a sum

a = a1i + a2j + a3k.
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Given a =

26666664a1

a2

a3

37777775 and b =

26666664b1

b2

b3

37777775, their dot product is

a•b = a1b1 + a2b2 + a3b3,

and

||a|| =

q
a2

1 + a2
2 + a2

3.

We also have
i•j = j•k = k•i = 0,

and
||i|| = ||j|| = ||k|| = 1.

380 Definition A system of unit vectors i, j, k is right-handed if the shortest-route rotation which brings i to coincide
with j is performed in a counter-clockwise manner. It is left-handed if the rotation is done in a clockwise manner.

To study points in space we must first agree on the orientation that we will give our coordinate system. We will use,
unless otherwise noted, a right-handed orientation, as in figure 4.22.

j

k

i

Figure 4.22: Right-handed system.

j

k

i

Figure 4.23: Left-handed system.

☞ The analogues of the Cauchy-Bunyakovsky-Schwarz and the Triangle Inequality also hold in
R3.

We now define the (standard) cross (wedge) product in R3 as a product satisfying the following properties.

381 Definition Let (x, y, z, α) ∈ R3 × R3 × R3 × R. The wedge product × : R3 × R3 → R3 is a closed binary
operation satisfying

CP1 Anti-commutativity:
x×y = −(y×x) (4.15)

CP2 Bilinearity:
(x + z)×y = x×y + z×y, x×(z + y) = x×z + x×y (4.16)

CP3 Scalar homogeneity:
(αx)×y = x×(αy) = α(x×y) (4.17)

CP4
x×x = 0 (4.18)

CP5 Right-hand Rule:
i×j = k, j×k = i, k×i = j (4.19)
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382 Theorem Let x =

26666664x1

x2

x3

37777775 and y =

26666664y1

y2

y3

37777775 be vectors in R3. Then

x×y = (x2y3 − x3y2)i + (x3y1 − x1y3)j + (x1y2 − x2y1)k.

Proof: Since i×i = j×j = k×k = 0 we have

(x1i + x2j + x3k)×(y1i + y2j + y3k) = x1y2i×j + x1y3i×k

+x2y1j×i + x2y3j×k

+x3y1k×i + x3y2k×j

= x1y2k − x1y3j − x2y1k

+x2y3i + x3y1j − x3y2i,

from where the theorem follows. ❑

383 Example Find 26666664 1

0

−3

37777775×

266666640

1

2

37777775 .

Solution: We have

(i − 3k)×(j + 2k) = i×j + 2i×k − 3k×j − 6k×k

= k − 2j − 3i + 60

= −3i − 2j + k.

Hence 26666664 1

0

−3

37777775×

266666640

1

2

37777775 =

26666664−3

−2

1

37777775 .

384 Theorem The cross product vector x×y is simultaneously perpendicular to x and y.
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Proof: We will only check the first assertion, the second verification is analogous.

x•(x×y) = (x1i + x2j + x3k)•((x2y3 − x3y2)i

+(x3y1 − x1y3)j + (x1y2 − x2y1)k)

= x1x2y3 − x1x3y2 + x2x3y1 − x2x1y3 + x3x1y2 − x3x2y1

= 0,

completing the proof. ❑

385 Theorem a×(b×c) = (a•c)b − (a•b)c.

Proof:

a×(b×c) = (a1i + a2j + a3k)×((b2c3 − b3c2)i+

+(b3c1 − b1c3)j + (b1c2 − b2c1)k)

= a1(b3c1 − b1c3)k − a1(b1c2 − b2c1)j

−a2(b2c3 − b3c2)k + a2(b1c2 − b2c1)i

+a3(b2c3 − b3c2)j − a3(b3c1 − b1c3)i

= (a1c1 + a2c2 + a3c3)(b1i + b2j + b3i)

+(−a1b1 − a2b2 − a3b3)(c1i + c2j + c3i)

= (a•c)b − (a•b)c,

completing the proof. ❑

386 Theorem (Jacobi’s Identity)

a×(b×c) + b×(c×a) + c×(a×b) = 0.

Proof: From Theorem 385 we have

a×(b×c) = (a•c)b − (a•b)c,

b×(c×a) = (b•a)c − (b•c)a,

c×(a×b) = (c•b)a − (c•a)b,

and adding yields the result. ❑

387 Theorem Let (̂x, y) ∈ [0; π[ be the convex angle between two vectors x and y. Then

||x×y|| = ||x||||y|| sin (̂x, y).
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Proof: We have

||x×y||2 = (x2y3 − x3y2)2 + (x3y1 − x1y3)2 + (x1y2 − x2y1)2

= x2
2y2

3 − 2x2y3x3y2 + x2
3y2

2 + x2
3y2

1 − 2x3y1x1y3+

+x2
1y2

3 + x2
1y2

2 − 2x1y2x2y1 + x2
2y2

1

= (x2
1 + x2

2 + x2
3)(y2

1 + y2
2 + y2

3) − (x1y1 + x2y2 + x3y3)2

= ||x||2||y||2 − (x•y)2

= ||x||2||y||2 − ||x||2||y||2 cos2 (̂x, y)

= ||x||2||y||2 sin2 (̂x, y),

whence the theorem follows. The Theorem is illustrated in Figure 4.24. Geometrically it means
that the area of the parallelogram generated by joining x and y at their heads is ||x×y||. ❑

x×y

yx

Figure 4.24: Theorem 387.

The following corollaries are now obvious.

388 Corollary Two non-zero vectors x, y satisfy x×y = 0 if and only if they are parallel.

389 Corollary (Lagrange’s Identity)

||x×y||2 = ||x||
2
||y||

2
− (x•y)2.

390 Example Let x ∈ R3, ||x|| = 1. Find

||x×i||2 + ||x×j||2 + ||x×k||2.

Solution: By Lagrange’s Identity,

||x×i||2 = ||x||
2
||i||2 − (x•i)2 = 1 − (x•i)2,

||x×k||2 = ||x||
2
||j||2 − (x•j)2 = 1 − (x•j)2,

||x×j||2 = ||x||
2
||k||

2
− (x•k)2 = 1 − (x•k)2,

and since (x•i)2 + (x•j)2 + (x•k)2 = ||x||
2

= 1, the desired sum equals 3 − 1 = 2.

391 Problem Consider a tetrahedron ABCS. [A] Find
−−→
AB +

−−→
BC +

−−→
CS. [B] Find

−−→
AC +

−−→
CS +

−−→
SA +

−−→
AB.

392 Problem Find a vector simultaneously perpendicular to
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1

1

3777775 and

26666641

1

0

3777775 and having norm 3.

393 Problem Find the area of the triangle whose vertices are

at P =

0BBBBB�0

0

1

1CCCCCA, Q =

0BBBBB�0

1

0

1CCCCCA, and R =

0BBBBB�1

0

0

1CCCCCA.

394 Problem Prove or disprove! The cross product is associa-
tive.

395 Problem Prove that x×x = 0 follows from the anti-
commutativity of the cross product.

396 Problem Expand the product (a − b)×(a + b).

397 Problem The vectors a, b are constant vectors. Solve the
equation a×(x×b) = b×(x×a).

398 Problem The vectors a, b, c are constant vectors. Solve
the system of equations

2x + y×a = b, 3y + x×a = c,

399 Problem Prove that there do not exist three unit vectors

in R3 such that the angle between any two of them be >
2π

3
.

4.6 Planes and Lines in R3

400 Definition If bi-point representatives of a family of vectors in R3 lie on the same plane, we will say that the
vectors are coplanar or parallel to the plane.

401 Lemma Let v, w in R3 be non-parallel vectors. Then every vector u of the form

u = av + bw,

((a, b) ∈ R2 arbitrary) is coplanar with both v and w. Conversely, any vector t coplanar with both v and w can
be uniquely expressed in the form

t = pv + qw.

Proof: This follows at once from Corollary 349, since the operations occur on a plane, which
can be identified with R2. ❑

A plane is determined by three non-collinear points. Suppose that A, B, and C are non-collinear points on the

same plane and that R =

0BBBBBB�x

y

z

1CCCCCCA is another arbitrary point on this plane. Since A, B, and C are non-collinear,
−−→
AB

and
−−→
AC, which are coplanar, are non-parallel. Since

−−→
AR also lies on the plane, we have by Lemma 401, that there

exist real numbers p, q with
−−→
AR = p

−−→
AB + q

−−→
AC.

By Chasles’ Rule,
−−→
OR =

−−→
OA + p(

−−→
OB −

−−→
OA) + q(

−−→
OC −

−−→
OA),

is the equation of a plane containing the three non-collinear points A, B, and C. By letting r =
−−→
OR, a =

−−→
OA, etc.,

we deduce that
r − a = p(b − a) + q(c − a).

Thus we have the following definition.
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402 Definition The parametric equation of a plane containing the point A, and parallel to the vectors u and v is
given by

r − a = pu + qv.

Componentwise this takes the form

x − a1 = pu1 + qv1,

y − a2 = pu2 + qv2,

z − a3 = pu3 + qv3.

The Cartesian equation of a plane is an equation of the form ax + by + cz = d with (a, b, c, d) ∈ R4 and
a2 + b2 + c2 6= 0.

403 Example Find both the parametric equation and the Cartesian equation of the plane parallel to the vectors266666641

1

1

37777775 and

266666641

1

0

37777775 and passing through the point

0BBBBBB� 0

−1

2

1CCCCCCA.

Solution: The desired parametric equation is26666664 x

y + 1

z − 2

37777775 = s

266666641

1

1

37777775+ t

266666641

1

0

37777775 .

This gives s = z − 2, t = y + 1 − s = y + 1 − z + 2 = y − z + 3 and x = s + t = z − 2 + y − z + 3 = y + 1.
Hence the Cartesian equation is x − y = 1.

404 Theorem Let u and v be non-parallel vectors and let r − a = pu + qv be the equation of the plane containing
A an parallel to the vectors u and v. If n is simultaneously perpendicular to u and v then

(r − a)•n = 0.

Moreover, the vector

26666664a

b

c

37777775 is normal to the plane with Cartesian equation ax + by + cz = d.

Proof: The first part is clear, as u•n = 0 = v•n. For the second part, recall that at least one of
a, b, c is non-zero. Let us assume a 6= 0. The argument is similar if one of the other letters is
non-zero and a = 0. In this case we can see that

x =
d

a
−

b

a
y −

c

a
z.
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Put y = s and z = t. Then 26666664x − d
a

y

z

37777775 = s

26666664−b
a

1

0

37777775+ t

26666664− c
a

0

1

37777775
is a parametric equation for the plane. ❑

405 Example Find once again, by appealing to Theorem 404, the Cartesian equation of the plane parallel to the

vectors

266666641

1

1

37777775 and

266666641

1

0

37777775 and passing through the point

0BBBBBB� 0

−1

2

1CCCCCCA.

Solution: The vector

266666641

1

1

37777775×

266666641

1

0

37777775 =

26666664−1

1

0

37777775 is normal to the plane. The plane has thus equation26666664 x

y + 1

z − 2

37777775 •

26666664−1

1

0

37777775 = 0 =⇒ −x + y + 1 = 0 =⇒ x − y = 1,

as obtained before.

406 Theorem (Distance Between a Point and a Plane) Let (r − a)•n = 0 be a plane passing through the point
A and perpendicular to vector n. If B is not a point on the plane, then the distance from B to the plane is

|(a − b)•n|

||n||
.

Proof: Let R0 be the point on the plane that is nearest to B. Then
−−−→
BR0 = r0 − b is orthogonal

to the plane, and the distance we seek is

||projr0−b
n || =

����������(r0 − b)•n

||n||
2

n

���������� =
|(r0 − b)•n|

||n||
.

Since R0 is on the plane, r0•n = a•n, and so

||projr0−b
n || =

|r0•n − b•n|

||n|||
=

|a•n − b•n|

||n||
=

|(a − b)•n|

||n||
,

as we wanted to shew. ❑

☞ Given three planes in space, they may (i) be parallel (which allows for some of them to
coincide), (ii) two may be parallel and the third intersect each of the other two at a line, (iii)
intersect at a line, (iv) intersect at a point.
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407 Definition The equation of a line passing through A ∈ R3 in the direction of v 6= 0 is given by

r − a = tv, t ∈ R.

408 Theorem Put
−−→
OA = a,

−−→
OB = b, and

−−→
OC = c. Points (A, B, C) ∈ (R3)3 are collinear if and only if

a×b + b×c + c×a = 0.

Proof: If the points A, B, C are collinear, then
−−→
AB is parallel to

−−→
AC and by Corollary 388, we

must have
(c − a)×(b − a) = 0.

Rearranging, gives
c×b − c×a − a×b = 0.

Further rearranging completes the proof. ❑

409 Theorem (Distance Between a Point and a Line) Let L : r = a + λv, v 6= 0, be a line and let B be a point
not on L. Then the distance from B to L is given by

||(a − b)×v||

||v||
.

Proof: If R0—with position vector r0—is the point on L that is at shortest distance from B then
−−−→
BR0 is perpendicular to the line, and so

||
−−−→
BR0×v|| = ||

−−−→
BR0||||v|| sin

π

2
= ||

−−−→
BR0||||v||.

The distance we must compute is
������−−−→BR0

������ = ||r0 − b||, which is then given by

||r0 − b|| =
||
−−−→
BR0×v||

||v||
=

||(r0 − b)×v||

||v||
.

Now, since R0 is on the line ∃t0 ∈ R such that r0 = a + t0v. Hence

(r0 − b)×v = (a − b)×v,

giving

||r0 − b|| =
||(a − b)×v||

||v||
,

proving the theorem. ❑

☞ Given two lines in space, one of the following three situations might arise: (i) the lines
intersect at a point, (ii) the lines are parallel, (iii) the lines are skew (one over the other, without
intersecting).

410 Problem Find the equation of the plane passing through
the points (a, 0, a), (−a, 1, 0), and (0, 1, 2a) in R3 .

411 Problem Find the equation of plane containing the point
(1, 1, 1) and perpendicular to the line x = 1 + t, y = −2t, z =

1 − t.

412 Problem Find the equation of plane containing the point

(1, −1, −1) and containing the line x = 2y = 3z.

413 Problem Find the equation of the plane perpendicular to
the line ax = by = cz, abc 6= 0 and passing through the
point (1, 1, 1) in R3 .

414 Problem Find the equation of the line perpendicular to
the plane ax + a2y + a3z = 0, a 6= 0 and passing through
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the point (0, 0, 1).

415 Problem The two planes

x − y − z = 1, x − z = −1,

intersect at a line. Write the equation of this line in the form2666664x

y

z

3777775 = a + tv, t ∈ R.

416 Problem Find the equation of the plane passing through

the points

0BBBBB� 1

0

−1

1CCCCCA,

0BBBBB�2

1

1

1CCCCCA and parallel to the line

2666664x

y

z

3777775 =2666664−1

−2

0

3777775+ t

26666641

0

1

3777775 ..

417 Problem Points a, b, c in R3 are collinear and it is known
that a×c = i − 2j and a×b = 2k − 3i. Find b×c.

418 Problem Find the equation of the plane which is equidis-

tant of the points

0BBBBB�3

2

1

1CCCCCA and

0BBBBB� 1

−1

1

1CCCCCA.

419 Problem (Putnam Exam, 1980) Let S be the solid in
three-dimensional space consisting of all points (x, y, z) sat-
isfying the following system of six conditions:

x ≥ 0, y ≥ 0, z ≥ 0,

x + y + z ≤ 11,

2x + 4y + 3z ≤ 36,

2x + 3z ≤ 24.

Determine the number of vertices and the number of edges of
S.

4.7 Rn

As a generalisation of R2 and R3 we define Rn as the set of n-tuples





266666666664
x1

x2

...

xn

377777777775 : xi ∈ R






.

The dot product of two vectors in Rn is defined as

x•y =

266666666664
x1

x2

...

xn

377777777775 •

266666666664
y1

y2

...

yn

377777777775 = x1y1 + x2y2 + · · · + xnyn.

The norm of a vector in Rn is given by
||x|| =

√
x•x.

As in the case of R2 and R3 we have

420 Theorem (Cauchy-Bunyakovsky-Schwarz Inequality) Given (x, y) ∈ (Rn)2 the following inequality holds

|x•y| ≤ ||x||||y||.
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Proof: Put a =

n∑

k=1

x2
k, b =

n∑

k=1

xkyk, and c =

n∑

k=1

y2
k. Consider

f(t) =

n∑

k=1

(txk − yk)2 = t2

n∑

k=1

x2
k − 2t

n∑

k=1

xkyk +

n∑

k=1

y2
k = at2 + bt + c.

This is a quadratic polynomial which is non-negative for all real t, so it must have complex roots.
Its discriminant b2 − 4ac must be non-positive, from where we gather

4

 
n∑

k=1

xkyk

!2

≤ 4

 
n∑

k=1

x2
k

! 
n∑

k=1

y2
k

!
.

This gives
|x•y|2 ≤ ||x||

2
||y||

2

from where we deduce the result. ❑

421 Example Assume that ak, bk, ck, k = 1, . . . , n, are positive real numbers. Shew that 
n∑

k=1

akbkck

!4

≤
 

n∑

k=1

a4
k

! 
n∑

k=1

b4
k

! 
n∑

k=1

c2
k

!2

.

Solution: Using CBS on
∑n

k=1(akbk)ck once we obtain

n∑

k=1

akbkck ≤
 

n∑

k=1

a2
kb2

k

!1/2 n∑

k=1

c2
k

!1/2

.

Using CBS again on
�∑n

k=1 a2
kb2

k

�1/2
we obtain

∑n

k=1 akbkck ≤
�∑n

k=1 a2
kb2

k

�1/2 �∑n

k=1 c2
k

�1/2

≤
�∑n

k=1 a4
k

�1/4 �∑n

k=1 b4
k

�1/4 �∑n

k=1 c2
k

�1/2
,

which gives the required inequality.

422 Theorem (Triangle Inequality) Given (x, y) ∈ (Rn)2 the following inequality holds

||x + y|| ≤ ||x|| + ||y||.

Proof: We have

||a + b||2 = (a + b)•(a + b)

= a•a + 2a•b + b•b

≤ ||a||2 + 2||a||||b|| + ||b||2

= (||a|| + ||b||)2,

from where the desired result follows.

❑

We now consider a generalisation of the Euclidean norm. Given p > 1 and x ∈ Rn we put

||x||p =

 
n∑

k=1

|xk|p

!1/p

(4.20)
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Clearly
||x||p ≥ 0 (4.21)

||x||p = 0 ⇔ x = 0 (4.22)

||αx||p = |α|||x||p, α ∈ R (4.23)

We now prove analogues of the Cauchy-Bunyakovsky-Schwarz and the Triangle Inequality for ||·||p. For this we need
the following lemma.

423 Lemma (Young’s Inequality) Let p > 1 and put
1

p
+

1

q
= 1. Then for (a, b) ∈ ([0; +∞[)2 we have

ab ≤ ap

p
+

bq

q
.

Proof: Let 0 < k < 1, and consider the function

f :
[0; +∞[ → R

x 7→ xk − k(x − 1)

.

Then 0 = f ′(x) = kxk−1 − k ⇔ x = 1. Since f ′′(x) = k(k − 1)xk−2 < 0 for 0 < k < 1, x ≥ 0, x = 1

is a maximum point. Hence f(x) ≤ f(1) for x ≥ 0, that is xk ≤ 1 + k(x − 1). Letting k =
1

p
and

x =
ap

bq
we deduce

a

bq/p
≤ 1 +

1

p

�
ap

bq
− 1

�
.

Rearranging gives

ab ≤ b1+p/q +
apb1+p/q−p

p
−

b1+p/q

p

from where we obtain the inequality. ❑

The promised generalisation of the Cauchy-Bunyakovsky-Schwarz Inequality is given in the following theorem.

424 Theorem (Hölder Inequality) Given (x, y) ∈ (Rn)2 the following inequality holds

|x•y| ≤ ||x||p||y||q.

Proof: If ||x||p = 0 or ||y||q = 0 there is nothing to prove, so assume otherwise. From the Young
Inequality we have

|xk|

||x||p

|yk|

||y||q
≤ |xk|p

||x||p
p
p

+
|yk|q

||y||q
q
q

.

Adding, we deduce

∑n
k=1

|xk|

||x||p

|yk|

||y||q
≤ 1

||x||p
p
p

∑n
k=1 |xk|p +

1

||y||q
q
q

∑n
k=1 |yk|q

=
||x||p

p

||x||p
p
p

+
||y||q

q

||y||q
q
q

=
1

p
+

1

q

= 1.
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This gives
n∑

k=1

|xkyk| ≤ ||x||p||y||q.

The result follows by observing that����� n∑

k=1

xkyk

����� ≤
n∑

k=1

|xkyk| ≤ ||x||p||y||q.

❑

As a generalisation of the Triangle Inequality we have

425 Theorem (Minkowski Inequality) Let p ∈]1; +∞[. Given (x, y) ∈ (Rn)2 the following inequality holds

||x + y||p ≤ ||x||p + ||y||p.

Proof: From the triangle inequality for real numbers 1.6

|xk + yk|p = |xk + yk||xk + yk|p−1 ≤ (|xk| + |yk|) |xk + yk|p−1.

Adding
n∑

k=1

|xk + yk|p ≤
n∑

k=1

|xk||xk + yk|p−1 +

n∑

k=1

|yk||xk + yk|p−1. (4.24)

By the Hölder Inequality

∑n
k=1 |xk||xk + yk|p−1 ≤

�∑n
k=1 |xk|p

�1/p �∑n
k=1 |xk + yk|(p−1)q

�1/q

=
�∑n

k=1 |xk|p
�1/p �∑n

k=1 |xk + yk|p
�1/q

= ||x||p||x + y||
p/q

p

(4.25)

In the same manner we deduce

n∑

k=1

|yk||xk + yk|p−1 ≤ ||y||p||x + y||
p/q
p . (4.26)

Hence (4.24) gives

||x + y||
p
p =

n∑

k=1

|xk + yk|p ≤ ||x||p||x + y||
p/q
p + ||y||p||x + y||

p/q
p ,

from where we deduce the result. ❑

426 Problem Prove Lagrange’s identity:�∑
1≤j≤n ajbj

�2
=
�∑

1≤j≤n a2
j

� �∑
1≤j≤n b2

j

�
−

∑
1≤k<j≤n(akbj − ajbk)2

and then deduce the CBS Inequality in Rn .

427 Problem Let ai ∈ Rn for 1 ≤ i ≤ n be unit vectors with

∑n

i=1 ai = 0. Prove that
∑

1≤i<j≤n ai
•aj = −

n

2
.

428 Problem Let ak > 0. Use the CBS Inequality to shew
that  

n∑

k=1

a
2
k

! 
n∑

k=1

1

a2
k

!
≥ n

2
.

429 Problem Let ak ≥ 0, 1 ≤ k ≤ n be arbitrary. Prove



Rn 99

that  
n∑

k=1

ak

!2

≤ n(n + 1)(2n + 1)

6

n∑

k=1

a2
k

k2
.



Chapter 5
Vector Spaces

5.1 Vector Spaces

430 Definition A vector space 〈V, +, ·, F〉 over a field 〈F, +, 〉 is a non-empty set V whose elements are called
vectors, possessing two operations + (vector addition), and · (scalar multiplication) which satisfy the following
axioms.

∀(a, b, c) ∈ V3, ∀(α, β) ∈ F2,

VS1 Closure under vector addition :
a + b ∈ V, (5.1)

VS2 Closure under scalar multiplication

αa ∈ V, (5.2)

VS3 Commutativity

a + b = b + a (5.3)

VS4 Associativity

(a + b) + c = a + (b + c) (5.4)

VS5 Existence of an additive identity

∃ 0 ∈ V : a + 0 = a + 0 = a (5.5)

VS6 Existence of additive inverses

∃ − a ∈ V : a + (−a) = (−a) + a = 0 (5.6)

VS7 Distributive Law

α(a + b) = αa + αb (5.7)

VS8 Distributive Law

(α + β)a = αa + βa (5.8)

VS9
1Fa = a (5.9)

VS10
(αβ)a = α(βa) (5.10)

100
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431 Example If n is a positive integer, then 〈Fn, +, ·, F〉 is a vector space by defining

(a1, a2, . . . , an) + (b1, b2, . . . , bn) = (a1 + b1, a2 + b2, . . . , an + bn),

λ(a1, a2, . . . , an) = (λa1, λa2, . . . , λan).

In particular, 〈Z2
2, +, ·, Z2〉 is a vector space with only four elements and we have seen the two-dimensional and

tridimensional spaces 〈R2, +, ·, R〉 and 〈R3, +, ·, R〉.

432 Example 〈Mm×n(F), +, ·, F〉 is a vector space under matrix addition and scalar multiplication of matrices.

433 Example If
F[x] = {a0 + a1x + a2x + · · · + anxn : ai ∈ F, n ∈ N}

denotes the set of polynomials with coefficients in a field 〈F, +, 〉 then 〈F[x], +, ·, F〉 is a vector space, under
polynomial addition and scalar multiplication of a polynomial.

434 Example If
Fn[x] = {a0 + a1x + a2x + · · · + akxk : ai ∈ F, n ∈ N, k ≤ n}

denotes the set of polynomials with coefficients in a field 〈F, +, 〉 and degree at most n, then 〈Fn[x], +, ·, F〉 is a
vector space, under polynomial addition and scalar multiplication of a polynomial.

435 Example Let k ∈ N and let Ck(R[a;b]) denote the set of k-fold continuously differentiable real-valued functions
defined on the interval [a; b]. Then Ck(R[a;b]) is a vector space under addition of functions and multiplication of a
function by a scalar.

436 Example Let p ∈]1; +∞[. Consider the set of sequences {an}∞n=0, an ∈ C,

lp =

{

{an}∞n=0 :

∞∑

n=0

|an|p < +∞

}

.

Then lp is a vector space by defining addition as termwise addition of sequences and scalar multiplication as termwise
multiplication:

{an}∞n=0 + {bn}∞n=0 = {(an + bn)}∞n=0,

λ{an}∞n=0 = {λan}∞n=0, λ ∈ C.

All the axioms of a vector space follow trivially from the fact that we are adding complex numbers, except that
we must prove that in lp there is closure under addition and scalar multiplication. Since

∑∞
n=0 |an|p < +∞ =⇒∑∞

n=0 |λan|p < +∞ closure under scalar multiplication follows easily. To prove closure under addition, observe that
if z ∈ C then |z| ∈ R+ and so by the Minkowski Inequality Theorem 425 we have�∑N

n=0 |an + bn|p
�1/p

≤
�∑N

n=0 |an|p
�1/p

+
�∑N

n=0 |bn|p
�1/p

≤
�∑∞

n=0 |an|p
�1/p

+
�∑∞

n=0 |bn|p
�1/p

.

(5.11)

This in turn implies that the series on the left in (5.11) converges, and so we may take the limit as N → +∞
obtaining  

∞∑

n=0

|an + bn|p

!1/p

≤
 

∞∑

n=0

|an|p

!1/p

+

 
∞∑

n=0

|bn|p

!1/p

. (5.12)

Now (5.12) implies that the sum of two sequences in lp is also in lp, which demonstrates closure under addition.

437 Example The set
V = {a + b

√
2 + c

√
3 : (a, b, c) ∈ Q3}
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with addition defined as

(a + b
√

2 + c
√

3) + (a ′ + b ′√2 + c ′√3) = (a + a ′) + (b + b ′)
√

2 + (c + c ′)
√

3,

and scalar multiplication defined as

λ(a + b
√

2 + c
√

3) = (λa) + (λb)
√

2 + (λc)
√

3,

constitutes a vector space over Q.

438 Theorem In any vector space 〈V, +, ·, F〉,

∀ α ∈ F, α0 = 0.

Proof: We have

α0 = α(0 + 0) = α0 + α0.

Hence

α0 − α0 = α0,

or

0 = α0,

proving the theorem. ❑

439 Theorem In any vector space 〈V, +, ·, F〉,

∀ v ∈ V, 0Fv = 0.

Proof: We have

0Fv = (0F + 0F)v = 0Fv + 0Fv.

Therefore

0Fv − 0Fv = 0Fv,

or

0 = 0Fv,

proving the theorem. ❑

440 Theorem In any vector space 〈V, +, ·, F〉, α ∈ F, v ∈ V,

αv = 0 =⇒ α = 0F ∨ v = 0.

Proof: Assume that α 6= 0F. Then α possesses a multiplicative inverse α−1 such that α−1α = 1F.
Thus

αv = 0 =⇒ α−1αv = α−10.

By Theorem 439, α−10 = 0. Hence

α−1αv = 0.

Since by Axiom 5.9, we have α−1αv = 1Fv = v, and so we conclude that v = 0. ❑

441 Theorem In any vector space 〈V, +, ·, F〉,

∀α ∈ F, ∀ v ∈ V, (−α)v = α(−v) = −(αv).
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Proof: We have
0Fv = (α + (−α))v = αv + (−α)v,

whence
−(αv) + 0Fv = (−α)v,

that is
−(αv) = (−α)v.

Similarly,
0 = α(v − v) = αv + α(−v),

whence
−(αv) + 0 = α(−v),

that is
−(αv) = α(−v),

proving the theorem. ❑

442 Problem Is R2 with vector addition and scalar multipli-
cation defined as264x1

x2

375+

264y1

y2

375 =

264x1 + y1

x2 + y2

375 , λ

264x1

x2

375 =

264λx1

0

375
a vector space?

443 Problem Demonstrate that the commutativity axiom 5.3
is redundant.

444 Problem Let V = R+ =]0; +∞[, the positive real num-
bers and F = R, the real numbers. Demonstrate that V

is a vector space over F if vector addition is defined as
a ⊕ b = ab, (a, b) ∈ (R+)2 and scalar multiplication is
defined as α ⊗ a = aα , (α, a) ∈ (R, R+).

445 Problem Let C denote the complex numbers and R denote
the real numbers. Is C a vector space over R under ordinary
addition and multiplication? Is R a vector space over C?

446 Problem Construct a vector space with exactly 8 ele-
ments.

447 Problem Construct a vector space with exactly 9 ele-
ments.

5.2 Vector Subspaces

448 Definition Let 〈V, +, ·, F〉 be a vector space. A non-empty subset U ⊆ V which is also a vector space under
the inherited operations of V is called a vector subspace of V.

449 Example Trivially, X1 = {0} and X2 = V are vector subspaces of V.

450 Theorem Let 〈V, +, ·, F〉 be a vector space. Then U ⊆ V, U 6= ∅ is a subspace of V if and only if ∀α ∈ F
and ∀(a, b) ∈ U2 it is verified that

a + αb ∈ U.

Proof: Observe that U inherits commutativity, associativity and the distributive laws from V.
Thus a non-empty U ⊆ V is a vector subspace of V if (i) U is closed under scalar multiplication,
that is, if α ∈ F and v ∈ U, then αv ∈ U; (ii) U is closed under vector addition, that is, if
(u, v) ∈ U2, then u + v ∈ U. Observe that (i) gives the existence of inverses in U, for take
α = −1F and so v ∈ U =⇒ −v ∈ U. This coupled with (ii) gives the existence of the zero-vector,
for 0 = v − v ∈ U. Thus we need to prove that if a non-empty subset of V satisfies the property
stated in the Theorem then it is closed under scalar multiplication and vector addition, and vice-
versa, if a non-empty subset of V is closed under scalar multiplication and vector addition, then
it satisfies the property stated in the Theorem. But this is trivial. ❑

451 Example Shew that X = {A ∈ Mn(F) : tr (A) = 0F} is a subspace of Mn(F).
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Solution: Take A, B ∈ X, α ∈ R. Then

tr (A + αB) = tr (A) + αtr (B) = 0F + α(0F) = 0F.

Hence A + αB ∈ X, meaning that X is a subspace of Mn(F).

452 Example Let U ∈ Mn(F) be an arbitrary but fixed. Shew that

CU = {A ∈ Mn(F) : AU = UA}

is a subspace of Mn(F).

Solution: Take (A, B) ∈ (CU)2. Then AU = UA and BU = UB. Now

(A + αB)U = AU + αBU = UA + αUB = U(A + αB),

meaning that A + αB ∈ CU. Hence CU is a subspace of Mn(F). CU is called the commutator of U.

453 Theorem Let X ⊆ V, Y ⊆ V be vector subspaces of a vector space 〈V, +, ·, F〉. Then their intersection X ∩ Y

is also a vector subspace of V.

Proof: Let α ∈ F and (a, b) ∈ (X ∩ Y)2. Then clearly (a, b) ∈ X and (a, b) ∈ Y. Since X is a
vector subspace, a + αb ∈ X and since Y is a vector subspace, a + αb ∈ Y. Thus

a + αb ∈ X ∩ Y

and so X ∩ Y is a vector subspace of V by virtue of Theorem 450. ❑

☞ We we will soon see that the only vector subspaces of 〈R2, +, ·, R〉 are the set containing the
zero-vector, any line through the origin, and R2 itself. The only vector subspaces of 〈R3, +, ·, R〉
are the set containing the zero-vector, any line through the origin, any plane containing the origin
and R3 itself.

454 Problem Prove that

X =






26666666664a

b

c

d

37777777775 ∈ R4
: a − b − 3d = 0






is a vector subspace of R4 .

455 Problem Prove that

X =






266666666666664
a

2a − 3b

5b

a + 2b

a

377777777777775 : a, b ∈ R






is a vector subspace of R5 .

456 Problem Let a ∈ Rn be a fixed vector. Demonstrate that

X = {x ∈ Rn
: a•x = 0}

is a subspace of Rn .

457 Problem Let a ∈ R3 be a fixed vector. Demonstrate that

X = {x ∈ R3
: a×x = 0}

is a subspace of R3 .

458 Problem Let A ∈ Mm×n(F) be a fixed matrix. Demon-
strate that

S = {X ∈ Mn×1(F) : AX = 0m×1}

is a subspace of Mn×1(F).

459 Problem Prove that the set X ⊆ Mn(F) of upper trian-
gular matrices is a subspace of Mn(F).

460 Problem Prove that the set X ⊆ Mn(F) of symmetric
matrices is a subspace of Mn(F).

461 Problem Prove that the set X ⊆ Mn(F) of skew-
symmetric matrices is a subspace of Mn(F).
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462 Problem Prove that the following subsets are not sub-
spaces of the given vector space. Here you must say which of
the axioms for a vector space fail.

➊






2666664a

b

0

3777775 : a, b ∈ R, a
2

+ b
2

= 1






⊆ R3

➋






2666664a

b

0

3777775 : a, b ∈ R2
, ab = 0






⊆ R3

➌






264a b

0 0

375 : (a, b) ∈ R2
, a + b

2
= 0





⊆ M2×2(R)

463 Problem Let 〈V, +, ·, F〉 be a vector space, and let U1 ⊆
V and U2 ⊆ V be vector subspaces. Prove that if U1 ∪ U2

is a vector subspace of V, then either U1 ⊆ U2 or U2 ⊆ U1 .

464 Problem Let V a vector space over a field F. If F is in-
finite, show that V is not the set-theoretic union of a finite
number of proper subspaces.

465 Problem Give an example of a finite vector space V over
a finite field F such that

V = V1 ∪ V2 ∪ V3,

where the Vk are proper subspaces.

5.3 Linear Independence

466 Definition Let (λ1, λ2, · · · , λn) ∈ Fn. Then the vectorial sum

n∑

j=1

λjaj

is said to be a linear combination of the vectors ai ∈ V, 1 ≤ i ≤ n.

467 Example Any matrix

2664a b

c d

3775 ∈ M2(R) can be written as a linear combination of the matrices26641 0

0 0

3775,

26640 1

0 0

3775,

26640 0

1 0

3775,

26640 0

0 1

3775,

for 2664a b

c d

3775 = a

26641 0

0 0

3775+ b

26640 1

0 0

3775+ c

26640 0

1 0

3775+ d

26640 0

0 1

3775 .

468 Example Any polynomial of degree at most 2, say a+bx+cx2 ∈ R2[x] can be written as a linear combination
of 1, x − 1, and x2 − x + 2, for

a + bx + cx2 = (a − c)(1) + (b + c)(x − 1) + c(x2 − x + 2).

Generalising the notion of two parallel vectors, we have

469 Definition The vectors ai ∈ V, 1 ≤ i ≤ n, are linearly dependent or tied if

∃(λ1, λ2, · · · , λn) ∈ Fn \ {0} such that
n∑

j=1

λjaj = 0,

that is, if there is a non-trivial linear combination of them adding to the zero vector.
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470 Definition The vectors ai ∈ V, 1 ≤ i ≤ n, are linearly independent or free if they are not linearly dependent.
That is, if (λ1, λ2, · · · , λn) ∈ Fn then

n∑

j=1

λjaj = 0 =⇒ λ1 = λ2 = · · · = λn = 0F.

☞ A family of vectors is linearly independent if and only if the only linear combination of them
giving the zero-vector is the trivial linear combination.

471 Example 




266666641

2

3

37777775 ,

266666644

5

6

37777775 ,

266666647

8

9

37777775




is a tied family of vectors in R3, since

(1)

266666641

2

3

37777775+ (−2)

266666644

5

6

37777775+ (1)

266666647

8

9

37777775 =

266666640

0

0

37777775 .

472 Example Let u, v be linearly independent vectors in some vector space over a field F with characteristic different
from 2. Shew that the two new vectors x = u − v and y = u + v are also linearly independent.

Solution: Assume that a(u − v) + b(u + v) = 0. Then

(a + b)u + (a − b)v = 0.

Since u, v are linearly independent, the above coefficients must be 0, that is, a + b = 0F and a − b = 0F. But
this gives 2a = 2b = 0F, which implies a = b = 0F, if the characteristic of the field is not 2. This proves the linear
independence of u − v and u + v.

473 Theorem Let A ∈ Mm×n(F). Then the columns of A are linearly independent if and only the only solution
to the system AX = 0m is the trivial solution.

Proof: Let A1, . . . , An be the columns of A. Since

x1A1 + x2A2 + · · · + xnAn = AX,

the result follows. ❑

474 Theorem Any family
{0, u1, u2, . . . , uk}

containing the zero-vector is linearly dependent.

Proof: This follows at once by observing that

1F0 + 0Fu1 + 0Fu2 + . . . , +0Fuk = 0

is a non-trivial linear combination of these vectors equalling the zero-vector. ❑
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475 Problem Shew that





26666641

0

0

3777775 ,

26666641

1

0

3777775 ,

26666641

1

1

3777775




forms a free family of vectors in R3 .

476 Problem Prove that the set





266666666641

1

1

1

37777777775 ,

26666666664 1

1

−1

−1

37777777775 ,

26666666664 1

−1

1

−1

37777777775 ,

266666666641

1

0

1

37777777775





is a linearly independent set of vectors in R4 and shew that

X =

266666666641

2

1

1

37777777775 can be written as a linear combination of these

vectors.

477 Problem Let (a, b) ∈ (R3)2 and assume that a•b = 0

and that a and b are linearly independent. Prove that
a, b, a×b are linearly independent.

478 Problem Let ai ∈ Rn, 1 ≤ i ≤ k (k ≤ n) be k non-zero
vectors such that ai

•aj = 0 for i 6= j. Prove that these k

vectors are linearly independent.

479 Problem Let (u, v) ∈ (Rn)2 . Prove that |u•v| = ||u||||v||

if and only if u and v are linearly dependent.

480 Problem Prove that





2641 0

0 1

375 ,

2641 0

0 −1

375 ,

2640 1

1 0

375 ,

264 0 1

−1 0

375




is a linearly independent family over R. Write

2641 1

1 1

375 as a

linear combination of these matrices.

481 Problem Let {v1, v2, v3, v4} be a linearly independent
family of vectors. Prove that the family

{v1 + v2, v2 + v3, v3 + v4, v4 + v1}

is not linearly independent.

482 Problem Let {v1, v2, v3} be linearly independent vectors
in R5 . Are the vectors

b1 = 3v1 + 2v2 + 4v3,

b2 = v1 + 4v2 + 2v3,

b3 = 9v1 + 4v2 + 3v3,

b4 = v1 + 2v2 + 5v3,

linearly independent? Prove or disprove!

483 Problem Is the family {1,
√

2} linearly independent over
Q?

484 Problem Is the family {1,
√

2} linearly independent over
R?

485 Problem Consider the vector space

V = {a + b
√

2 + c
√

3 : (a, b, c) ∈ Q3
}.

1. Shew that {1,
√

2,
√

3} are linearly independent over Q.

2. Express
1

1 −
√

2
+

2√
12 − 2

as a linear combination of {1,
√

2,
√

3}.

486 Problem Let f, g, h belong to C∞ (RR) (the space of in-
finitely continuously differentiable real-valued functions de-
fined on the real line) and be given by

f(x) = e
x
, g(x) = e

2x
, h(x) = e

3x
.

Shew that f, g, h are linearly independent over R.

487 Problem Let f, g, h belong to C∞ (RR) be given by

f(x) = cos2
x, g(x) = sin2

x, h(x) = cos 2x.

Shew that f, g, h are linearly dependent over R.

5.4 Spanning Sets

488 Definition A family {u1, u2, . . . , uk, . . . , } ⊆ V is said to span or generate V if every v ∈ V can be written
as a linear combination of the uj’s.
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489 Theorem If {u1, u2, . . . , uk, . . . , } ⊆ V spans V, then any superset

{w, u1, u2, . . . , uk, . . . , } ⊆ V

also spans V.

Proof: This follows at once from

l∑

i=1

λiui = 0Fw +

l∑

i=1

λiui.

❑

490 Example The family of vectors 




i =

266666641

0

0

37777775 , j =

266666640

1

0

37777775 , k =

266666640

0

1

37777775




spans R3 since given

26666664a

b

c

37777775 ∈ R3 we may write 26666664a

b

c

37777775 = ai + bj + ck.

491 Example Prove that the family of vectors






t1 =

266666641

0

0

37777775 , t2 =

266666641

1

0

37777775 , t3 =

266666641

1

1

37777775




spans R3.

Solution: This follows from the identity26666664a

b

c

37777775 = (a − b)

266666641

0

0

37777775+ (b − c)

266666641

1

0

37777775+ c

266666641

1

1

37777775 = (a − b)t1 + (b − c)t2 + ct3.
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492 Example Since 2664a b

c d

3775 = a

26641 0

0 0

3775+ b

26640 1

0 0

3775+ c

26640 0

1 0

3775+ d

26640 0

0 1

3775
the set of matrices

26641 0

0 0

3775,

26640 1

0 0

3775,

26640 0

1 0

3775,

26640 0

0 1

3775 is a spanning set for M2(R)

493 Example The set
{1, x, x2, x3, . . . , xn, . . .}

spans R[x], the set of polynomials with real coefficients and indeterminate x.

494 Definition The span of a family of vectors {u1, u2, . . . , uk, . . . , } is the set of all finite linear combinations
obtained from the ui’s. We denote the span of {u1, u2, . . . , uk, . . . , } by

span (u1, u2, . . . , uk, . . . , ) .

495 Theorem Let 〈V, +, ·, F〉 be a vector space. Then

span (u1, u2, . . . , uk, . . . , ) ⊆ V

is a vector subspace of V.

Proof: Let α ∈ F and let

x =

l∑

k=1

akuk, y =

l∑

k=1

bkuk,

be in span (u1, u2, . . . , uk, . . . , ) (some of the coefficients might be 0F). Then

x + αy =

l∑

k=1

(ak + αbk)uk ∈ span (u1, u2, . . . , uk, . . . , ) ,

and so span (u1, u2, . . . , uk, . . . , ) is a subspace of V. ❑

496 Corollary span (u1, u2, . . . , uk, . . . , ) ⊆ V is the smallest vector subspace of V (in the sense of set inclusion)
containing the set

{u1, u2, . . . , uk, . . . , }.

Proof: If W ⊆ V is a vector subspace of V containing the set

{u1, u2, . . . , uk, . . . , }

then it contains every finite linear combination of them, and hence, it contains span (u1, u2, . . . , uk, . . . , ) .

❑

497 Example If A ∈ M2(R), A ∈ span

0BB�26641 0

0 0

3775 ,

26640 0

0 1

3775 ,

26640 1

1 0

37751CCA then A has the form

a

26641 0

0 0

3775+ b

26640 0

0 1

3775+ c

26640 1

1 0

3775 =

2664a c

c b

3775 ,

i.e., this family spans the set of all symmetric 2 × 2 matrices over R.
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498 Theorem Let V be a vector space over a field F and let (v, w) ∈ V2, γ ∈ F \ {0F}. Then

span (v, w) = span (v, γw) .

Proof: The equality

av + bw = av + (bγ−1)(γw),

proves the statement. ❑

499 Theorem Let V be a vector space over a field F and let (v, w) ∈ V2, γ ∈ F. Then

span (v, w) = span (w, v + γw) .

Proof: This follows from the equality

av + bw = a(v + γw) + (b − aγ)w.

❑

500 Problem Let R3 [x] denote the set of polynomials with de-
gree at most 3 and real coefficients. Prove that the set

{1, 1 + x, (1 + x)
2
, (1 + x)

3
}

spans R3 [x].

501 Problem Shew that

2666664 1

1

−1

3777775 6∈ span

0BBBBB�2666664 1

0

−1

3777775 ,

2666664 0

1

−1

37777751CCCCCA.

502 Problem What is span

0B�2641 0

0 0

375 ,

2640 0

0 1

375 ,

264 0 1

−1 0

3751CA?

503 Problem Prove that

span

0B�2641 0

0 1

375 ,

2641 0

0 −1

375 ,

2640 1

1 0

375 ,

264 0 1

−1 0

3751CA = M2(R).

504 Problem For the vectors in R3 ,

a =

26666641

2

1

3777775 , b =

26666641

3

2

3777775 , c =

26666641

1

0

3777775 , d =

26666643

8

5

3777775 ,

prove that

span (a, b) = span (c, d) .

5.5 Bases

505 Definition A family {u1, u2, . . . , uk, . . .} ⊆ V is said to be a basis of V if (i) they are linearly independent,
(ii) they span V.
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506 Example The family

ei =

2666666666666666666666664
0F

...

0F

1F

0F

...

0F

3777777777777777777777775
,

where there is a 1F on the i-th slot and 0F’s on the other n − 1 positions, is a basis for Fn.

507 Theorem Let 〈V, +, ·, F〉 be a vector space and let

U = {u1, u2, . . . , uk, . . .} ⊆ V

be a family of linearly independent vectors in V which is maximal in the sense that if U ′ is any other family of
vectors of V properly containing U then U ′ is a dependent family. Then U forms a basis for V.

Proof: Since U is a linearly independent family, we need only to prove that it spans V. Take
v ∈ V. If v ∈ U then there is nothing to prove, so assume that v ∈ V \ U. Consider the set
U ′ = U ∪ {v}. This set properly contains U, and so, by assumption, it forms a dependent family.
There exists scalars α0, α1, . . . , αn such that

α0v + α1u1 + · · · + αnun = 0.

Now, α0 6= 0F, otherwise the ui would be linearly dependent. Hence α−1
0 exists and we have

v = −α−1
0 (α1u1 + · · · + αnun),

and so the ui span V. ❑

☞ From Theorem 507 it follows that to shew that a vector space has a basis it is enough to shew
that it has a maximal linearly independent set of vectors. Such a proof requires something called
Zörn’s Lemma, and it is beyond our scope. We dodge the whole business by taking as an axiom
that every vector space possesses a basis.

508 Theorem (Steinitz Replacement Theorem) Let 〈V, +, ·, F〉 be a vector space and let U = {u1, u2, . . .} ⊆ V.
Let W = {w1, w2, . . . , wk} be an independent family of vectors in span (U). Then there exist k of the ui’s, say
{u1, u2, . . . , uk} which may be replaced by the wi’s in such a way that

span (w1, w2, . . . , wk, uk+1, . . .) = span (U) .

Proof: We prove this by induction on k. If k = 1, then

w1 = α1u1 + α2u2 + · · · + αnun

for some n and scalars αi. There is an αi 6= 0F, since otherwise w1 = 0 contrary to the assumption
that the wi are linearly independent. After reordering, we may assume that α1 6= 0F. Hence

u1 = α−1
1 (w1 − (α2u2 + · · · + αnun)),
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and so u1 ∈ span (w1, u2, . . . , ) and

span (w1, u2, . . . , ) = span (u1, u2, . . . , ) .

Assume now that the theorem is true for any set of fewer than k independent vectors. We may
thus assume that that {u1, . . .} has more than k − 1 vectors and that

span (w1, w2, . . . , wk−1, uk, , . . .) = span (U) .

Since wk ∈ U we have

wk = β1w1 + β2w2 + · · · + βk−1wk−1 + γkuk + γk+1uk+1 + γmum.

If all the γi = 0F, then the {w1, w2, . . . , wk} would be linearly dependent, contrary to assumption.
Thus there is a γi 6= 0F, and after reordering, we may assume that γk 6= 0F. We have therefore

uk = γ−1
k (wk − (β1w1 + β2w2 + · · · + βk−1wk−1 + γk+1uk+1 + γmum)).

But this means that
span (w1, w2, . . . , wk, uk+1, . . .) = span (U) .

This finishes the proof. ❑

509 Corollary Let {w1, w2, . . . , wn} be an independent family of vectors with V = span (w1, w2, . . . , wn). If we
also have V = span (u1, u2, . . . , uν), then

1. n ≤ ν,

2. n = ν if and only if the {y1, y2, . . . , yν} are a linearly independent family.

3. Any basis for V has exactly n elements.

Proof:

1. In the Steinitz Replacement Theorem 508 replace the first n ui’s by the wi’s and n ≤ ν

follows.

2. If {u1, u2, . . . , uν} are a linearly independent family, then we may interchange the rôle of the
wi and ui obtaining ν ≤ n. Conversely, if ν = n and if the ui are dependent, we could
express some ui as a linear combination of the remaining ν − 1 vectors, and thus we would
have shewn that some ν − 1 vectors span V. From (1) in this corollary we would conclude
that n ≤ ν − 1, contradicting n = ν.

3. This follows from the definition of what a basis is and from (2) of this corollary.

❑

510 Definition The dimension of a vector space 〈V, +, ·, F〉 is the number of elements of any of its bases, and we
denote it by dim V.

511 Theorem Any linearly independent family of vectors

{x1, x2, . . . , xk}

in a vector space V can be completed into a family

{x1, x2, . . . , xk, yk+1, yk+2, . . .}

so that this latter family become a basis for V.

Proof: Take any basis {u1, . . . , uk, uk+1, . . . , } and use Steinitz Replacement Theorem 508. ❑
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512 Corollary If U ⊆ V is a vector subspace of a finite dimensional vector space V then dim U ≤ dim V.

Proof: Since any basis of U can be extended to a basis of V, it follows that the number of
elements of the basis of U is at most as large as that for V. ❑

513 Example Find a basis and the dimension of the space generated by the set of symmetric matrices in Mn(R).

Solution: Let Eij ∈ Mn(R) be the n × n matrix with a 1 on the ij-th position and 0’s everywhere else. For

1 ≤ i < j ≤ n, consider the
�
n

2

�
=

n(n − 1)

2
matrices Aij = Eij + Eji. The Aij have a 1 on the ij-th and ji-th

position and 0’s everywhere else. They, together with the n matrices Eii, 1 ≤ i ≤ n constitute a basis for the space
of symmetric matrices. The dimension of this space is thus

n(n − 1)

2
+ n =

n(n + 1)

2
.

514 Theorem Let {u1, . . . , un} be vectors in Rn. Then the u’s form a basis if and only if the n × n matrix A

formed by taking the u’s as the columns of A is invertible.

Proof: Since we have the right number of vectors, it is enough to prove that the u’s are linearly

independent. But if X =

266666666664
x1

x2

...

xn

377777777775, then

x1u1 + · · · + xnun = AX.

If A is invertible, then AX = 0n =⇒ X = A−10n = 0n, meaning that x1 = x2 = · · · xn = 0, so the
u’s are linearly independent.

Conversely, assume that the u’s are linearly independent. Then the equation AX = 0n has a unique
solution. Let r = rank (A) and let (P, Q) ∈ (GLn(R))2 be matrices such that A = P−1Dn,n,rQ−1,
where Dn,n,r is the Hermite normal form of A. Thus

AX = 0n =⇒ P−1Dn,n,rQ−1X = 0n =⇒ Dn,n,rQ−1X = 0n.

Put Q−1X =

266666666664
y1

y2

...

yn

377777777775. Then

Dn,n,rQ−1X = 0n =⇒ y1e1 + · · · + yrer = 0n,

where ej is the n-dimensional column vector with a 1 on the j-th slot and 0’s everywhere else. If
r < n then yr+1, . . . , yn can be taken arbitrarily and so there would not be a unique solution, a
contradiction. Hence r = n and A is invertible. ❑
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515 Problem In problem 455 we saw that

X =






266666666666664
a

2a − 3b

5b

a + 2b

a

377777777777775 : a, b ∈ R






is a vector subspace of R5 . Find a basis for this subspace.

516 Problem Let {v1, v2, v3, v4, v5} be a basis for a vector
space V over a field F. Prove that

{v1 + v2, v2 + v3, v3 + v4, v4 + v5, v5 + v1}

is also a basis for V.

517 Problem Find a basis for the solution space of the system
of n + 1 linear equations of 2n unknowns

x1 + x2 + · · · + xn = 0,

x2 + x3 + · · · + xn+1 = 0,

...
...
...

xn+1 + xn+2 + · · · + x2n = 0.

518 Problem Prove that the set

X = {(a, b, c, d)|b + 2c = 0} ⊆ R4

is a vector subspace of R4 . Find its dimension and a basis for
X.

519 Problem Prove that the dimension of the vector subspace

of lower triangular n × n matrices is
n(n + 1)

2
and find a

basis for this space.

520 Problem Find a basis and the dimension of

X = span

0BBBBBBBBB�v1 =

266666666641

1

1

1

37777777775 , v2 =

266666666641

1

1

0

37777777775 , v3 =

266666666642

2

2

1

37777777775
1CCCCCCCCCA .

521 Problem Find a basis and the dimension of

X = span

0BBBBBBBBB�v1 =

266666666641

1

1

1

37777777775 , v2 =

266666666641

1

1

0

37777777775 , v3 =

266666666642

2

2

2

37777777775
1CCCCCCCCCA .

522 Problem Find a basis and the dimension of

X = span

0B�v1 =

2641 0

0 1

375 , v2 =

2641 0

2 0

375 , v3 =

2640 1

2 0

375 , v4 =

2641

0

3751CA
523 Problem Let (a, b) ∈ R3 × R3 be fixed. Solve the equa-
tion

a×x = b,

for x.

5.6 Coordinates

524 Theorem Let {v1, v2, . . . , vn} be a basis for a vector space V. Then any v ∈ V has a unique representation

v = a1v1 + a2v2 + · · · + anvn.

Proof: Let
v = b1v1 + b2v2 + · · · + bnvn

be another representation of v. Then

0 = (a1 − b1)v1 + (a2 − b2)v2 + · · · + (an − bn)vn.

Since {v1, v2, . . . , vn} forms a basis for V, they are a linearly independent family. Thus we must
have

a1 − b1 = a2 − b2 = · · · = an − bn = 0F,

that is
a1 = b1; a2 = b2; · · · ; an = bn,

proving uniqueness. ❑
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525 Definition An ordered basis {v1, v2, . . . , vn} of a vector space V is a basis where the order of the vk has been
fixed. Given an ordered basis {v1, v2, . . . , vn} of a vector space V, Theorem 524 ensures that there are unique
(a1, a2, . . . , an) ∈ Fn such that

v = a1v1 + a2v2 + · · · + anvn.

The ak’s are called the coordinates of the vector v.

526 Example The standard ordered basis for R3 is S = {i, j, k}. The vector

266666641

2

3

37777775 ∈ R3 for example, has coordinates

(1, 2, 3)S . If the order of the basis were changed to the ordered basis S1 = {i, k, j}, then

266666641

2

3

37777775 ∈ R3 would have

coordinates (1, 3, 2)S1
.

☞ Usually, when we give a coordinate representation for a vector v ∈ Rn, we assume that we
are using the standard basis.

527 Example Consider the vector

266666641

2

3

37777775 ∈ R3 (given in standard representation). Since266666641

2

3

37777775 = −1

266666641

0

0

37777775− 1

266666641

1

0

37777775+ 3

266666641

1

1

37777775 ,

under the ordered basis B1 =






266666641

0

0

37777775 ,

266666641

1

0

37777775 ,

266666641

1

1

37777775




,

266666641

2

3

37777775 has coordinates (−1, −1, 3)B1
. We write266666641

2

3

37777775 =

26666664−1

−1

3

37777775
B1

.
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528 Example The vectors of

B1 =






26641

1

3775 ,

26641

2

3775




are non-parallel, and so form a basis for R2. So do the vectors

B2 =






26642

1

3775 ,

2664 1

−1

3775



.

Find the coordinates of

26643

4

3775
B1

in the base B2.

Solution: We are seeking x, y such that

3

26641

1

3775+ 4

26641

2

3775 = x

26642

1

3775+ y

2664 1

−1

3775 =⇒

26641 1

1 2

377526643

4

3775 =

26642 1

1 −1

3775 2664x

y

3775
B2

.

Thus 2664x

y

3775
B2

=

26642 1

1 −1

3775−1 26641 1

1 2

3775 26643

4

3775
=

26641
3

1
3

1
3

−2
3

377526641 1

1 2

377526643

4

3775
=

2664 2
3

1

−1
3

−1

377526643

4

3775
=

2664 6

−5

3775
B2

.

Let us check by expressing both vectors in the standard basis of R2:26643

4

3775
B1

= 3

26641

1

3775+ 4

26641

2

3775 =

2664 7

11

3775 ,2664 6

−5

3775
B2

= 6

26642

1

3775− 5

2664 1

−1

3775 =

2664 7

11

3775 .
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In general let us consider bases B1 , B2 for the same vector space V. We want to convert XB1
to YB2

. We
let A be the matrix formed with the column vectors of B1 in the given order an B be the matrix formed with the
column vectors of B2 in the given order. Both A and B are invertible matrices since the B’s are bases, in view of
Theorem 514. Then we must have

AXB1
= BYB2

=⇒ YB2
= B−1AXB1

.

Also,

XB1
= A−1BYB2

.

This prompts the following definition.

529 Definition Let B1 = {u1, u2, . . . , un} and B2 = {v1, v2, . . . , vn} be two ordered bases for a vector space V.
Let A ∈ Mn(F) be the matrix having the u’s as its columns and let B ∈ Mn(F) be the matrix having the v’s as
its columns. The matrix P = B−1A is called the transition matrix from B1 to B2 and the matrix P−1 = A−1B is
called the transition matrix from B2 to B1.

530 Example Consider the bases of R3

B1 =






266666641

1

1

37777775 ,

266666641

1

0

37777775 ,

266666641

0

0

37777775




,

B2 =






26666664 1

1

−1

37777775 ,

26666664 1

−1

0

37777775 ,

266666642

0

0

37777775




.

Find the transition matrix from B1 to B2 and also the transition matrix from B2 to B1. Also find the coordinates

of

266666641

2

3

37777775
B1

in terms of B2.

Solution: Let

A =

266666641 1 1

1 1 0

1 0 0

37777775 , B =

26666664 1 1 2

1 −1 0

−1 0 0

37777775 .
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The transition matrix from B1 to B2 is

P = B−1A

=

26666664 1 1 2

1 −1 0

−1 0 0

37777775−1 266666641 1 1

1 1 0

1 0 0

37777775
=

266666640 0 −1

0 −1 −1

1
2

1
2

1

37777775266666641 1 1

1 1 0

1 0 0

37777775
=

26666664−1 0 0

−2 −1 −0

2 1 1
2

37777775 .

The transition matrix from B2 to B1 is

P−1 =

26666664−1 0 0

−2 −1 0

2 1 1
2

37777775−1

=

26666664−1 0 0

2 −1 0

0 2 2

37777775 .

Now,

YB2
=

26666664−1 0 0

−2 −1 0

2 1 1
2

37777775266666641

2

3

37777775
B1

=

26666664−1

−4

11
2

37777775
B2

.

As a check, observe that in the standard basis for R3266666641

2

3

37777775
B1

= 1

266666641

1

1

37777775+ 2

266666641

1

0

37777775+ 3

266666641

0

0

37777775 =

266666646

3

1

37777775 ,26666664−1

−4

11
2

37777775
B2

= −1

26666664 1

1

−1

37777775− 4

26666664 1

−1

0

37777775+
11

2

266666642

0

0

37777775 =

266666646

3

1

37777775 .
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531 Problem 1. Prove that the following vectors are lin-
early independent in R4

a1 =

266666666641

1

1

1

37777777775 , a2 =

26666666664 1

1

−1

−1

37777777775 , a3 =

26666666664 1

−1

1

−1

37777777775 , a4 =

26666666664 1

−1

−1

1

37777777775 .

2. Find the coordinates of

266666666641

2

1

1

37777777775 under the ordered basis

(a1, a2, a3, a4).

3. Find the coordinates of

266666666641

2

1

1

37777777775 under the ordered basis

(a1, a3, a2, a4).

532 Problem Consider the matrix

A(a) =

26666666664a 1 1 1

0 1 0 1

1 0 a 1

1 1 1 1

37777777775 .

➊ Determine all a for which A(a) is not invertible.

➋ Find the inverse of A(a) when A(a) is invertible.

➌ Find the transition matrix from the basis

B1 =

266666666641

1

1

1

37777777775 ,

266666666641

1

1

0

37777777775 ,

266666666641

1

0

0

37777777775 ,

266666666641

0

0

0

37777777775
to the basis

B2 =

26666666664a

0

1

1

37777777775 ,

266666666641

1

0

1

37777777775 ,

266666666641

0

a

1

37777777775 ,

266666666641

1

1

1

37777777775 .



Chapter 6
Linear Transformations

6.1 Linear Transformations

533 Definition Let 〈V, +, ·, F〉 and 〈W, +, ·, F〉 be vector spaces over the same field F. A linear transformation
or homomorphism

L :
V → W

a 7→ L(a)

,

is a function which is� Linear: L(a + b) = L(a) + L(b),� Homogeneous: L(αa) = αL(a), for α ∈ F.

☞ It is clear that the above two conditions can be summarised conveniently into

L(a + αb) = L(a) + αL(b).

534 Example Let

L :
Mn(R) → R

A 7→ tr (A)

.

Then L is linear, for if (A, B) ∈ Mn(R), then

L(A + αB) = tr (A + αB) = tr (A) + αtr (B) = L(A) + αL(B).

535 Example Let

L :
Mn(R) → Mn(R)

A 7→ AT

.

Then L is linear, for if (A, B) ∈ Mn(R), then

L(A + αB) = (A + αB)T = AT + αBT = L(A) + αL(B).

120
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536 Example For a point (x, y) ∈ R2, its reflexion about the y-axis is (−x, y). Prove that

R :
R2 → R2

(x, y) 7→ (−x, y)

is linear.

Solution: Let (x1, y1) ∈ R2, (x2, y2) ∈ R2, and α ∈ R. Then

R((x1, y1) + α(x2, y2)) = R((x1 + αx2, y1 + αy2))

= (−(x1 + αx2), y1 + αy2)

= (−x1, y1) + α(−x2, y2)

= R((x1, y1)) + αR((x2, y2)),

whence R is linear.

537 Example Let L : R2 → R4 be a linear transformation with

L

26641

1

3775 =

266666666664
−1

1

2

3

377777777775 ; L

2664−1

1

3775 =

266666666664
2

0

2

3

377777777775 .

Find L

26645

3

3775 .

Solution: Since 26645

3

3775 = 4

26641

1

3775−

2664−1

1

3775 ,

we have

L

26645

3

3775 = 4L

26641

1

3775− L

2664−1

1

3775 = 4

266666666664
−1

1

2

3

377777777775−

266666666664
2

0

2

3

377777777775 =

266666666664
−6

4

6

9

377777777775 .

538 Theorem Let 〈V, +, ·, F〉 and 〈W, +, ·, F〉 be vector spaces over the same field F, and let L : V → W be a
linear transformation. Then



122 Chapter 6� L(0V) = 0W.� ∀x ∈ V, L(−x) = −L(x).

Proof: We have

L(0V) = L(0V + 0V) = L(0V) + L(0V),

hence

L(0V) − L(0V) = L(0V).

Since

L(0V) − L(0V) = 0W,

we obtain the first result.

Now

0W = L(0V) = L(x + (−x)) = L(x) + L(−x),

from where the second result follows. ❑

539 Problem Consider L : R3 → R3,

L

2666664x

y

z

3777775 =

2666664x − y − z

x + y + z

z

3777775 .

Prove that L is linear.

540 Problem Let h, k be fixed vectors in R3. Prove that

L :
R3 × R3 → R3

(x, y) 7→ x×k + h×y

is a linear transformation.

541 Problem Let A ∈ GLn(R) be a fixed matrix. Prove that

L :
GLn(R) → GLn(R)

H 7→ −A
−1

HA
−1

is a linear transformation.

542 Problem Let V be a vector space and let S ⊆ V. The
set S is said to be convex if ∀α ∈ [0; 1], ∀x, y ∈ S,
(1 − α)x + αy ∈ S, that is, for any two points in S, the
straight line joining them also belongs to S. Let T : V → W

be a linear transformation from the vector space V to the
vector space W. Prove that T maps convex sets into convex
sets.

6.2 Kernel and Image of a Linear Transformation

543 Definition Let 〈V, +, ·, F〉 and 〈W, +, ·, F〉 be vector spaces over the same field F, and

T :
V → W

v 7→ T(v)

be a linear transformation. The kernel of T is the set

ker (T) = {v ∈ V : T(v) = 0W}.

The image of T is the set

Im (T) = {w ∈ w : ∃v ∈ V such that T(v) = w} = T(V).

☞ Since T(0V) = 0W by Theorem 538, we have 0V ∈ ker (T) and 0W ∈ Im (T).
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544 Theorem Let 〈V, +, ·, F〉 and 〈W, +, ·, F〉 be vector spaces over the same field F, and

T :
V → W

v 7→ T(v)

be a linear transformation. Then ker (T) is a vector subspace of V and Im (T) is a vector subspace of W.

Proof: Let (v1, v2) ∈ (ker (T))2 and α ∈ F. Then T(v1) = T(v2) = 0V. We must prove that
v1 + αv2 ∈ ker (T), that is, that T(v1 + αv2) = 0W. But

T(v1 + αv2) = T(v1) + αT(v2) = 0V + α0V = 0V

proving that ker (T) is a subspace of V.

Now, let (w1, w2) ∈ (Im (T))2 and α ∈ F. Then ∃(v1, v2) ∈ V2 such that T(v1) = w1 and
T(v2) = w2. We must prove that w1 +αw2 ∈ Im (T), that is, that ∃v such that T(v) = w1 +αw2.
But

w1 + αw2 = T(v1) + αT(v2) = T(v1 + αv2),

and so we may take v = v1 + αv2. This proves that Im (T) is a subspace of W.

❑

545 Theorem Let 〈V, +, ·, F〉 and 〈W, +, ·, F〉 be vector spaces over the same field F, and

T :
V → W

v 7→ T(v)

be a linear transformation. Then T is injective if and only if ker (T) = 0V .

Proof: Assume that T is injective. Then there is a unique x ∈ V mapping to 0W:

T(x) = 0W.

By Theorem 538, T(0V) = 0W, i.e., a linear transformation takes the zero vector of one space to
the zero vector of the target space, and so we must have x = 0V.

Conversely, assume that ker (T) = {0V}, and that T(x) = T(y). We must prove that x = y. But

T(x) = T(y) =⇒ T(x) − T(y) = 0W

=⇒ T(x − y) = 0W

=⇒ (x − y) ∈ ker (T)

=⇒ x − y = 0V

=⇒ x = y,

as we wanted to shew. ❑
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546 Theorem (Dimension Theorem) Let 〈V, +, ·, F〉 and 〈W, +, ·, F〉 be vector spaces of finite dimension over the
same field F, and

T :
V → W

v 7→ T(v)

be a linear transformation. Then
dimker (T) + dim Im (T) = dim V.

Proof: Let {v1, v2, . . . , vk} be a basis for ker (T). By virtue of Theorem 511, we may extend
this to a basis A = {v1, v2, . . . , vk, vk+1, vk+2, . . . , vn} of V. Here n = dim V. We will now shew
that B = {T(vk+1), T(vk+2), . . . , T(vn)} is a basis for Im (T). We prove that (i) B spans Im (T),
and (ii) B is a linearly independent family.

Let w ∈ Im (T). Then ∃v ∈ V such that T(v) = w. Now since A is a basis for V we can write

v =

n∑

i=1

αivi.

Hence

w = T(v) =

n∑

i=1

αiT(vi) =

n∑

i=k+1

αiT(vi),

since T(vi) = 0V for 1 ≤ i ≤ k. Thus B spans Im (T).

To prove the linear independence of the B assume that

0W =

n∑

i=k+1

βiT(vi) = T

 
n∑

i=k+1

βivi

!
.

This means that
∑n

i=k+1 βivi ∈ ker (T), which is impossible unless βk+1 = βk+2 = · · · = βn = 0F.

❑

547 Corollary If dim V = dim W < +∞, then T is injective if and only if it is surjective.

Proof: Simply observe that if T is injective then dimker (T) = 0, and if T is surjective Im (T) =

T(V) = W and Im (T) = dim W. ❑

548 Example Let

L :
M2(R) → M2(R)

A 7→ AT − A

.

Observe that L is linear. Determine ker (L) and Im (L) .

Solution: Put A =

2664a b

c d

3775 and assume L(A) = 02. Then26640 0

0 0

3775 = L(A) =

2664a c

b d

3775−

2664a b

c d

3775 = (c − b)

2664 0 1

−1 0

3775 .
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This means that c = b. Thus

ker (L) =






2664a b

b d

3775 : (a, b, d) ∈ R3





,

Im (L) =






2664 0 k

−k 0

3775 : k ∈ R





.

This means that dimker (L) = 3, and so dim Im (L) = 4 − 3 = 1.

549 Example Consider the linear transformation L : M2(R) → R3[X] given by

L

2664a b

c d

3775 = (a + b)X2 + (a − b)X3.

Determine ker (L) and Im (L).

Solution: We have

0 = L

2664a b

c d

3775 = (a + b)X2 + (a − b)X3
=⇒ a + b = 0, a − b = 0, =⇒ a = b = 0.

Thus

ker (L) =






26640 0

c d

3775 : (c, d) ∈ R2





.

Thus dimker (L) = 2 and hence dim Im (L) = 2. Now

(a + b)X2 + (a − b)X3
=⇒ a(X2 + X3) + b(X2 − X3).

Clearly X2 + X3, and X2 − X3 are linearly independent and span Im (L). Thus

Im (L) = span
�
X2 + X3, X2 − X3

�
.

550 Problem In problem 539 we saw that L : R3 → R3,

L

2666664x

y

z

3777775 =

2666664x − y − z

x + y + z

z

3777775
is linear. Determine ker (L) and Im (L).

551 Problem Let

L :
R3 → R4

a 7→ L(a)

satisfy

L

26666641

0

0

3777775 =

26666666664 1

0

−1

0

37777777775 ; L

26666641

1

0

3777775 =

26666666664 2

−1

0

0

37777777775 ; L

26666640

0

1

3777775 =

26666666664 1

−1

1

0

37777777775 .

Determine ker (L) and Im (L).
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552 Problem It is easy to see that L : R2 → R3 ,

L

264x

y

375 =

2666664x + 2y

x + 2y

0

3777775
is linear. Determine ker (L) and Im (L).

553 Problem It is easy to see that L : R2 → R3 ,

L

264x

y

375 =

2666664x − y

x + y

0

3777775
is linear. Determine ker (T) and Im (T).

554 Problem It is easy to see that L : R3 → R2 ,

L

2666664x

y

z

3777775 =

264x − y − z

y − 2z

375
is linear. Determine ker (L) and Im (L).

555 Problem Let

L :
M2(R) → R

A 7→ tr (A)

.

Determine ker (L) and Im (L).

556 Problem 1. Demonstrate that

L :
M2(R) → M2(R)

A 7→ A
T

+ A

is a linear transformation.

2. Find a basis for ker (L) and find dimker (L)

3. Find a basis for Im (L) and find dim Im (L).

557 Problem Let V be an n-dimensional vector space, where
the characteristic of the underlying field is different from 2.
A linear transformation T : V → V is idempotent if T2 = T .
Prove that if T is idempotent, then

➊ I − T is idempotent (I is the identity function).

➋ I + T is invertible.

➌ ker (T) = Im (I − T)
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6.3 Matrix Representation

Let V, W be two vector spaces over the same field F. Assume that dim V = m and {vi}i∈[1;m] is an ordered basis
for V, and that dim W = n and A = {wi}i∈[1;n] an ordered basis for W. Then

L(v1) = a11w1 + a21w2 + · · · + an1wn =

266666666664
a11

a21

...

an1

377777777775
A

L(v2) = a12w1 + a22w2 + · · · + an2wn =

266666666664
a12

a22

...

an2

377777777775
A

...
...

...
...

...

L(vm) = a1mw1 + a2mw2 + · · · + anmwn =

266666666664
a1n

a2n

...

anm

377777777775
A

.

558 Definition The n × m matrix

ML =

266666666664
a11 a12 · · · a1n

a21 a12 · · · a2n

...
...

...
...

an1 an2 · · · anm

377777777775
formed by the column vectors above is called the matrix representation of the linear map L with respect to the
bases {vi}i∈[1;m], {wi}i∈[1;n].

559 Example Consider L : R3 → R3,

L

26666664x

y

z

37777775 =

26666664x − y − z

x + y + z

z

37777775 .

Clearly L is a linear transformation.

1. Find the matrix corresponding to L under the standard ordered basis.
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2. Find the matrix corresponding to L under the ordered basis

266666641

0

0

37777775 ,

266666641

1

0

37777775 ,

266666641

0

1

37777775 , for both the domain and the

image of L.

Solution:

1. Solution: The matrix will be a 3 × 3 matrix. We have L

266666641

0

0

37777775 =

266666641

1

0

37777775, L

266666640

1

0

37777775 =

26666664−1

1

0

37777775, and L

266666640

0

1

37777775 =

26666664−1

1

1

37777775,

whence the desired matrix is 266666641 −1 −1

1 1 1

0 0 1

37777775 .

2. Call this basis A . We have

L

266666641

0

0

37777775 =

266666641

1

0

37777775 = 0

266666641

0

0

37777775+ 1

266666641

1

0

37777775+ 0

266666641

0

1

37777775 =

266666640

1

0

37777775
A

,

L

266666641

1

0

37777775 =

266666640

2

0

37777775 = −2

266666641

0

0

37777775+ 2

266666641

1

0

37777775+ 0

266666641

0

1

37777775 =

26666664−2

2

0

37777775
A

,

and

L

266666641

0

1

37777775 =

266666640

2

1

37777775 = −3

266666641

0

0

37777775+ 2

266666641

1

0

37777775+ 1

266666641

0

1

37777775 =

26666664−3

2

1

37777775
A

,

whence the desired matrix is 266666640 −2 −3

1 2 2

0 0 1

37777775 .

560 Example Let Rn[x] denote the set of polynomials with real coefficients with degree at most n.
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1. Prove that

L :
R3[x] → R1[x]

p(x) 7→ p ′′(x)

is a linear transformation. Here p ′′(x) denotes the second derivative of p(x) with respect to x.

2. Find the matrix of L using the ordered bases {1, x, x2, x3} for R3[x] and {1, x} for R2[x].

3. Find the matrix of L using the ordered bases {1, x, x2, x3} for R3[x] and {1, x + 2} for R1[x].

4. Find a basis for ker (L) and find dimker (L).

5. Find a basis for Im (L) and find dim Im (L).

Solution:

1. Let (p(x), q(x)) ∈ (R3[x])2 and α ∈ R. Then

L(p(x) + αq(x)) = (p(x) + αq(x)) ′′ = p ′′(x) + αq ′′(x) = L(p(x)) + αL(q(x)),

whence L is linear.

2. We have

L(1) =
d2

dx2
1 = 0 = 0(1) + 0(x) =

26640

0

3775 ,

L(x) =
d2

dx2
x = 0 = 0(1) + 0(x) =

26640

0

3775 ,

L(x2) =
d2

dx2
x2 = 2 = 2(1) + 0(x) =

26642

0

3775 ,

L(x3) =
d2

dx2
x3 = 6x = 0(1) + 6(x) =

26640

6

3775 ,

whence the matrix representation of L under the standard basis is26640 0 2 0

0 0 0 6

3775 .
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3. We have

L(1) =
d2

dx2
1 = 0 = 0(1) + 0(x + 2) =

26640

0

3775 ,

L(x) =
d2

dx2
x = 0 = 0(1) + 0(x + 2) =

26640

0

3775 ,

L(x2) =
d2

dx2
x2 = 2 = 2(1) + 0(x + 2) =

26642

0

3775 ,

L(x3) =
d2

dx2
x3 = 6x = −12(1) + 6(x + 2) =

2664−12

6

3775 ,

whence the matrix representation of L under the standard basis is26640 0 2 −12

0 0 0 6

3775 .

4. Assume that p(x) = a + bx + cx2 + dx3 ∈ ker (L). Then

0 = L(p(x)) = 2c + 6dx, ∀x ∈ R.

This means that c = d = 0. Thus a, b are free and

ker (L) = {a + bx : (a, b) ∈ R2}.

Hence dimker (L) = 2.

5. By the Dimension Theorem, dim Im (L) = 4 − 2 = 2. Put q(x) = α + βx + γx2 + δx3. Then

L(q(x)) = 2γ + 6δ(x) = (2γ)(1) + (6δ)(x).

Clearly {1, x} are linearly independent and span Im (L). Hence

Im (L) = span (1, x) = R1[x].

561 Example 1. A linear transformation T : R3 → R3 is such that

T(i) =

266666642

1

1

37777775 ; T(j) =

26666664 3

0

−1

37777775 .

It is known that
Im (T) = span (T(i), T(j))

and that

ker (T) = span

0BBBBBB�26666664 1

2

−1

377777751CCCCCCA .
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Argue that there must be λ and µ such that

T(k) = λT(i) + µT(j).

2. Find λ and µ, and hence, the matrix representing T under the standard ordered basis.

Solution:

1. Since T(k) ∈ Im (T) and Im (T) is generated by T(i) and T(k) there must be (λ, µ) ∈ R2 with

T(k) = λT(i) + µT(j) = λ

266666642

1

1

37777775+ µ

26666664 3

0

−1

37777775 =

266666642λ + 3µ

λ

λ − µ

37777775 .

2. The matrix of T is �
T(i) T(j) T(k)

�
=

266666642 3 2λ + 3µ

1 0 λ

1 −1 λ − µ

37777775 .

Since

26666664 1

2

−1

37777775 ∈ ker (T) we must have266666642 3 2λ + 3µ

1 0 λ

1 −1 λ − µ

37777775 26666664 1

2

−1

37777775 =

266666640

0

0

37777775 .

Solving the resulting system of linear equations we obtain λ = 1, µ = 2. The required matrix is thus266666642 3 8

1 0 1

1 −1 −1

37777775 .

☞ If the linear mapping L : V → W, dim V = n, dim W = m has matrix representation
A ∈ Mm×n(F), then dim Im (L) = rank (A).

562 Problem 1. A linear transformation T : R3 → R3 has
as image the plane with equation x + y + z = 0 and as

kernel the line x = y = z. If

T

26666641

1

2

3777775 =

2666664a

0

1

3777775 , T

26666642

1

1

3777775 =

2666664 3

b

−5

3777775 , T

26666641

2

1

3777775 =

2666664−1

2

c

3777775 .



132 Chapter 6

Find a, b, c.

2. Find the matrix representation of T under the standard
basis.

563 Problem 1. Prove that T : R2 → R3

T

264x

y

375 =

2666664 x + y

x − y

2x + 3y

3777775
is a linear transformation.

2. Find a basis for ker (T) and find dimker (T)

3. Find a basis for Im (T) and find dim Im (T).

4. Find the matrix of T under the ordered bases A =






2641

2

375 ,

2641

3

375



of R2 and B =






26666641

1

1

3777775 ,

2666664 1

0

−1

3777775 ,

26666640

1

0

3777775




of R3 .

564 Problem Let

L :
R3 → R2

a 7→ L(a)

,

where

L

2666664x

y

z

3777775 =

264x + 2y

3x − z

375 .

Clearly L is linear. Find a matrix representation for L if

1. The bases for both R3 and R2 are both the standard
ordered bases.

2. The ordered basis for R3 is

26666641

0

0

3777775 ,

26666641

1

0

3777775 ,

26666641

1

1

3777775 and R2 has

the standard ordered basis .

3. The ordered basis for R3 is

26666641

0

0

3777775 ,

26666641

1

0

3777775 ,

26666641

1

1

3777775 and the

ordered basis for R2 is A =






2641

0

375 ,

2641

1

375



.

565 Problem A linear transformation T : R2 → R2 satisfies

ker (T) = Im (T), and T

2641

1

375 =

2642

3

375. Find the matrix repre-

senting T under the standard ordered basis.

566 Problem Find the matrix representation for the linear
map

L :
M2(R) → R

A 7→ tr (A)

,

under the standard basis

A =






2641 0

0 0

375 ,

2640 1

0 0

375 ,

2640 0

1 0

375 ,

2640 0

0 1

375




for M2(R).

567 Problem Let A ∈ Mn×p(R), B ∈ Mp×q(R), and
C ∈ Mq×r(R), be such that rank (B) = rank (AB). Shew
that

rank (BC) = rank (ABC) .
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Determinants

7.1 Permutations

568 Definition Let S be a finite set with n ≥ 1 elements. A permutation is a bijective function τ : S → S. It is
easy to see that there are n! permutations from S onto itself.

Since we are mostly concerned with the action that τ exerts on S rather than with the particular names of the
elements of S, we will take S to be the set S = {1, 2, 3, . . . , n}. We indicate a permutation τ by means of the
following convenient diagram

τ =

2664 1 2 · · · n

τ(1) τ(2) · · · τ(n)

3775 .

569 Definition The notation Sn will denote the set of all permutations on {1, 2, 3, . . . , n}. Under this notation, the
composition of two permutations (τ, σ) ∈ S2

n is

τ ◦ σ =

2664 1 2 · · · n

τ(1) τ(2) · · · τ(n)

3775 ◦

2664 1 2 · · · n

σ(1) σ(2) · · · σ(n)

3775
=

2664 1 2 · · · n

(τ ◦ σ)(1) (τ ◦ σ)(2) · · · (τ ◦ σ)(n)

3775 .

The k-fold composition of τ is
τ ◦ · · · ◦ τ︸ ︷︷ ︸

k compositions

= τk.

☞ We usually do away with the ◦ and write τ ◦ σ simply as τσ. This “product of permutations”
is thus simply function composition.

Given a permutation τ : S → S, since τ is bijective,

τ−1 : S → S

exists and is also a permutation. In fact if

τ =

2664 1 2 · · · n

τ(1) τ(2) · · · τ(n)

3775 ,

133
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then

τ−1 =

2664τ(1) τ(2) · · · τ(n)

1 2 · · · n

3775 .

1

2 3

Figure 7.1: S3 are rotations and reflexions.

570 Example The set S3 has 3! = 6 elements, which are given below.

1. Id : {1, 2, 3} → {1, 2, 3} with

Id =

26641 2 3

1 2 3

3775 .

2. τ1 : {1, 2, 3} → {1, 2, 3} with

τ1 =

26641 2 3

1 3 2

3775 .

3. τ2 : {1, 2, 3} → {1, 2, 3} with

τ2 =

26641 2 3

3 2 1

3775 .

4. τ3 : {1, 2, 3} → {1, 2, 3} with

τ3 =

26641 2 3

2 1 3

3775 .

5. σ1 : {1, 2, 3} → {1, 2, 3} with

σ1 =

26641 2 3

2 3 1

3775 .

6. σ2 : {1, 2, 3} → {1, 2, 3} with

σ2 =

26641 2 3

3 1 2

3775 .
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571 Example The compositions τ1 ◦ σ1 and σ1 ◦ τ1 can be found as follows.

τ1 ◦ σ1 =

26641 2 3

1 3 2

3775 ◦

26641 2 3

2 3 1

3775 =

26641 2 3

3 2 1

3775 = τ2.

(We read from right to left 1 → 2 → 3 (“1 goes to 2, 2 goes to 3, so 1 goes to 3”), etc. Similarly

σ1 ◦ τ1 =

26641 2 3

2 3 1

3775 ◦

26641 2 3

1 3 2

3775 =

26641 2 3

2 1 3

3775 = τ3.

Observe in particular that σ1 ◦ τ1 6= τ1 ◦ σ1. Finding all the other products we deduce the following “multiplication
table” (where the “multiplication” operation is really composition of functions).

◦ Id τ1 τ2 τ3 σ1 σ2

Id Id τ1 τ2 τ3 σ1 σ2

τ1 τ1 Id σ1 σ2 τ2 τ3

τ2 τ2 σ2 Id σ1 τ3 τ1

τ3 τ3 σ1 σ2 Id τ1 τ2

σ2 σ2 τ2 τ3 τ1 Id σ1

σ1 σ1 τ3 τ1 τ2 σ2 Id

The permutations in example 570 can be conveniently interpreted as follows. Consider an equilateral triangle
with vertices labelled 1, 2 and 3, as in figure 7.1. Each τa is a reflexion (“flipping”) about the line joining the vertex
a with the midpoint of the side opposite a. For example τ1 fixes 1 and flips 2 and 3. Observe that two successive
flips return the vertices to their original position and so (∀a ∈ {1, 2, 3})(τ2

a = Id ). Similarly, σ1 is a rotation of
the vertices by an angle of 120◦. Three successive rotations restore the vertices to their original position and so
σ3

1 = Id .

572 Example To find τ−1
1 take the representation of τ1 and exchange the rows:

τ−1
1 =

26641 3 2

1 2 3

3775 .

This is more naturally written as

τ−1
1 =

26641 2 3

1 3 2

3775 .

Observe that τ−1
1 = τ1.
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573 Example To find σ−1
1 take the representation of σ1 and exchange the rows:

σ−1
1 =

26642 3 1

1 2 3

3775 .

This is more naturally written as

σ−1
1 =

26641 2 3

3 1 2

3775 .

Observe that σ−1
1 = σ2.

7.2 Cycle Notation

We now present a shorthand notation for permutations by introducing the idea of a cycle. Consider in S9 the
permutation

τ =

26641 2 3 4 5 6 7 8 9

2 1 3 6 9 7 8 4 5

3775 .

We start with 1. Since 1 goes to 2 and 2 goes back to 1, we write (12). Now we continue with 3. Since 3 goes to 3,
we write (3). We continue with 4. As 4 goes 6, 6 goes to 7, 7 goes 8, and 8 goes back to 4, we write (4678). We
consider now 5 which goes to 9 and 9 goes back to 5, so we write (59). We have written τ as a product of disjoint
cycles

τ = (12)(3)(4678)(59).

This prompts the following definition.

574 Definition Let l ≥ 1 and let i1, . . . , il ∈ {1, 2, . . . n} be distinct. We write (i1 i2 . . . il) for the element
σ ∈ Sn such that σ(ir) = ir+1, 1 ≤ r < l, σ(il) = i1 and σ(i) = i for i 6∈ {i1, . . . , il}. We say that (i1 i2 . . . il)

is a cycle of length l. The order of a cycle is its length. Observe that if τ has order l then τl = Id .

☞ Observe that (i2 . . . il i1) = (i1 . . . il) etc., and that (1) = (2) = · · · = (n) = Id . In fact,
we have

(i1 . . . il) = (j1 . . . jm)

if and only if (1) l = m and if (2) l > 1: ∃a such that ∀k: ik = jk+a mod l. Two cycles (i1, . . . , il)

and (j1, . . . , jm) are disjoint if {i1, . . . , il} ∩ {j1, . . . , jm} = ∅. Disjoint cycles commute and if
τ = σ1σ2 · · · σt is the product of disjoint cycles of length l1, l2, . . . , lt respectively, then τ has
order

lcm (l1, l2, . . . , lt) .

575 Example A cycle decomposition for α ∈ S9,

α =

26641 2 3 4 5 6 7 8 9

1 8 7 6 2 3 4 5 9

3775
is

(285)(3746).

The order of α is lcm (3, 4) = 12.
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576 Example The cycle decomposition β = (123)(567) in S9 arises from the permutation

β =

26641 2 3 4 5 6 7 8 9

2 3 1 4 6 7 5 8 9

3775 .

Its order is lcm (3, 3) = 3.

577 Example Find a shuffle of a deck of 13 cards that requires 42 repeats to return the cards to their original order.

Solution: Here is one (of many possible ones). Observe that 7 + 6 = 13 and 7 × 6 = 42. We take the permutation

(1 2 3 4 5 6 7)(8 9 10 11 12 13)

which has order 42. This corresponds to the following shuffle: For

i ∈ {1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12},

take the ith card to the (i + 1)th place, take the 7th card to the first position and the 13th card to the 8th position.
Query: Of all possible shuffles of 13 cards, which one takes the longest to restitute the cards to their original position?

578 Example Let a shuffle of a deck of 10 cards be made as follows: The top card is put at the bottom, the deck is
cut in half, the bottom half is placed on top of the top half, and then the resulting bottom card is put on top. How
many times must this shuffle be repeated to get the cards in the initial order? Explain.

Solution: Putting the top card at the bottom corresponds to26641 2 3 4 5 6 7 8 9 10

2 3 4 5 6 7 8 9 10 1

3775 .

Cutting this new arrangement in half and putting the lower half on top corresponds to26641 2 3 4 5 6 7 8 9 10

7 8 9 10 1 2 3 4 5 6

3775 .

Putting the bottom card of this new arrangement on top corresponds to26641 2 3 4 5 6 7 8 9 10

6 7 8 9 10 1 2 3 4 5

3775 = (1 6)(2 7)(3 8)(4 9)(5 10).

The order of this permutation is lcm(2, 2, 2, 2, 2) = 2, so in 2 shuffles the cards are restored to their original position.
The above examples illustrate the general case, given in the following theorem.

579 Theorem Every permutation in Sn can be written as a product of disjoint cycles.

Proof: Let τ ∈ Sn, a1 ∈ {1, 2, . . . , n}. Put τk(a1) = ak+1, k ≥ 0. Let a1, a2, . . . , as

be the longest chain with no repeats. Then we have τ(as) = a1. If the {a1, a2, . . . , as} ex-
haust {1, 2, . . . , n} then we have τ = (a1 a2 . . . as). If not, there exist b1 ∈ {1, 2, . . . , n} \

{a1, a2, . . . , as}. Again, we find the longest chain of distinct b1, b2, . . . , bt such that τ(bk) =

bk+1, k = 1, . . . , t − 1 and τ(bt) = b1. If the {a1, a2, . . . , as, b1, b2, . . . , bt} exhaust all the
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{1, 2, . . . , n} we have τ = (a1 a2 . . . as)(b1 b2 . . . bt). If not we continue the process and
find

τ = (a1 a2 . . . as)(b1 b2 . . . bt)(c1 . . .) . . . .

This process stops because we have only n elements. ❑

580 Definition A transposition is a cycle of length 2.1

581 Example The cycle (23468) can be written as a product of transpositions as follows

(23468) = (28)(26)(24)(23).

Notice that this decomposition as the product of transpositions is not unique. Another decomposition is

(23468) = (23)(34)(46)(68).

582 Lemma Every permutation is the product of transpositions.

Proof: It is enough to observe that

(a1 a2 . . . as) = (a1 as)(a1 as−1) · · · (a1 a2)

and appeal to Theorem 579. ❑

Let σ ∈ Sn and let (i, j) ∈ {1, 2, . . . , n}2, i 6= j. Since σ is a permutation, ∃(a, b) ∈ {1, 2, . . . , n}2, a 6= b, such
that σ(j) − σ(i) = b − a. This means that������ ∏

1≤i<j≤n

σ(i) − σ(j)

i − j

������ = 1.

583 Definition Let σ ∈ Sn. We define the sign sgn(σ) of σ as

sgn(σ) =
∏

1≤i<j≤n

σ(i) − σ(j)

i − j
= (−1)σ.

If sgn(σ) = 1, then we say that σ is an even permutation, and if sgn(σ) = −1 we say that σ is an odd permutation.

☞ Notice that in fact
sgn(σ) = (−1)I(σ),

where I(σ) = #{(i, j) | 1 ≤ i < j ≤ n and σ(i) > σ(j)}, i.e., I(σ) is the number of inversions that σ

effects to the identity permutation Id .

584 Example The transposition (1 2) has one inversion.

585 Lemma For any transposition (k l) we have sgn((k l)) = −1.

Proof: Let τ be transposition that exchanges k and l, and assume that k < l:

τ =

26641 2 . . . k − 1 k k + 1 . . . l − 1 l l + 1 . . . n

1 2 . . . k − 1 l k + 1 . . . l − 1 k l + 1 . . . n

3775
Let us count the number of inversions of τ:

1A cycle of length 2 should more appropriately be called a bicycle.



Cycle Notation 139� The pairs (i, j) with i ∈ {1, 2, . . . , k − 1}∪ {l, l+ 1, . . . , n} and i < j do not suffer an inversion;� The pair (k, j) with k < j suffers an inversion if and only if j ∈ {k + 1, k + 2, . . . , l}, making
l − k inversions;� If i ∈ {k + 1, k + 2, . . . , l − 1} and i < j, (i, j) suffers an inversion if and only if j = l, giving
l − 1 − k inversions.

This gives a total of I(τ) = (l−k)+(l−1−k) = 2(l−k−1)+1 inversions when k < l. Since this
number is odd, we have sgn(τ) = (−1)I(τ) = −1. In general we see that the transposition (k l)

has 2|k − l| − 1 inversions. ❑

586 Theorem Let (σ, τ) ∈ S2
n. Then

sgn(τσ) = sgn(τ)sgn(σ).

Proof: We have

sgn(στ) =
∏

1≤i<j≤n
(στ)(i)−(στ)(j)

i−j

=
�∏

1≤i<j≤n
σ(τ(i))−σ(τ(j))

τ(i)−τ(j)

�
·
�∏

1≤i<j≤n
τ(i)−τ(j)

i−j

�
.

The second factor on this last equality is clearly sgn(τ), we must shew that the first factor is
sgn(σ). Observe now that for 1 ≤ a < b ≤ n we have

σ(a) − σ(b)

a − b
=

σ(b) − σ(a)

b − a
.

Since σ and τ are permutations, ∃b 6= a, τ(i) = a, τ(j) = b and so στ(i) = σ(a), στ(j) = b. Thus

σ(τ(i)) − σ(τ(j))

τ(i) − τ(j)
=

σ(a) − σ(b)

a − b

and so
∏

1≤i<j≤n

σ(τ(i)) − σ(τ(j))

τ(i) − τ(j)
=

∏

1≤a<b≤n

σ(a) − σ(b)

a − b
= sgn(σ).

❑

587 Corollary The identity permutation is even. If τ ∈ Sn, then sgn(τ) = sgn(τ−1).

Proof: Since there are no inversions in Id , we have sgn(Id ) = (−1)0 = 1. Since ττ−1 = Id ,

we must have 1 = sgn(Id ) = sgn(ττ−1) = sgn(τ)sgn(τ−1) = (−1)τ(−1)τ−1

by Theorem 586.
Since the values on the righthand of this last equality are ±1, we must have sgn(τ) = sgn(τ−1).
❑

588 Lemma We have sgn(1 2 . . . l)) = (−1)l−1.

Proof: Simply observe that the number of inversions of (1 2 . . . l) is l − 1. ❑

589 Lemma Let (τ, (i1 . . . il) ∈ S2
n. Then

τ(i1 . . . il)τ
−1 = (τ(i1) . . . τ(il)),

and if σ ∈ Sn is a cycle of length l then
sgn(σ) = (−1)l−1

.
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Proof: For 1 ≤ k < l we have (τ(i1 . . . il)τ
−1)(τ(ik)) = τ((i1 . . . il)(ik)) = τ(ik+1).

On a (τ(i1 . . . il)τ
−1)(τ(il)) = τ((i1 . . . il)(il)) = τ(i1). For i 6∈ {τ(i1) . . . τ(il)} we have

τ−1(i) 6∈ {i1 . . . il} whence (i1 . . . il)(τ
−1(i)) = τ−1(i) etc.

Furthermore, write σ = (i1 . . . il). Let τ ∈ Sn be such that τ(k) = ik for 1 ≤ k ≤ l. Then
σ = τ(1 2 . . . l)τ−1 and so we must have sgn(σ) = sgn(τ)sgn((1 2 . . . l))sgn(τ−1), which equals
sgn((1 2 . . . l)) by virtue of Theorem 586 and Corollary 587. The result now follows by appealing
to Lemma 588 ❑

590 Corollary Let σ = σ1σ2 · · · σr be a product of disjoint cycles, each of length l1, . . . , lr, respectively. Then

sgn(σ) = (−1)
∑

r

i=1
(li−1).

Hence, the product of two even permutations is even, the product of two odd permutations is even, and the product
of an even permutation and an odd permutation is odd.

Proof: This follows at once from Theorem 586 and Lemma 589. ❑

591 Example The cycle (4678) is an odd cycle; the cycle (1) is an even cycle; the cycle (12345) is an even cycle.

592 Corollary Every permutation can be decomposed as a product of transpositions. This decomposition is not
necessarily unique, but its parity is unique.

Proof: This follows from Theorem 579, Lemma 582, and Corollary 590. ❑

593 Example (The 15 puzzle) Consider a grid with 16 squares, as shewn in (7.1), where 15 squares are numbered
1 through 15 and the 16th slot is empty.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

(7.1)

In this grid we may successively exchange the empty slot with any of its neighbours, as for example

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

. (7.2)

We ask whether through a series of valid moves we may arrive at the following position.

1 2 3 4

5 6 7 8

9 10 11 12

13 15 14

(7.3)
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Solution: Let us shew that this is impossible. Each time we move a square to the empty position, we make
transpositions on the set {1, 2, . . . , 16}. Thus at each move, the permutation is multiplied by a transposition and
hence it changes sign. Observe that the permutation corresponding to the square in (7.3) is (14 15) (the positions
14th and 15th are transposed) and hence it is an odd permutation. But we claim that the empty slot can only return
to its original position after an even permutation. To see this paint the grid as a checkerboard:

B R B R

R B R B

B R B R

R B R B

(7.4)

We see that after each move, the empty square changes from black to red, and thus after an odd number of moves
the empty slot is on a red square. Thus the empty slot cannot return to its original position in an odd number of
moves. This completes the proof.

594 Problem Decompose the permutation2641 2 3 4 5 6 7 8 9

2 3 4 1 5 8 6 7 9

375 as a product of disjoint cycles and find its order.

7.3 Determinants

There are many ways of developing the theory of determinants. We will choose a way that will allow us to deduce
the properties of determinants with ease, but has the drawback of being computationally cumbersome. In the next
section we will shew that our way of defining determinants is equivalent to a more computationally friendly one.

It may be pertinent here to quickly review some properties of permutations. Recall that if σ ∈ Sn is a cycle of
length l, then its signum sgn(σ) = ±1 depending on the parity of l − 1. For example, in S7,

σ = (1 3 4 7 6)

has length 5, and the parity of 5 − 1 = 4 is even, and so we write sgn(σ) = +1. On the other hand,

τ = (1 3 4 7 6 5)

has length 6, and the parity of 6 − 1 = 5 is odd, and so we write sgn(τ) = −1.

Recall also that if (σ, τ) ∈ S2
n, then

sgn(τσ) = sgn(τ)sgn(σ).

Thus from the above two examples
στ = (1 3 4 7 6)(1 3 4 7 6 5)

has signum sgn(σ)sgn(τ) = (+1)(−1) = −1. Observe in particular that for the identity permutation Id ∈ Sn

we have sgn(Id ) = +1.

595 Definition Let A ∈ Mn(F), A = [aij] be a square matrix. The determinant of A is defined and denoted by
the sum

det A =
∑

σ∈Sn

sgn(σ)a1σ(1)a2σ(2) · · · anσ(n).
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☞ The determinantal sum has n! summands.

596 Example If n = 1, then S1 has only one member, Id , where Id (1) = 1. Since Id is an even permutation,
sgn(Id ) = (+1) Thus if A = (a11), then

det A = a11

.

597 Example If n = 2, then S2 has 2! = 2 members, Id and σ = (1 2). Observe that sgn(σ) = −1. Thus if

A =

2664a11 a12

a21 a22

3775
then

det A = sgn(Id )a1Id (1)a2Id (2) + sgn(σ)a1σ(1)a2σ(2) = a11a22 − a12a21.

598 Example From the above formula for 2 × 2 matrices it follows that

det A = det

26641 2

3 4

3775
= (1)(4) − (3)(2) = −2,

det B = det

2664−1 2

3 4

3775 (−1)(4) − (3)(2)

= −10,

and

det(A + B) = det

26640 4

6 8

3775 = (0)(8) − (6)(4) = −24.

Observe in particular that det(A + B) 6= det A + det B.

599 Example If n = 3, then S2 has 3! = 6 members:

Id , τ1 = (2 3), τ2 = (1 3), τ3 = (1 2), σ1 = (1 2 3), σ2 = (1 3 2).

. Observe that Id , σ1, σ2 are even, and τ1, τ2, τ3 are odd. Thus if

A =

26666664a11 a12 a13

a21 a22 a23

a31 a32 a33

37777775
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then

det A = sgn(Id )a1Id (1)a2Id (2)a3Id (3) + sgn(τ1)a1τ1(1)a2τ1(2)a3τ1(3)

+sgn(τ2)a1τ2(1)a2τ2(2)a3τ2(3) + sgn(τ3)a1τ3(1)a2τ3(2)a3τ3(3)

+sgn(σ1)a1σ1(1)a2σ1(2)a3σ1(3) + sgn(σ2)a1σ2(1)a2σ2(2)a3σ2(3)

= a11a22a33 − a11a23a32 − a13a22a31

−a13a21a33 + a12a23a31 + a13a21a32.

600 Theorem (Row-Alternancy of Determinants) Let A ∈ Mn(F), A = [aij]. If B ∈ Mn(F), B = [bij] is the
matrix obtained by interchanging the s-th row of A with its t-th row, then det B = − det A.

Proof: Let τ be the transposition

τ =

2664 s t

τ(t) τ(s)

3775 .

Then στ(a) = σ(a) for a ∈ {1, 2, . . . , n} \ {s, t}. Also, sgn(στ) = sgn(σ)sgn(τ) = −sgn(σ). As σ

ranges through all permutations of Sn, so does στ, hence

det B =
∑

σ∈Sn
sgn(σ)b1σ(1)b2σ(2) · · · bsσ(s) · · · btσ(t) · · · bnσ(n)

=
∑

σ∈Sn
sgn(σ)a1σ(1)a2σ(2) · · · ast · · · ats · · · anσ(n)

= −
∑

σ∈Sn
sgn(στ)a1στ(1)a2στ(2) · · · asστ(s) · · · atστ(t) · · · anστ(n)

= −
∑

λ∈Sn
sgn(λ)a1λ(1)a2λ(2) · · · anλ(n)

= − det A.

❑

601 Corollary If A(r:k), 1 ≤ k ≤ n denote the rows of A and σ ∈ Sn, then

det

266666666664
A(r:σ(1))

A(r:σ(2))

...

A(r:σ(n))

377777777775 = (sgn(σ)) det A.

An analogous result holds for columns.

Proof: Apply the result of Theorem 600 multiple times. ❑

602 Theorem Let A ∈ Mn(F), A = [aij]. Then

det AT = det A.
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Proof: Let C = AT . By definition

det AT = det C

=
∑

σ∈Sn
sgn(σ)c1σ(1)c2σ(2) · · · cnσ(n)

=
∑

σ∈Sn
sgn(σ)aσ(1)1aσ(2)2 · · · aσ(n)n.

But the product aσ(1)1aσ(2)2 · · · aσ(n)n also appears in det A with the same signum sgn(σ), since
the permutation 2664σ(1) σ(2) · · · σ(n)

1 2 · · · n

3775
is the inverse of the permutation 2664 1 2 · · · n

σ(1) σ(2) · · · σ(n)

3775 .

❑

603 Corollary (Column-Alternancy of Determinants) Let A ∈ Mn(F), A = [aij]. If C ∈ Mn(F), C = [cij] is the
matrix obtained by interchanging the s-th column of A with its t-th column, then det C = − det A.

Proof: This follows upon combining Theorem 600 and Theorem 602. ❑

604 Theorem (Row Homogeneity of Determinants) Let A ∈ Mn(F), A = [aij] and α ∈ F. If B ∈ Mn(F), B =

[bij] is the matrix obtained by multiplying the s-th row of A by α, then

det B = α det A.

Proof: Simply observe that

sgn(σ)a1σ(1)a2σ(2) · · · αasσ(s) · · · anσ(n) = αsgn(σ)a1σ(1)a2σ(2) · · · asσ(s) · · · anσ(n).

❑

605 Corollary (Column Homogeneity of Determinants) If C ∈ Mn(F), C = (Cij) is the matrix obtained by mul-
tiplying the s-th column of A by α, then

det C = α det A.

Proof: This follows upon using Theorem 602 and Theorem 604. ❑

☞ It follows from Theorem 604 and Corollary 605 that if a row (or column) of a matrix consists
of 0Fs only, then the determinant of this matrix is 0F.

606 Example

det

26666664 x 1 a

x2 1 b

x3 1 c

37777775 = x det

26666664 1 1 a

x 1 b

x2 1 c

37777775 .
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607 Corollary
det(αA) = αn det A.

Proof: Since there are n columns, we are able to pull out one factor of α from each one. ❑

608 Example Recall that a matrix A is skew-symmetric if A = −AT . Let A ∈ M2001(R) be skew-symmetric.
Prove that det A = 0.

Solution: We have
det A = det(−AT ) = (−1)2001 det AT = − det A,

and so 2 det A = 0, from where det A = 0.

609 Lemma (Row-Linearity and Column-Linearity of Determinants) Let A ∈ Mn(F), A = [aij]. For a fixed row
s, suppose that asj = bsj + csj for each j ∈ [1; n]. Then

det

26666666666664
a11 a12 · · · a1n

a21 a22 · · · a2n

.

.

.

.

.

. · · ·

.

.

.

.

.

.

a(s−1)1
a(s−1)2

· · · a(s−1)n

bs1 + cs1 bs2 + cs2 · · · bsn + csn

a(s+1)1
a(s+1)2

· · · a(s+1)n

.

.

.

.

.

. · · ·

.

.

.

.

.

.

an1 an2 · · · ann

37777777777775
= det

26666666666664
a11 a12 · · · a1n

a21 a22 · · · a2n

.

.

.

.

.

. · · ·

.

.

.

.

.

.

a(s−1)1
a(s−1)2

· · · a(s−1)n

bs1 bs2 · · · bsn

a(s+1)1
a(s+1)2

· · · a(s+1)n

.

.

.

.

.

. · · ·

.

.

.

.

.

.

an1 an2 · · · ann

37777777777775
+ det

26666666666664
a11 a12 · · · a1n

a21 a22 · · · a2n

.

.

.

.

.

. · · ·

.

.

.

.

.

.

a(s−1)1
a(s−1)2

· · · a(s−1)n

cs1 cs2 · · · csn

a(s+1)1
a(s+1)2

· · · a(s+1)n

.

.

.

.

.

. · · ·

.

.

.

.

.

.

an1 an2 · · · ann

37777777777775.

An analogous result holds for columns.

Proof: Put

S =

26666666666664
a11 a12 · · · a1n

a21 a22 · · · a2n

.

.

.

.

.

. · · ·

.

.

.

.

.

.

a(s−1)1
a(s−1)2

· · · a(s−1)n

bs1 + cs1 bs2 + cs2 · · · bsn + csn

a(s+1)1
a(s+1)2

· · · a(s+1)n

.

.

.

.

.

. · · ·

.

.

.

.

.

.

an1 an2 · · · ann

37777777777775 ,
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T =

26666666666664
a11 a12 · · · a1n

a21 a22 · · · a2n

.

.

.

.

.

. · · ·

.

.

.

.

.

.

a(s−1)1
a(s−1)2

· · · a(s−1)n

bs1 bs2 · · · bsn

a(s+1)1
a(s+1)2

· · · a(s+1)n

.

.

.

.

.

. · · ·

.

.

.

.

.

.

an1 an2 · · · ann

37777777777775
and

U =

26666666666664
a11 a12 · · · a1n

a21 a22 · · · a2n

.

.

.

.

.

. · · ·

.

.

.

.

.

.

a(s−1)1
a(s−1)2

· · · a(s−1)n

cs1 cs2 · · · csn

a(s+1)1
a(s+1)2

· · · a(s+1)n

.

.

.

.

.

. · · ·

.

.

.

.

.

.

an1 an2 · · · ann

37777777777775 .

Then

det S =
∑

σ∈Sn
sgn(σ)a1σ(1)a2σ(2) · · · a(s−1)σ(s−1)(bsσ(s)

+csσ(s))a(s+1)σ(s+1) · · · anσ(n)

=
∑

σ∈Sn
sgn(σ)a1σ(1)a2σ(2) · · · a(s−1)σ(s−1)bsσ(s)a(s+1)σ(s+1) · · · anσ(n)

+
∑

σ∈Sn
sgn(σ)a1σ(1)a2σ(2) · · · a(s−1)σ(s−1)csσ(s)a(s+1)σ(s+1) · · · anσ(n)

= det T + det U.

By applying the above argument to AT , we obtain the result for columns.

❑

610 Lemma If two rows or two columns of A ∈ Mn(F), A = [aij] are identical, then det A = 0F.

Proof: Suppose asj = atj for s 6= t and for all j ∈ [1; n]. In particular, this means that for any
σ ∈ Sn we have asσ(t) = atσ(t) and atσ(s) = asσ(s). Let τ be the transposition

τ =

2664 s t

τ(t) τ(s)

3775 .

Then στ(a) = σ(a) for a ∈ {1, 2, . . . , n} \ {s, t}. Also, sgn(στ) = sgn(σ)sgn(τ) = −sgn(σ).
As σ runs through all even permutations, στ runs through all odd permutations, and viceversa.
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Therefore

detA =
∑

σ∈Sn
sgn(σ)a1σ(1)a2σ(2) · · · asσ(s) · · · atσ(t) · · · anσ(n)

=
∑

σ∈Sn

sgn(σ)=1

�
sgn(σ)a1σ(1)a2σ(2) · · · asσ(s) · · · atσ(t) · · · anσ(n)

+sgn(στ)a1στ(1)a2στ(2) · · · asστ(s) · · · atστ(t) · · · anστ(n)

�
=

∑
σ∈Sn

sgn(σ)=1

sgn(σ)
�
a1σ(1)a2σ(2) · · · asσ(s) · · · atσ(t) · · · anσ(n)

−a1σ(1)a2σ(2) · · · asσ(t) · · · atσ(s) · · · anσ(n)

�
=

∑
σ∈Sn

sgn(σ)=1

sgn(σ)
�
a1σ(1)a2σ(2) · · · asσ(s) · · · atσ(t) · · · anσ(n)

−a1σ(1)a2σ(2) · · · atσ(t) · · · asσ(s) · · · anσ(n)

�
= 0F.

Arguing on AT will yield the analogous result for the columns. ❑

611 Corollary If two rows or two columns of A ∈ Mn(F), A = [aij] are proportional, then det A = 0F.

Proof: Suppose asj = αatj for s 6= t and for all j ∈ [1; n]. If B is the matrix obtained by pulling
out the factor α from the s-th row then det A = α det B. But now the s-th and the t-th rows in B

are identical, and so det B = 0F. Arguing on AT will yield the analogous result for the columns.

❑

612 Example

det

266666641 a b

1 a c

1 a d

37777775 = a det

266666641 1 b

1 1 c

1 1 d

37777775 = 0,

since on the last determinant the first two columns are identical.

613 Theorem (Multilinearity of Determinants) Let A ∈ Mn(F), A = [aij] and α ∈ F. If X ∈ Mn(F), X = (xij) is
the matrix obtained by the row transvection Rs+αRt → Rs then det X = det A. Similarly, if Y ∈ Mn(F), Y = (yij)

is the matrix obtained by the column transvection Cs + αCt → Cs then det Y = det A.

Proof: For the row transvection it suffices to take bsj = asj, csj = αatj for j ∈ [1; n] in Lemma
609. With the same notation as in the lemma, T = A, and so,

det X = det T + det U = det A + det U.

But U has its s-th and t-th rows proportional (s 6= t), and so by Corollary 611 det U = 0F. Hence
det X = det A. To obtain the result for column transvections it suffices now to also apply Theorem
602. ❑
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614 Example Demonstrate, without actually calculating the determinant that

det

266666642 9 9

4 6 8

7 4 1

37777775
is divisible by 13.

Solution: Observe that 299, 468 and 741 are all divisible by 13. Thus

det

266666642 9 9

4 6 8

7 4 1

37777775 C3+10C2+100C1→C3

= det

266666642 9 299

4 6 468

7 4 741

37777775 = 13 det

266666642 9 23

4 6 36

7 4 57

37777775 ,

which shews that the determinant is divisible by 13.

615 Theorem The determinant of a triangular matrix (upper or lower) is the product of its diagonal elements.

Proof: Let A ∈ Mn(F), A = [aij] be a triangular matrix. Observe that if σ 6= Id then
aiσ(i)aσ(i)σ2(i) = 0F occurs in the product

a1σ(1)a2σ(2) · · · anσ(n).

Thus

det A =
∑

σ∈Sn
sgn(σ)a1σ(1)a2σ(2) · · · anσ(n)

= sgn(Id )a1Id (1)a2Id (2) · · · anId (n) = a11a22 · · · ann.

❑

616 Example The determinant of the n × n identity matrix In over a field F is

det In = 1F.

617 Example Find

det

266666641 2 3

4 5 6

7 8 9

37777775 .
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Solution: We have

det

266666641 2 3

4 5 6

7 8 9

37777775 C2−2C1→C2

C3−3C1→C3

 det

266666641 0 0

4 −3 −6

7 −6 −12

37777775
= (−3)(−6) det

266666641 0 0

4 1 1

7 2 2

37777775
= 0,

since in this last matrix the second and third columns are identical and so Lemma 610 applies.

618 Theorem Let (A, B) ∈ (Mn(F))2. Then

det(AB) = (det A)(det B).

Proof: Put D = AB, D = (dij), dij =
∑n

k=1 aikbkj. If A(c:k), D(c:k), 1 ≤ k ≤ n denote the
columns of A and D, respectively, observe that

D(c:k) =

n∑

l=1

blkA(c:l), 1 ≤ k ≤ n.

Applying Corollary 605 and Lemma 609 multiple times, we obtain

det D = det(D(c:1), D(c:2), . . . , D(c:n))

=
∑n

j1=1

∑n
j2=1 · · · ∑n

jn=1 b1j1
b2j2

· · · bnjn

· det(A(c:j1), A(c:j2), . . . , A(c:jn)).

By Lemma 610, if any two of the A(c:jl) are identical, the determinant on the right vanishes. So
each one of the jl is different in the non-vanishing terms and so the map

σ :
{1, 2, . . . , n} → {1, 2, . . . , n}

l 7→ jl

is a permutation. Here jl = σ(l). Therefore, for the non-vanishing

det(A(c:j1), A(c:j2), . . . , A(c:jn))

we have in view of Corollary 601,

det(A(c:j1), A(c:j2), . . . , A(c:jn)) = (sgn(σ)) det(A(c:1), A(c:2), . . . , A(c:n))

= (sgn(σ)) det A.
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We deduce that

det(AB) = det D

=
∑n

jn=1 b1j1
b2j2

· · · bnjn
det(A(c:j1), A(c:j2), . . . , A(c:jn))

= (det A)
∑

σ∈Sn
(sgn(σ))b1σ(1)b2σ(2) · · · bnσ(n)

= (det A)(det B),

as we wanted to shew. ❑

By applying the preceding theorem multiple times we obtain

619 Corollary If A ∈ Mn(F) and if k is a positive integer then

det Ak = (det A)k.

620 Corollary If A ∈ GLn(F) and if k is a positive integer then det A 6= 0F and

det A−k = (det A)−k.

Proof: We have AA−1 = In and so by Theorem 618 (det A)(det A−1) = 1F, from where the
result follows. ❑

621 Problem Let

Ω = det

2666664bc ca ab

a b c

a2 b2 c2

3777775 .

Without expanding either determinant, prove that

Ω = det

2666664 1 1 1

a2 b2 c2

a3 b3 c3

3777775 .

622 Problem Demonstrate that

Ω = det

2666664a − b − c 2a 2a

2b b − c − a 2b

2c 2c c − a − b

3777775 = (a+b+c)
3
.

623 Problem After the indicated column operations on a 3×3

matrix A with det A = −540, matrices A1, A2, . . . , A5 are
successively obtained:

A
C1+3C2→C1→ A1

C2↔C3→ A2
3C2−C1→C2→ A3

C1−3C2→C1→ A4
2C1→C1→ A

Determine the numerical values of det A1, det A2, det A3, det A4

and det A5.

624 Problem Let A, B, C be 3 × 3 matrices with det A =

3, det B3 = −8, det C = 2. Compute (i) det ABC, (ii)
det 5AC, (iii) det A3B−3C−1 . Express your answers as frac-
tions.

625 Problem Shew that ∀A ∈ Mn(R),

∃(X, Y) ∈ (Mn(R))
2
, (det X)(det Y) 6= 0

such that
A = X + Y.

That is, any square matrix over R can be written as a sum of
two matrices whose determinant is not zero.

626 Problem Prove or disprove! The set X = {A ∈ Mn(F) :

det A = 0F} is a vector subspace of Mn(F).

7.4 Laplace Expansion

We now develop a more computationally convenient approach to determinants.

Put
Cij =

∑

σ∈Sn

σ(i)=j

(sgn(σ))a1σ(1)a2σ(2) · · · anσ(n).
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Then

det A =
∑

σ∈Sn
(sgn(σ))a1σ(1)a2σ(2) · · · anσ(n)

=
∑n

i=1 aij

∑
σ∈Sn

σ(i)=j

(sgn(σ))a1σ(1)a2σ(2)

· · · a(i−1)σ(i−1)a(i+1)σ(i+1) · · · anσ(n)

=
∑n

i=1 aijCij,

(7.5)

is the expansion of det A along the j-th column. Similarly,

det A =
∑

σ∈Sn
(sgn(σ))a1σ(1)a2σ(2) · · · anσ(n)

=
∑n

j=1 aij

∑
σ∈Sn

σ(i)=j

(sgn(σ))a1σ(1)a2σ(2)

· · · a(i−1)σ(i−1)a(i+1)σ(i+1) · · · anσ(n)

=
∑n

j=1 aijCij,

is the expansion of det A along the i-th row.

627 Definition Let A ∈ Mn(F), A = [aij]. The ij-th minor Aij ∈ Mn−1(R) is the (n − 1) × (n − 1) matrix
obtained by deleting the i-th row and the j-th column from A.

628 Example If

A =

266666641 2 3

4 5 6

7 8 9

37777775
then, for example,

A11 =

26645 6

8 9

3775 , A12 =

26644 6

7 9

3775 , A21 =

26642 3

8 9

3775 , A22 =

26641 3

7 9

3775 , A33 =

26641 2

4 5

3775 .

629 Theorem Let A ∈ Mn(F). Then

det A =

n∑

i=1

aij(−1)i+j det Aij =

n∑

j=1

aij(−1)i+j det Aij.

Proof: It is enough to shew, in view of 7.5 that

(−1)i+j det Aij = Cij.

Now,

Cnn =
∑

σ∈Sn

σ(n)=n

sgn(σ)a1σ(1)a2σ(2) · · · a(n−1)σ(n−1)

=
∑

τ∈Sn−1
sgn(τ)a1τ(1)a2τ(2) · · · a(n−1)τ(n−1)

= det Ann,
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since the second sum shewn is the determinant of the submatrix obtained by deleting the last row
and last column from A.

To find Cij for general ij we perform some row and column interchanges to A in order to bring aij

to the nn-th position. We thus bring the i-th row to the n-th row by a series of transpositions, first
swapping the i-th and the (i + 1)-th row, then swapping the new (i + 1)-th row and the (i + 2)-th
row, and so forth until the original i-th row makes it to the n-th row. We have made thereby
n − i interchanges. To this new matrix we perform analogous interchanges to the j-th column,
thereby making n − j interchanges. We have made a total of 2n − i − j interchanges. Observe that
(−1)2n−i−j = (−1)i+j. Call the analogous quantities in the resulting matrix A ′, C ′

nn, A ′
nn. Then

Cij = C ′
nn = det A ′

nn = (−1)i+j det Aij,

by virtue of Corollary 601.

❑

☞ It is irrelevant which row or column we choose to expand a determinant of a square matrix.
We always obtain the same result. The sign pattern is given by266666666664

+ − + − · · ·

− + − +
...

+ − + −
...

...
...

...
...

...

377777777775
630 Example Find

det

266666641 2 3

4 5 6

7 8 9

37777775
by expanding along the first row.

Solution: We have

det A = 1(−1)1+1 det

26645 6

8 9

3775+ 2(−1)1+2 det

26644 6

7 9

3775+ 3(−1)1+3 det

26644 5

7 8

3775
= 1(45 − 48) − 2(36 − 42) + 3(32 − 35) = 0.

631 Example Evaluate the Vandermonde determinant

det

26666664 1 1 1

a b c

a2 b2 c2

37777775 .
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Solution:

det

26666664 1 1 1

a b c

a2 b2 c2

37777775 = det

26666664 1 0 0

a b − a c − a

a2 b2 − a2 c2 − a2

37777775
= det

2664 b − a c − a

b2 − c2 c2 − a2

3775
= (b − a)(c − a) det

2664 1 1

b + a c + a

3775
= (b − a)(c − a)(c − b).

632 Example Evaluate the determinant

det A = det

266666666666666666664
1 2 3 4 · · · 2000

2 1 2 3 · · · 1999

3 2 1 2 · · · 1998

4 3 2 1 · · · 1997

· · · · · · · · · · · · · · · · · ·

2000 1999 1998 1997 · · · 1

377777777777777777775 .

Solution: Applying Rn − Rn+1 → Rn for 1 ≤ n ≤ 1999, the determinant becomes

det

2666666666666666666666664
−1 1 1 1 · · · 1 1

−1 −1 1 1 · · · 1 1

−1 −1 −1 1 · · · 1 1

−1 −1 −1 −1 · · · 1 1

· · · · · · · · · · · · · · · · · · · · ·

−1 −1 −1 −1 · · · −1 1

2000 1999 1998 1997 · · · 2 1

3777777777777777777777775
.
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Applying now Cn + C2000 → Cn for 1 ≤ n ≤ 1999, we obtain

det

2666666666666666666666664
0 2 2 2 · · · 2 1

0 0 2 2 · · · 2 1

0 0 0 2 · · · 2 1

0 0 0 0 · · · 2 1

· · · · · · · · · · · · · · · · · · · · ·

0 0 0 0 · · · 0 1

2001 2000 1999 1998 · · · 3 1

3777777777777777777777775
.

This last determinant we expand along the first column. We have

−2001det

266666666666666666664
2 2 2 · · · 2 1

0 2 2 · · · 2 1

0 0 2 · · · 2 1

0 0 0 · · · 2 1

· · · · · · · · · · · · · · · · · ·

0 0 0 · · · 0 1

377777777777777777775 = −2001(21998).

633 Definition Let A ∈ Mn(F). The classical adjoint or adjugate of A is the n ×n matrix adj (A) whose entries
are given by

[adj (A)]ij = (−1)i+j det Aji,

where Aji is the ji-th minor of A.

634 Theorem Let A ∈ Mn(F). Then

(adj (A))A = A(adj (A)) = (det A)In.

Proof: We have

[A(adj (A))]ij =
∑n

k=1 aik[adj (A)]kj

=
∑n

k=1 aik(−1)i+k det Ajk.

Now, this last sum is det A if i = j by virtue of Theorem 629. If i 6= j it is 0, since then the j-th
row is identical to the i-th row and this determinant is 0F by virtue of Lemma 610. Thus on the
diagonal entries we get det A and the off-diagonal entries are 0F. This proves the theorem. ❑

The next corollary follows immediately.

635 Corollary Let A ∈ Mn(F). Then A is invertible if and only det A 6= 0F and

A−1 =
adj (A)

det A
.
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636 Problem Find

det

26666641 2 3

4 5 6

7 8 9

3777775
by expanding along the second column.

637 Problem Compute the determinant

det

26666666664 1 0 −1 1

2 0 0 1

666 −3 −1 1000000

1 0 0 1

37777777775 .

638 Problem If

det

266666666641 1 1 1

x a 0 0

x 0 b 0

x 0 0 c

37777777775 = 0,

and xabc 6= 0, prove that

1

x
=

1

a
+

1

b
+

1

c
.

639 Problem Prove that

det

266666666640 a b 0

a 0 b 0

0 a 0 b

1 1 1 1

37777777775 = 2ab(a − b).

640 Problem Demonstrate that

det

26666666664a 0 b 0

0 a 0 b

c 0 d 0

0 c 0 d

37777777775 = (ad − bc)
2
.

641 Problem Use induction to shew that

det

2666666666666666664
1 1 1 · · · 1 1

1 0 0
... 0 0

0 1 0 · · · 0 0

0 0 1 · · · 0 0

...
... · · ·

...
...

0 0 0 · · · 1 0

3777777777777777775 = (−1)
n+1

.

642 Problem Let

A =

2666666666666666664
1 n n n · · · n

n 2 n n
... n

n n 3 n · · · n

n n n 4 · · · n

...
...

... · · ·
...

n n n n n n

3777777777777777775 ,

that is, A ∈ Mn(R), A = [aij ] is a matrix such that akk = k

and aij = n when i 6= j. Find det A.

643 Problem Let n ∈ N, n > 1 be an odd integer. Recall that
the binomial coefficients

�
n

k

�
satisfy

�
n

n

�
=
�

n

0

�
= 1 and that

for 1 ≤ k ≤ n,�
n

k

�
=

�
n − 1

k − 1

�
+

�
n − 1

k

�
.

Prove that

det

266666666666664
1

�
n

1

� �
n

2

�
· · ·

�
n

n−1

�
1

1 1
�

n

1

�
· · ·

�
n

n−2

� �
n

n−1

��
n

n−1

�
1 1 · · ·

�
n

n−3

� �
n

n−2

�
· · · · · · · · · · · · · · · · · ·�

n

1

� �
n

2

� �
n

3

�
· · · 1 1

377777777777775 = (1+(−1)
n
)

n
.

644 Problem Let A ∈ GLn(F), n > 1. Prove that
det(adj (A)) = (det A)n−1 .

645 Problem Let (A, B, S) ∈ (GLn(F))3 . Prove that

➊ adj (adj (A)) = (det A)n−2A.

➋ adj (AB) = adj (A) adj (B).

➌ adj
�
SAS−1

�
= S(adj (A))S−1 .

646 Problem If A ∈ GL2(F), , and let k be a positive integer.
Prove that det(adj · · · adj

︸ ︷︷ ︸
k

(A)) = det A.
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7.5 Determinants and Linear Systems

647 Theorem Let A ∈ Mn(F). The following are all equivalent

➊ det A 6= 0F.

➋ A is invertible.

➌ There exists a unique solution X ∈ Mn×1(F) to the equation AX = Y .

➍ If AX = 0n×1 then X = 0n×1.

Proof: We prove the implications in sequence:
➊ =⇒ ➋: follows from Corollary 635
➋ =⇒ ➌: If A is invertible and AX = Y then X = A−1Y is the unique solution of this equation.
➌ =⇒ ➍: follows by putting Y = 0n×1

➍ =⇒ ➊: Let R be the row echelon form of A. Since RX = 0n×1 has only X = 0n×1 as a solution,
every entry on the diagonal of R must be non-zero, R must be triangular, and hence det R 6= 0F.
Since A = PR where P is an invertible n × n matrix, we deduce that det A = det P det R 6= 0F.
❑

The contrapositive form of the implications ➊ and ➍ will be used later. Here it is for future reference.

648 Corollary Let A ∈ Mn(F). If there is X 6= 0n×1 such that AX = 0n×1 then det A = 0F.



Chapter 8
Eigenvalues and Eigenvectors

8.1 Similar Matrices

649 Definition We say that A ∈ Mn(F) is similar to B ∈ Mn(F) if there exist a matrix P ∈ GLn(F) such that

B = PAP−1.

650 Theorem Similarity is an equivalence relation.

Proof: Let A ∈ Mn(F). Then A = InAI−1
n , so similarity is reflexive. If B = PAP−1 (P ∈

GLn(F) ) then A = P−1BP so similarity is symmetric. Finally, if B = PAP−1 and C = QBQ−1

(P ∈ GLn(F) , Q ∈ GLn(F)) then C = QPAP−1Q−1 = QPA(QP)−1 and so similarity is
transitive. ❑

Since similarity is an equivalence relation, it partitions the set of n×n matrices into equivalence classes by Theorem
37.

651 Definition A matrix is said to be diagonalisable if it is similar to a diagonal matrix.

Suppose that

A =

266666666664
λ1 0 0 · · · 0

0 λ2 0 · · · 0

...
...

... · · ·
...

0 0 0 · · · λn

377777777775 .

Then if K is a positive integer

AK =

266666666664
λK

1 0 0 · · · 0

0 λK
2 0 · · · 0

...
...

... · · ·
...

0 0 0 · · · λK
n

377777777775 .

157
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In particular, if B is similar to A then

BK = (PAP−1)(PAP−1) · · · (PAP−1)
︸ ︷︷ ︸

K factors

= PAKP−1 = P

266666666664
λK

1 0 0 · · · 0

0 λK
2 0 · · · 0

...
...

... · · ·
...

0 0 0 · · · λK
n

377777777775 P−1,

so we have a simpler way of computing BK. Our task will now be to establish when a particular square matrix is
diagonalisable.

8.2 Eigenvalues and Eigenvectors

Let A ∈ Mn(F) be a square diagonalisable matrix. Then there exist P ∈ GLn(F) and a diagonal matrix D ∈
Mn(F) such that P−1AP = D, whence AP = DP. Put

D =

266666666664
λ1 0 0 · · · 0

0 λ2 0 · · · 0

...
...

... · · ·
...

0 0 0 · · · λn

377777777775 , P = [P1; P2; · · · ; Pn],

where the Pk are the columns of P. Then

AP = DP =⇒ [AP1; AP2; · · · ; APn] = [λ1P1; λ2P2; · · · ; λnPn],

from where it follows that APk = λkPk. This motivates the following definition.

652 Definition Let V be a finite-dimensional vector space over a field F and let T : V → V be a linear transformation.
A scalar λ ∈ F is called an eigenvalue of T if there is a v 6= 0 (called an eigenvector) such that T(v) = λv.

653 Example Shew that if λ is an eigenvalue of T : V → V, then λk is an eigenvalue of Tk : V → V, for k ∈ N\{0}.

Solution: Assume that T(v) = λv. Then

T2(v) = TT(v) = T(λv) = λT(v) = λ(λv) = λ2v.

Continuing the iterations we obtain Tk(v) = λkv, which is what we want.

654 Theorem Let A ∈ Mn(F) be the matrix representation of T : V → V. Then λ ∈ F is an eigenvalue of T if an
only if det(λIn − A) = 0F.

Proof: λ is an eigenvalue of A ⇐⇒ there is v 6= 0 such that Av = λv ⇐⇒ λv − Av = 0 ⇐⇒
λInv − Av = 0 ⇐⇒ det(λIn − A) = 0F by Corollary 648.❑

655 Definition The equation
det(λIn − A) = 0F

is called the characteristic equation of A or secular equation of A. The polynomial p(λ) = det(λIn − A) is the
characteristic polynomial of A.



Eigenvalues and Eigenvectors 159

656 Example Let A =

266666666664
1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1

377777777775. Find

➊ The characteristic polynomial of A.

➋ The eigenvalues of A.

➌ The corresponding eigenvectors.

Solution: We have

➊

det(λI4 − A) = det

266666666664
λ − 1 −1 0 0

−1 λ − 1 0 0

0 0 λ − 1 −1

0 0 −1 λ − 1

377777777775
= (λ − 1) det

26666664λ − 1 0 0

0 λ − 1 −1

0 −1 λ − 1

37777775+ det

26666664−1 0 0

0 λ − 1 −1

0 −1 λ − 1

37777775
= (λ − 1)((λ − 1)((λ − 1)2 − 1)) + (−((λ − 1)2 − 1))

= (λ − 1)((λ − 1)(λ − 2)(λ)) − (λ − 2)(λ)

= (λ − 2)(λ)((λ − 1)2 − 1)

= (λ − 2)2(λ)2

➋ The eigenvalues are clearly λ = 0 and λ = 2.

➌ If λ = 0, then

0I4 − A =

266666666664
−1 −1 0 0

−1 −1 0 0

0 0 −1 −1

0 0 −1 −1

377777777775 .
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This matrix has row-echelon form 266666666664
−1 −1 0 0

0 0 −1 −1

0 0 0 0

0 0 0 0

377777777775 ,

and if 266666666664
−1 −1 0 0

0 0 −1 −1

0 0 0 0

0 0 0 0

377777777775
266666666664

a

b

c

d

377777777775 =

266666666664
0

0

0

0

377777777775 ,

then c = −d and a = −b

Thus the general solution of the system (0I4 − A)X = 0n×1 is266666666664
a

b

c

d

377777777775 = a

266666666664
1

−1

0

0

377777777775+ c

266666666664
0

0

1

−1

377777777775 .

If λ = 2, then

2I4 − A =

266666666664
1 −1 0 0

−1 1 0 0

0 0 1 −1

0 0 −1 1

377777777775 .

This matrix has row-echelon form 266666666664
−1 1 0 0

0 0 1 −1

0 0 0 0

0 0 0 0

377777777775 ,

and if
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1 −1 0 0

0 0 −1 1

0 0 0 0

0 0 0 0

377777777775
266666666664

a

b

c

d

377777777775 =

266666666664
0

0

0

0

377777777775 ,

then c = d and a = b

Thus the general solution of the system (2I4 − A)X = 0n×1 is266666666664
a

b

c

d

377777777775 = a

266666666664
1

1

0

0

377777777775+ c

266666666664
0

0

1

1

377777777775 .

Thus for λ = 0 we have the eigenvectors 266666666664
1

−1

0

0

377777777775 ,

266666666664
0

0

1

−1

377777777775
and for λ = 2 we have the eigenvectors 266666666664

1

1

0

0

377777777775 ,

266666666664
0

0

1

1

377777777775 .

657 Theorem If λ = 0F is an eigenvalue of A, then A is non-invertible.

Proof: Put p(λ) = det(λIn − A). Then p(0F) = det(−A) = (−1)n det A is the constant term
of the characteristic polynomial. If λ = 0F is an eigenvalue then

p(0F) = 0F =⇒ det A = 0F,

and hence A is non-invertible by Theorem 647. ❑

658 Theorem Similar matrices have the same characteristic polynomial.
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Proof: We have

det(λIn − SAS−1) = det(λSInS−1 − SAS−1)

= det S(λIn − A)S−1

= (det S)(det(λIn − A))(det S−1)

= (det S)(det(λIn − A))

�
1

det S

�
= det(λIn − A),

from where the result follows.❑

659 Problem Find the eigenvalues and eigenvectors of

A =

264 1 −1

−1 1

375 660 Problem Let A =

2666664 0 2 −1

2 3 −2

−1 −2 0

3777775. Find

➊ The characteristic polynomial of A.

➋ The eigenvalues of A.

➌ The corresponding eigenvectors.

8.3 Diagonalisability

In this section we find conditions for diagonalisability.

661 Theorem Let {v1, v2, . . . , vk} ⊂ V be the eigenvectors corresponding to the different eigenvalues {λ1, λ2, . . . , λk}

(in that order). Then these eigenvectors are linearly independent.

Proof: Let T : V → V be the underlying linear transformation. We proceed by induction. For
k = 1 the result is clear. Assume that every set of k−1 eigenvectors that correspond to k−1 distinct
eigenvalues is linearly independent and let the eigenvalues λ1, λ2, . . . , λk−1 have corresponding
eigenvectors v1, v2, . . . , vk−1. Let λ be a eigenvalue different from the λ1, λ2, . . . , λk−1 and let
its corresponding eigenvector be v. If v were linearly dependent of the v1, v2, . . . , vk−1, we would
have

xv + x1v1 + x2v2 + · · · + xk−1vk−1 = 0. (8.1)

Now
T(xv + x1v1 + x2v2 + · · · + xk−1vk−1) = T(0) = 0,

by Theorem 538. This implies that

xλv + x1λ1v1 + x2λ2v2 + · · · + xk−1λk−1vk−1 = 0. (8.2)

From 8.2 take away λ times 8.1, obtaining

x1(λ1 − λ)v1 + x2(λ2v2 + · · · + xk−1(λk−1 − λ)vk−1 = 0 (8.3)

Since λ − λi 6= 0F 8.3 is saying that the eigenvectors v1, v2, . . . , vk−1 are linearly dependent,
a contradiction. Thus the claim follows for k distinct eigenvalues and the result is proven by
induction. ❑

662 Theorem A matrix A ∈ Mn(F) is diagonalisable if and only if it possesses n linearly independent eigenvectors.
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Proof: Assume first that A is diagonalisable, so there exists P ∈ GLn(F) and

D =

266666666664
λ1 0 0 · · · 0

0 λ2 0 · · · 0

...
...

... · · ·
...

0 0 0 · · · λn

377777777775
such that

P−1AP =

266666666664
λ1 0 0 · · · 0

0 λ2 0 · · · 0

...
...

... · · ·
...

0 0 0 · · · λn

377777777775 .

Then

[AP1; AP2; · · · ; APn] = AP = P

266666666664
λ1 0 0 · · · 0

0 λ2 0 · · · 0

...
...

... · · ·
...

0 0 0 · · · λn

377777777775 = [λ1P1; λ2P2; · · · ; λnPn],

where the Pk are the columns of P. Since P is invertible, the Pk are linearly independent by virtue
of Theorems 473 and 647.

Conversely, suppose now that v1, . . . , vn are n linearly independent eigenvectors, with correspond-
ing eigenvalues λ1, λ2, . . . , λn. Put

P = [v1; . . . ; vn], D =

266666666664
λ1 0 0 · · · 0

0 λ2 0 · · · 0

...
...

... · · ·
...

0 0 0 · · · λn

377777777775 .

Since Avi = λivi we see that AP = PD. Again P is invertible by Theorems 473 and 647 since
the vk are linearly independent. Left multiplying by P−1 we deduce P−1AP = D, from where A is
diagonalisable. ❑

663 Example Shew that the following matrix is diagonalisable:26666664 1 −1 −1

1 3 1

−3 1 −1

37777775
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and find a diagonal matrix D and an invertible matrix P such that

A = PDP−1.

Solution: Verify that the characteristic polynomial of A is

λ3 − 3λ2 − 4λ + 12 = (λ − 2)(λ + 2)(λ − 3).

The eigenvector for λ = −2 is 26666664 1

−1

4

37777775 .

The eigenvector for λ = 2 is 26666664−1

0

1

37777775 .

The eigenvector for λ = 3 is 26666664−1

1

1

37777775 .

We may take

D =

26666664−2 0 0

0 2 0

0 0 3

37777775 , P =

26666664 1 −1 4

−1 0 1

−1 1 1

37777775 .

We also find

P−1 =

266666641
5

−1 1
5

0 −1 1

1
5

0 1
5

37777775 .

664 Problem Let A be a 2 × 2 matrix with eigenvalues 1 and

−2 and corresponding eigenvectors

2641

0

375 and

264 1

−1

375, respec-

tively. Determine A10.

665 Problem Let A ∈ M3(R) have characteristic polynomial

(λ + 1)
2
(λ − 3).

One of the eigenvalues has two eigenvectors

26666641

0

0

3777775 and

26666641

1

0

3777775.
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The other eigenvalue has corresponding eigenvector

26666641

1

1

3777775. De-

termine A.

666 Problem Let

A =

266666666640 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

37777777775 .

1. Find det A.

2. Find A−1 .

3. Find rank (A − I4).

4. Find det(A − I4).

5. Find the characteristic polynomial of A.

6. Find the eigenvalues of A.

7. Find the eigenvectors of A.

8. Find A10 .

667 Problem Let U ∈ Mn(R) be a square matrix all whose
entries are equal to 1.

1. Demonstrate that U2 = nU.

2. Find det U.

3. Prove that det(λIn − U) = λn−1(λ − n).

4. Shew that dimker (U) = n − 1.

5. Shew that

U = P

26666666664n 0 · · · 0

0 0 · · · 0

...
...

...
...

0 0 · · · 0

37777777775 P
−1

,

where

P =

2666666666666666664
1 1 0 · · · 0 0

1 0 1 · · · 0 0

1 0 0
. . .

...
...

...
...

...
. . .

...
...

1 0 0 · · · 0 1

1 −1 −1 · · · −1 −1

3777777777777777775 .

8.4 The Minimal Polynomial

668 Theorem (Cayley-Hamilton) A matrix A ∈ Mn(F) satisfies its characteristic polynomial.

Proof: Put B = λIn − A. We can write

det B = det(λIn − A) = λn + b1λn−1 + b2λn−2 + · · · + bn,

as det(λIn − A) is a polynomial of degree n.

Since adj (B) is a matrix obtained by using (n − 1) × (n − 1) determinants from B, we may write

adj (B) = λn−1Bn−1 + λn−2Bn−2 + · · · + B0.

Hence

det(λIn − A)In = (B)(adj (B)) = (λIn − A)(adj (B)),

from where

λnIn + b1Inλn−1 + b2Inλn−2 + · · · + bnIn = (λIn − A)(λn−1Bn−1 + λn−2Bn−2 + · · · + B0).

By equating coefficients we deduce
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In = Bn−1

b1In = −ABn−1 + Bn−2

b2In = −ABn−2 + Bn−3

...

bn−1In = −AB1 + B0

bnIn = −AB0.

Multiply now the k-th row by An−k (the first row appearing is really the 0-th row):

An = AnBn−1

b1An−1 = −AnBn−1 + An−1Bn−2

b2An−2 = −An−1Bn−2 + An−2Bn−3

...

bn−1A = −A2B1 + AB0

bnIn = −AB0.

Add all the rows and through telescopic cancellation obtain

An + b1An−1 + · · · + bn−1A + bnIn = 0n,

from where the theorem follows. ❑

669 Example From example 663 the matrix 26666664 1 −1 −1

1 3 1

−3 1 −1

37777775
has characteristic polynomial

(λ − 3)(λ − 2)(λ + 2) = λ3 − 3λ2 − 4λ + 12,

hence the inverse of this matrix can be obtained by observing that

A3 − 3A2 − 4A + 12I3 = 03 =⇒ A−1 = −
1

12

�
A2 − 3A − 4I3

�
=

2666666664 1/3 1/6 −1/6

1/6 1/3 1/6

−5/6 −1/6 −1/3

3777777775 .

Having seen that the characteristic polynomial of a square matrix A annihilates A, the question now arises of whether
there exists a polynomial of minimal degree annihilating A.
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Answers and Hints

17

x ∈ X \ (X \ A) ⇐⇒ x ∈ X ∧ x 6∈ (X \ A)

⇐⇒ x ∈ X ∧ x ∈ A

⇐⇒ x ∈ X ∩ A.

18

X \ (A ∪ B) ⇐⇒ x ∈ X ∧ (x 6∈ (A ∪ B))

⇐⇒ x ∈ X ∧ (x 6∈ A ∧ x 6∈ B)

⇐⇒ (x ∈ X ∧ x 6∈ A) ∧ (x ∈ X ∧ x 6∈ B)

⇐⇒ x ∈ (X \ A) ∧ x ∈ (X \ B)

⇐⇒ x ∈ (X \ A) ∩ (X \ B).

21 One possible solution is
A ∪ B ∪ C = A ∪ (B \ A) ∪ (C \ (A ∪ B)).

23 We have
|a| = |a − b + b| ≤ |a − b| + |b|,

giving
|a| − |b| ≤ |a − b|.

Similarly,
|b| = |b − a + a| ≤ |b − a| + |a| = |a − b| + |a|,

gives
|b| − |a| ≤ |a − b|.

The stated inequality follows from this.

38 a ∼ a since a
a

= 1 ∈ Z, and so the relation is reflexive. The relation is not symmetric. For 2 ∼ 1 since 2
1

∈ Z but 1 ≁ 2

since 1
2

6∈ Z. The relation is transitive. For assume a ∼ b and b ∼ c. Then there exist (m, n) ∈ Z2 such that a
b

= m, b
c

= n.
This gives

a

c
=

a

b
· b

c
= mn ∈ Z,

and so a ∼ c.

39 Here is one possible example: put a ∼ b ⇔ a2+a
b

∈ Z. Then clearly if a ∈ Z\{0} we have a ∼ a since a2+a
a

= a+1 ∈ Z.

On the other hand, the relation is not symmetric, since 5 ∼ 2 as 52+5
2

= 15 ∈ Z but 2 6∼ 5, as 22+2
5

= 6
5

6∈ Z. It is not

transitive either, since 52+5
3

∈ Z =⇒ 5 ∼ 3 and 32+3
12

∈ Z =⇒ 3 ∼ 12 but 52+5
12

6∈ Z and so 5 ≁ 12.

167
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41 [B] [x] = x +
1

3
Z. [C] No.

55 Let ω = − 1
2

+ i
√

3
2

. Then ω2 + ω + 1 = 0 and ω3 = 1. Then

x = a
3

+ b
3

+ c
3

− 3abc = (a + b + c)(a + ωb + ω
2
c)(a + ω

2
b + cω),

y = u
3

+ v
3

+ w
3

− 3uvw = (u + v + w)(u + ωv + ω
2
w)(u + ω

2
v + ωw).

Then

(a + b + c)(u + v + w) = au + av + aw + bu + bv + bw + cu + cv + cw,

(a + ωb + ω2c)(u + ωv + ω2w) = au + bw + cv

+ω(av + bu + cw)

+ω2(aw + bv + cu),

and

(a + ω2b + ωc)(u + ω2v + ωw) = au + bw + cv

+ω(aw + bv + cu)

+ω2(av + bu + cw).

This proves that

xy = (au + bw + cv)3 + (aw + bv + cu)3 + (av + bu + cw)3

−3(au + bw + cv)(aw + bv + cu)(av + bu + cw),

which proves that S is closed under multiplication.

56 We have

x⊤(y⊤z) = x⊤(y ⊗ a ⊗ z) = (x) ⊗ (a) ⊗ (y ⊗ a ⊗ z) = x ⊗ a ⊗ y ⊗ a ⊗ z,

where we may drop the parentheses since ⊗ is associative. Similarly

(x⊤y)⊤z = (x ⊗ a ⊗ y)⊤z = (x ⊗ a ⊗ y) ⊗ (a) ⊗ (z) = x ⊗ a ⊗ y ⊗ a ⊗ z.

By virtue of having proved

x⊤(y⊤z) = (x⊤y)⊤z,

associativity is established.

57 We proceed in order.

➊ Clearly, if a, b are rational numbers,

|a| < 1, |b| < 1 =⇒ |ab| < 1 =⇒ −1 < ab < 1 =⇒ 1 + ab > 0,

whence the denominator never vanishes and since sums, multiplications and divisions of rational numbers are rational,
a + b

1 + ab
is also rational. We must prove now that −1 <

a + b

1 + ab
< 1 for (a, b) ∈] − 1; 1[2 . We have

−1 <
a + b

1 + ab
< 1 ⇔ −1 − ab < a + b < 1 + ab

⇔ −1 − ab − a − b < 0 < 1 + ab − a − b

⇔ −(a + 1)(b + 1) < 0 < (a − 1)(b − 1).

Since (a, b) ∈] − 1; 1[2 , (a + 1)(b + 1) > 0 and so −(a + 1)(b + 1) < 0 giving the sinistral inequality. Similarly
a − 1 < 0 and b − 1 < 0 give (a − 1)(b − 1) > 0, the dextral inequality. Since the steps are reversible, we have

established that indeed −1 <
a + b

1 + ab
< 1.
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➋ Since a ⊗ b =
a + b

1 + ab
=

b + a

1 + ba
= b ⊗ a, commutativity follows trivially. Now

a ⊗ (b ⊗ c) = a ⊗
�

b + c

1 + bc

�
=

a +

�
b + c

1 + bc

�
1 + a

�
b + c

1 + bc

�
=

a(1 + bc) + b + c

1 + bc + a(b + c)
=

a + b + c + abc

1 + ab + bc + ca
.

One the other hand,

(a ⊗ b) ⊗ c =

�
a + b

1 + ab

�
⊗ c

=

�
a + b

1 + ab

�
+ c

1 +

�
a + b

1 + ab

�
c

=
(a + b) + c(1 + ab)

1 + ab + (a + b)c

=
a + b + c + abc

1 + ab + bc + ca
,

whence ⊗ is associative.

➌ If a ⊗ e = a then
a + e

1 + ae
= a, which gives a + e = a + ea2 or e(a2 − 1) = 0. Since a 6= ±1, we must have e = 0.

➍ If a ⊗ b = 0, then
a + b

1 + ab
= 0, which means that b = −a.

58 We proceed in order.

➊ Since a ⊗ b = a + b − ab = b + a − ba = b ⊗ a, commutativity follows trivially. Now

a ⊗ (b ⊗ c) = a ⊗ (b + c − bc)

= a + b + c − bc − a(b + c − bc)

= a + b + c − ab − bc − ca + abc.

One the other hand,

(a ⊗ b) ⊗ c = (a + b − ab) ⊗ c

= a + b − ab + c − (a + b − ab)c

= a + b + c − ab − bc − ca + abc,

whence ⊗ is associative.

➋ If a ⊗ e = a then a + e − ae = a, which gives e(1 − a) = 0. Since a 6= 1, we must have e = 0.

➌ If a ⊗ b = 0, then a + b − ab = 0, which means that b(1 − a) = −a. Since a 6= 1 we find b = −
a

1 − a
.
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+ 0 1 2 3 4 5 6 7 8 9 10

0 0 1 2 3 4 5 6 7 8 9 10

1 1 2 3 4 5 6 7 8 9 10 0

2 2 3 4 5 6 7 8 9 10 0 1

3 3 4 5 6 7 8 9 10 0 1 2

4 4 5 6 7 8 9 10 0 1 2 3

5 5 6 7 8 9 10 0 1 2 3 4

6 6 7 8 9 10 0 1 2 3 4 5

7 7 0 9 10 0 1 2 3 4 5 6

8 8 9 10 0 1 2 3 4 5 6 7

9 9 10 0 1 2 3 4 5 6 7 8

10 10 0 1 2 3 4 5 6 7 8 9

Table A.1: Addition table for Z11 .

· 0 1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9 10

2 0 2 4 6 8 10 1 3 5 7 9

3 0 3 6 9 1 4 7 10 2 5 8

4 0 4 8 1 5 9 2 6 10 3 7

5 0 5 10 4 9 3 8 2 7 1 6

6 0 6 1 7 2 8 3 9 4 10 5

7 0 7 3 10 6 2 9 5 1 8 4

8 0 8 5 2 10 7 4 1 9 6 3

9 0 9 7 5 3 1 10 8 6 4 2

10 0 10 9 8 7 6 5 4 3 2 1

Table A.2: Multiplication table Z11 .

59 We have

x ◦ y = (x ◦ y) ◦ (x ◦ y)

= [y ◦ (x ◦ y)] ◦ x

= [(x ◦ y) ◦ x] ◦ y

= [(y ◦ x) ◦ x] ◦ y

= [(x ◦ x) ◦ y] ◦ y

= (y ◦ y) ◦ (x ◦ x)

= y ◦ x,

proving commutativity.

71 The tables appear in tables A.1 and A.2.

72 From example 68
x

2
= 5.

Now, the squares modulo 11 are 0
2

= 0, 1
2

= 1, 2
2

= 4, 3
2

= 9, 4
2

= 5, 5
2

= 3. Also, (11 − 4)2 = 7
2

= 5. Hence the
solutions are x = 4 or x = 7.

81 We have

1√
2 + 2

√
3 + 3

√
6

=

√
2 + 2

√
3 − 3

√
6

(
√

2 + 2
√

3)2 − (3
√

6)2

=

√
2 + 2

√
3 − 3

√
6

2 + 12 + 4
√

6 − 54

=

√
2 + 2

√
3 − 3

√
6

−40 + 4
√

6

=
(
√

2 + 2
√

3 − 3
√

6)(−40 − 4
√

6)

402 − (4
√

6)2

=
(
√

2 + 2
√

3 − 3
√

6)(−40 − 4
√

6)

1504

= −
16

√
2 + 22

√
3 − 30

√
6 − 18

376

82 Since
(−a)b

−1
+ ab

−1
= (−a + a)b

−1
= 0Fb

−1
= 0F,
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we obtain by adding −(ab−1) to both sides that

(−a)b
−1

= −(ab
−1

).

Similarly, from

a(−b
−1

) + ab
−1

= a(−b
−1

+ b
−1

) = a0F = 0F,

we obtain by adding −(ab−1) to both sides that

a(−b
−1

) = −(ab
−1

).

93 Assume h(b) = h(a). Then

h(a) = h(b) =⇒ a3 = b3

=⇒ a3 − b3 = 0

=⇒ (a − b)(a2 + ab + b2) = 0

Now,

b
2

+ ab + a
2

=

�
b +

a

2

�2

+
3a2

4
.

This shews that b2 + ab + a2 is positive unless both a and b are zero. Hence a − b = 0 in all cases. We have shewn that
h(b) = h(a) =⇒ a = b, and the function is thus injective.

94 We have

f(a) = f(b) ⇐⇒
6a

2a − 3
=

6b

2b − 3

⇐⇒ 6a(2b − 3) = 6b(2a − 3)

⇐⇒ 12ab − 18a = 12ab − 18b

⇐⇒ −18a = −18b

⇐⇒ a = b,

proving that f is injective. Now, if

f(x) = y, y 6= 3,

then
6x

2x − 3
= y,

that is 6x = y(2x − 3). Solving for x we find

x =
3y

2y − 6
.

Since 2y − 6 6= 0, x is a real number, and so f is surjective. On combining the results we deduce that f is bijective.

104 A =

26666641 1 1

2 4 8

3 9 27

3777775 .

105 A =

26666641 2 3

2 4 6

3 6 9

3777775 .
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106 M + N =

2666664a + 1 0 2c

a b − 2a 0

2a 0 −2

3777775 , 2M =

2666664 2a −4a 2c

0 −2a 2b

2a + 2b 0 −2

3777775 .

107 x = 1 and y = 4.

108 A =

26413 −1

15 3

375, B =

2645 0

6 1

375
111 The set of border elements is the union of two rows and two columns. Thus we may choose at most four elements from
the border, and at least one from the central 3 × 3 matrix. The largest element of this 3 × 3 matrix is 15, so any allowable
choice of does not exceed 15. The choice 25, 15, 18,l 23, 20 shews that the largest minimum is indeed 15.

120

2642 2

0 −2

375
121

AB =

2666664 a b c

c + a a + b b + c

a + b + c a + b + c a + b + c

3777775 , BA =

2666664a + b + c b + c c

a + b + c a + b b

a + b + c c + a a

3777775
122 AB = 04 and BA =

266666666640 2 0 3

0 2 0 3

0 2 0 3

0 2 0 3

37777777775 .

123 Observe that 264−4 x

−x 4

3752

=

264−4 x

−x 4

375264−4 x

−x 4

375 =

26416 − x2 0

0 16 − x2

375 ,

and so we must have 16 − x2 = −1 or x = ±
√

17.

124 Disprove! Take A =

264 1 0

0 0

375 and B =

264 0 1

0 0

375. Then AB = B, but BA = 02 .

125 Disprove! Take for example A =

2640 0

1 1

375 and B =

2641 0

1 0

375. Then

A
2

− B
2

=

264−1 0

0 1

375 6=

264−1 0

−2 1

375 .(A + B)(A − B).
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127

264 32 −32

−32 32

375.

128 A2003 =

264 0 2100131002

2100231001 0

375.

130 The assertion is clearly true for n = 1. Assume that is it true for n, that is, assume

A
n

=

264cos(n)α − sin(n)α

sin(n)α cos(n)α

375 .

Then

An+1 = AAn

=

264cos α − sin α

sin α cos α

375264cos(n)α − sin(n)α

sin(n)α cos(n)α

375
=

264cos α cos(n)α − sin α sin(n)α − cos α sin(n)α − sin α cos(n)α

sin α cos(n)α + cos α sin(n)α − sin α sin(n)α + cos α cos(n)α

375
=

264cos(n + 1)α − sin(n + 1)α

sin(n + 1)α cos(n + 1)α

375 ,

and the result follows by induction.

131 Let A = [aij ], B = [bij ] be checkered n×n matrices. Then A+B = (aij +bij). If j− i is odd, then aij +bij = 0+0 = 0,
which shows that A + B is checkered. Furthermore, let AB = [cij ] with cij =

∑n

k=1 aikbkj . If i is even and j odd, then
aik = 0 for odd k and bkj = 0 for even k. Thus cij = 0 for i even and j odd. Similarly, cij = 0 for odd i and even j. This
proves that AB is checkered.

132 Put

J =

26666640 1 1

0 0 1

0 0 0

3777775 .

We first notice that

J
2

=

26666640 0 1

0 0 0

0 0 0

3777775 , J
3

= 03.

This means that the sum in the binomial expansion

A
n

= (I3 + J)
n

=

n∑

k=0

�
n

k

�
In−k

J
k
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is a sum of zero matrices for k ≥ 3. We thus have

An = In
3 + nIn−1

3 J +
�

n

2

�
In−2
3 J2

=

26666641 0 0

0 1 0

0 0 1

3777775+

26666640 n n

0 0 n

0 0 0

3777775+

26666640 0
�

n

2

�
0 0 0

0 0 0

3777775
=

26666641 n
n(n+1)

2

0 1 n

0 0 1

3777775 ,

giving the result, since
�

n

2

�
=

n(n−1)

2
and n +

�
n

2

�
=

n(n+1)

2
.

134 Argue inductively,

A2B = A(AB) = AB = B

A3B = A(A2B) = A(AB) = AB = B

...

AmB = AB = B.

Hence B = AmB = 0nB = 0n .

136 Put A =

264a b

c d

375 . Using 135, deduce by iteration that

A
k

= (a + d)
k−1

A.

137

264a b

c −a

375 , bc = −a2

138 ±I2,

264a b

c −a

375 , a2 = 1 − bc

139 We complete squares by putting Y =

264a b

c d

375 = X − I. Then264 a2 + bc b(a + d)

c(a + d) bc + d2

375 = Y
2

= X
2

− 2X + I = (X − I)
2

=

264−1 0

6 3

375+ I =

2640 0

6 4

375 .

This entails a = 0, b = 0, cd = 6, d2 = 4. Using X = Y + I, we find that there are two solutions,2641 0

3 3

375 ,

264 1 0

−3 −1

375 .
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150 There are infinitely many solutions. Here is one:

A =

26666641 2 3

2 3 1

3 1 2

3777775 =

2666664−9 2 3

2 3 1

3 1 2

3777775+

266666410 0 0

0 0 0

0 0 0

3777775 .

151 If such matrices existed, then by the first equation

tr (AC) + tr (DB) = n.

By the second equation and by Theorem 141,

0 = tr (CA) + tr (BD) = tr (AC) + tr (DB) = n,

a contradiction, since n ≥ 1.

152 Disprove! This is not generally true. Take A =

2641 1

1 2

375 and B =

2643 0

0 1

375. Clearly AT = A and BT = B. We have

AB =

2643 1

3 2

375
but

(AB)
T

=

2643 3

1 2

375 .

154 We have

tr
�
A

2
�

= tr

0B�264a b

c d

375264a b

c d

3751CA = tr

0B�264a2 + bc ab + bd

ca + cd d2 + cb

3751CA = a
2

+ d
2

+ 2bc

and 0B�tr

0B�264a b

c d

3751CA1CA2

= (a + d)
2
.

Thus

tr
�
A

2
�

= (tr (A))
2 ⇐⇒ a

2
+ d

2
+ 2bc = (a + d)

2 ⇐⇒ bc = ad,

is the condition sought.

155

tr
�
(A − I4)2

�
= tr

�
A2 − 2A + I4

�
= tr

�
A2
�

− 2tr (A) + tr (I4)

= −4 − 2tr (A) + 4

= −2tr (A) ,

and tr (3I4) = 12. Hence −2tr (A) = 12 or tr (A) = −6.

156 Disprove! Take A = B = In and n > 1. Then tr (AB) = n < n2 = tr (A) tr (B).
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157 Disprove! Take A =

2641 0

0 0

375, B =

2640 1

0 0

375, C =

2640 0

1 0

375. Then tr (ABC) = 1 but tr (BAC) = 0.

158 We have

(AA
T
)

T
= (A

T
)

T
A

T
= AA

T
.

159 We have

(AB − BA)
T

= (AB)
T

− (BA)
T

= B
T
A

T
− A

T
B

T
= −BA − A(−B) = AB − BA.

161 Let X = [xij ] and put XXT = [cij ]. Then

0 = cii =

n∑

k=1

x
2
ik =⇒ xik = 0.

187 Here is one possible approach. If we perform C1 ↔ C3 on A we obtain

A1 =

266666666641 0 1 0

0 1 0 1

1 1 −1 1

1 −1 1 1

37777777775 so take P =

266666666640 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

37777777775 .

Now perform 2R1 → R1 on A1 to obtain

A2 =

266666666642 0 2 0

0 1 0 1

1 1 −1 1

1 −1 1 1

37777777775 so take D =

266666666642 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

37777777775 .

Finally, perform R1 + 2R4 → R1 on A2 to obtain

B =

266666666644 −2 4 2

0 1 0 1

1 1 −1 1

1 −1 1 1

37777777775 so take T =

266666666641 0 0 2

0 1 0 0

0 0 1 0

0 0 0 1

37777777775 .
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188 Here is one possible approach.2666664a b c

d e f

g h i

3777775 P:ρ3↔ρ1
 

2666664g h i

d e f

a b c

3777775
P ′:C1↔C2
 

2666664h g i

e d f

b a c

3777775
T :C1−C2−→C1

 

2666664h − g g i

e − d d f

b − a a c

3777775
D:2ρ3−→ρ3
 

2666664 h − g g i

e − d d f

2b − 2a 2a 2c

3777775
Thus we take

P =

26666640 0 1

0 1 0

1 0 0

3777775 , P
′

=

26666640 1 0

1 0 0

0 0 1

3777775 ,

T =

2666664 1 0 0

−1 1 0

0 0 1

3777775 , D =

26666641 0 0

0 1 0

0 0 2

3777775 .

189 Let Eij ∈ Mn(F). Then

AEij =

266666666666664
0 0 . . . a1i . . . 0

0 0
... a2i

... 0

...
...

...
...

...
...

0 0
... an−1i

... 0

0 0
... ani

... 0

377777777777775 ,

where the entries appear on the j-column. Then we see that tr (AEij) = aji and similarly, by considering BEij , we see that
tr (BEij) = bji. Therefore ∀i, j, aji = bji , which implies that A = B.
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190 Let Est ∈ Mn(R). Then

EijA =

266666666666664
0 0 . . . 0

...
... . . .

...

aj1 aj2 . . . ajn

...
... . . .

...

0 0 . . . 0

377777777777775 ,

where the entries appear on the i-th row. Thus

(EijA)
2

=

266666666666664
0 0 . . . 0

...
... . . .

...

ajiaj1 ajiaj2 . . . ajiajn

...
... . . .

...

0 0 . . . 0

377777777777775 ,

which means that ∀i, j, ajiajk = 0. In particular, a2
ji = 0, which means that ∀i, j, aji = 0, i.e., A = 0n.

216 a = 1, b = −2.

217 Claim: A−1 = In − A + A2 − A3. For observe that

(In + A)(In − A + A
2

− A
3
) = In − A + A

2
− A

3
− A + A

2
− A

3
+ A

4
= In ,

proving the claim.

218 Disprove! It is enough to take A = B = 2In. Then (A + B)−1 = (4In)−1 = 1
4
In but A−1 + B−1 = 1

2
In + 1

2
In = In .

223 We argue by contradiction. If exactly one of the matrices is not invertible, the identities

A = AIn = (ABC)(BC)
−1

= 0n,

B = InBIn = (A)
−1

(ABC)C
−1

= 0n,

C = InC = (AB)
−1

(ABC) = 0n ,

shew a contradiction depending on which of the matrices are invertible. If all the matrices are invertible then

0n = 0nC
−1

B
−1

A
−1

= (ABC)C
−1

B
−1

A
−1

= In,

also gives a contradiction.

224 Observe that A, B, AB are invertible. Hence

A2B2 = In = (AB)2
=⇒ AABB = ABAB

=⇒ AB = BA,

by cancelling A on the left and B on the right. One can also argue that A = A−1 , B = B−1 , and so AB = (AB)−1 =

B−1A−1 = BA.

225 Observe that A = (a − b)In + bU, where U is the n × n matrix with 1F’s everywhere. Prove that

A
2

= (2(a − b) + nb)A − ((a − b)
2

+ nb(a − b))In .

226 Compute (A − In)(B − In).
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227 By Theorem 141 we have tr
�
SAS−1

�
= tr

�
S−1SA

�
= tr (A).

243 The rank is 2.

244 If B is invertible, then rank (AB) = rank (A) = rank (BA). Similarly, if A is invertible rank (AB) = rank (B) =

rank (BA). Now, take A =

264 1 0

0 0

375 and B =

264 0 1

0 0

375. Then AB = B, and so rank (AB) = 1. But BA =

264 0 0

0 0

375,

and so rank (BA) = 0.

245 Effecting R3 − R1 → R3 ; aR4 − bR2 → R4 successively, we obtain266666666641 a 1 b

a 1 b 1

1 b 1 a

b 1 a 1

37777777775  
266666666641 a 1 b

a 1 b 1

0 b − a 0 a − b

0 a − b a2 − b2 a − b

37777777775 .

Performing R2 − aR1 → R2 ; R4 + R3 → R4 we have

 

266666666641 a 1 b

0 1 − a2 b − a 1 − ab

0 b − a 0 a − b

0 0 a2 − b2 2(a − b)

37777777775 .

Performing (1 − a2)R3 − (b − a)R2 → R3 we have

 

266666666641 a 1 b

0 1 − a2 b − a 1 − ab

0 0 −a2 + 2ab − b2 2a − 2b − a3 + ab2

0 0 a2 − b2 2(a − b)

37777777775 .

Performing R3 − R4 → R3 we have

 

266666666641 a 1 b

0 1 − a2 b − a 1 − ab

0 0 −2a(a − b) −a(a2 − b2)

0 0 a2 − b2 2(a − b)

37777777775 .

Performing 2aR4 + (a + b)R3 → R4 we have266666666641 a 1 b

0 1 − a2 b − a 1 − ab

0 0 −2a(a − b) −a(a2 − b2)

0 0 0 4a2 − 4ab − a4 + a2b2 − ba3 + ab3

37777777775 .
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Factorising, this is

=

266666666641 a 1 b

0 1 − a2 b − a 1 − ab

0 0 −2a(a − b) −a(a − b)(a + b)

0 0 0 −a(a + 2 + b)(a − b)(a − 2 + b)

37777777775 .

Thus the rank is 4 if (a + 2 + b)(a − b)(a − 2 + b) 6= 0. The rank is 3 if a + b = 2 and (a, b) 6= (1, 1) or if a + b = −2

and (a, b) 6= (−1, −1). The rank is 2 if a = b 6= 1 and a 6= −1. The rank is 1 if a = b = ±1.

246 rank (A) = 4 if m3 + m2 + 2 6= 0, and rank (A) = 3 otherwise.

247 The rank is 4 if a 6= ±b. The rank is 1 is a = ±b 6= 0. The rank is 0 if a = b = 0.

248 The rank is 4 if (a − b)(c − d) 6= 0. The rank is 2 is a = b, c 6= d or if a 6= b, c = d. The rank is 1 if a = b and c = d.

249 rank (ABC) ≤ 2 =⇒ x = 13.

252 For the counterexample consider A =

2641 i

i −1

375.

261 We form the augmented matrix 26666641 2 3 1 0 0

2 3 1 0 1 0

3 1 2 0 0 1

3777775
From R2 − 2R1 → R2 and R3 − 3R1 → R3 we obtain

 

26666641 2 3 1 0 0

0 6 2 5 1 0

0 2 0 4 0 1

3777775 .

From R2 ↔ R3 we obtain

 

26666641 2 3 1 0 0

0 2 0 4 0 1

0 6 2 5 1 0

3777775 .

Now, from R1 − R2 → R1 and R3 − 3R2 → R3 , we obtain

 

26666641 0 3 4 0 6

0 2 0 4 0 1

0 0 2 0 1 4

3777775 .

From 4R2 → R2 and 4R3 → R3 , we obtain

 

26666641 0 3 4 0 6

0 1 0 2 0 4

0 0 1 0 4 2

3777775 .
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Finally, from R1 − 3R3 → R3 we obtain

 

26666641 0 0 4 2 0

0 1 0 2 0 4

0 0 1 0 4 2

3777775 .

We deduce that 26666641 2 3

2 3 1

3 1 2

3777775−1

=

26666644 2 0

2 0 4

0 4 2

3777775 .

262 To find the inverse of B we consider the augmented matrix2666664 0 0 −1 1 0 0

0 −1 a 0 1 0

−1 a b 0 0 1

3777775 .

Performing R1 ↔ R3 , −R3 → R3 , in succession,2666664−1 a b 0 0 1

0 −1 a 0 1 0

0 0 1 −1 0 0

3777775 .

Performing R1 + aR2 → R1 and R2 − aR3 → R2 in succession,2666664−1 0 b + a2 0 a 1

0 −1 0 a 1 0

0 0 1 −1 0 0

3777775 .

Performing R1 − (b + a2)R3 → R3 , −R1 → R1 and −R2 → R2 in succession, we find26666641 0 0 −b − a2 −a −1

0 1 0 −a −1 0

0 0 1 −1 0 0

3777775 ,

whence

B
−1

=

2666664−b − a2 −a −1

−a −1 0

−1 0 0

3777775 .
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Now,

BAB−1 =

2666664 0 0 −1

0 −1 a

−1 a b

37777752666664a b c

1 0 0

0 1 0

37777752666664−b − a2 −a −1

−a −1 0

−1 0 0

3777775
=

2666664 0 −1 0

−1 a 0

0 0 −c

37777752666664−b − a2 −a −1

−a −1 0

−1 0 0

3777775
=

2666664a 1 0

b 0 1

c 0 0

3777775
= AT ,

which is what we wanted to prove.

263 Operating formally, and using elementary row operations, we find

B
−1

=

2666664 − a2−1

a2−5+2a

a2+2a−2

a2−5+2a

a−2

a2−5+2a

− 2

a2−5+2a

a+4

a2−5+2a
− 1

a2−5+2a

2a

a2−5+2a
− 2a+5

a2−5+2a

a

a2−5+2a

3777775 .

Thus B is invertible whenever a 6= −1 ±
√

6.

264 Form the augmented matrix 2666664a 2a 3a 1 0 0

0 b 2b 0 1 0

0 0 c 0 0 1

3777775 .

Perform
1

a
R1 → R1 ,

1

b
R2 → R2 ,

1

a
R3 → R3 , in succession, obtaining26666641 2 3 1/a 0 0

0 1 2 0 1/b 0

0 0 1 0 0 1/c

3777775 .

Now perform R1 − 2R2 → R1 and R2 − 2R3 → R2 in succession, to obtain26666641 0 −1 1/a −2/a 0

0 1 0 0 1/b −2/c

0 0 1 0 0 1/c

3777775 .
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Finally, perform R1 + R3 → R1 to obtain 26666641 0 0 1/a −2/b 1/c

0 1 0 0 1/b −2/c

0 0 1 0 0 1/c

3777775 .

Whence 2666664a 2a 3a

0 b 2b

0 0 c

3777775−1

=

26666641/a −2/b 1/c

0 1/b −2/c

0 0 1/c

3777775 .

265 To compute the inverse matrix we proceed formally as follows. The augmented matrix is2666664b a 0 1 0 0

c 0 a 0 1 0

0 c b 0 0 1

3777775 .

Performing bR2 − cR1 → R2 we find 2666664b a 0 1 0 0

0 −ca ab −c b 0

0 c b 0 0 1

3777775 .

Performing aR3 + R2 → R3 we obtain 2666664b a 0 1 0 0

0 −ca ab −c b 0

0 0 2ab −c b a

3777775 .

Performing 2R2 − R3 → R2 we obtain 2666664b a 0 1 0 0

0 −2ca 0 −c b −a

0 0 2ab −c b a

3777775 .

Performing 2cR1 + R2 → R1 we obtain 26666642bc 0 0 c b −a

0 −2ca 0 −c b −a

0 0 2ab −c b a

3777775 .

From here we easily conclude that 2666664b a 0

c 0 a

0 c b

3777775−1

=

2666664 1
2b

1
2c

− a
2bc

1
2a

− b
2ac

1
2c

− c
2ba

1
2a

1
2b

3777775
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as long as abc 6= 0.

266 Form the expanded matrix 26666641 + a 1 1 1 0 0

1 1 + b 1 0 1 0

1 1 1 + c 0 0 1

3777775 .

Perform bcR1 → R1 , abR3 → R3 , caR2 → R2 . The matrix turns into2666664bc + abc bc bc bc 0 0

ca ca + abc ca 0 ca 0

ab ab ab + abc 0 0 ab

3777775 .

Perform R1 + R2 + R3 → R1 the matrix turns into2666664ab + bc + ca + abc ab + bc + ca + abc ab + bc + ca + abc bc ca ab

ca ca + abc ca 0 ca 0

ab ab ab + abc 0 0 ab

3777775 .

Perform 1
ab+bc+ca+abc

R1 → R1 . The matrix turns into2666664 1 1 1 bc
ab+bc+ca+abc

ca
ab+bc+ca+abc

ab
ab+bc+ca+abc

ca ca + abc ca 0 ca 0

ab ab ab + abc 0 0 ab

3777775 .

Perform R2 − caR1 → R2 and R3 − abR3 → R3 . We get26666641 1 1 bc
ab+bc+ca+abc

ca
ab+bc+ca+abc

ab
ab+bc+ca+abc

0 abc 0 − abc2

ab+bc+ca+abc
ca − c2a2

ab+bc+ca+abc
− a2bc

ab+bc+ca+abc

0 0 abc − ab2c
ab+bc+ca+abc

− a2bc
ab+bc+ca+abc

ab − a2b2

ab+bc+ca+abc

3777775 .

Perform 1
ABC

R2 → R2 and 1
ABC

R3 → R3 . We obtain26666641 1 1 bc
ab+bc+ca+abc

ca
ab+bc+ca+abc

ab
ab+bc+ca+abc

0 1 0 − c
ab+bc+ca+abc

1
b

− ca
b(ab+bc+ca+abc)

− a
ab+bc+ca+abc

0 0 1 − b
ab+bc+ca+abc

− a
ab+bc+ca+abc

1
c

− ab
c(ab+bc+ca+abc)

3777775 .

Finally we perform R1 − R2 − R3 → R1 , getting26666641 0 0 a+b+bc
ab+bc+ca+abc

− c
ab+bc+ca+abc

− b
ab+bc+ca+abc

0 1 0 − c
ab+bc+ca+abc

1
b

− ca
b(ab+bc+ca+abc)

− a
ab+bc+ca+abc

0 0 1 − b
ab+bc+ca+abc

− a
ab+bc+ca+abc

1
c

− ab
c(ab+bc+ca+abc)

3777775 .
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We conclude that the inverse is2666664 b+c+bc
ab+bc+ca+abc

− c
ab+bc+ca+abc

− b
ab+bc+ca+abc

− c
ab+bc+ca+abc

c+a+ca
ab+bc+ca+abc

− a
ab+bc+ca+abc

− b
ab+bc+ca+abc

− a
ab+bc+ca+abc

a+b+ab
ab+bc+ca+abc

3777775
271 Since rank

�
A2
�

< 5, A2 is not invertible. But then A is not invertible and hence rank (A) < 5.

282 The free variables are z and w. We have

2y + w = 2 =⇒ 2y = 2 − w =⇒ y = 1 + w,

and

x + y + z + w = 0 =⇒ x = −y − z − w = 2y + 2z + 2w.

Hence 26666666664 x

y

z

w

37777777775 =

266666666640

1

0

0

37777777775+ z

266666666640

0

1

0

37777777775+ w

266666666640

0

0

1

37777777775 .

This gives the 9 solutions.

283 We have 26666641 2 3

2 3 1

3 1 2

37777752666664x

y

z

3777775 =

26666645

6

0

3777775 ,

Hence 2666664x

y

z

3777775 =

26666641 2 3

2 3 1

3 1 2

3777775−1 26666645

6

0

3777775 =

26666644 2 0

2 0 4

0 4 2

377777526666645

6

0

3777775 =

26666644

3

3

3777775 .
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291 Observe that the third row is the sum of the first two rows and the fourth row is twice the third. So we have266666666666664
1 1 1 1 1 1

1 0 1 0 1 −1

2 1 2 1 2 0

4 2 4 2 4 0

1 0 0 0 1 0

377777777777775 R3−R1−R2→R3
 

R4−2R1−2R2→R4

266666666666664
1 1 1 1 1 1

1 0 1 0 1 −1

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 1 0

377777777777775
R2−R5→R2
 

R1−R5→R1

266666666666664
0 1 1 1 0 1

0 0 1 0 0 −1

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 1 0

377777777777775
Rearranging the rows we obtain 266666666666664

1 0 0 0 1 0

0 1 1 1 0 1

0 0 1 0 0 −1

0 0 0 0 0 0

0 0 0 0 0 0

377777777777775 .

Hence d and f are free variables. We obtain
c = −1,

b = 1 − c − d = 2 − d,

a = −f.

The solution is 266666666666664
a

b

c

d

f

377777777777775 =

266666666666664
0

2

−1

0

0

377777777777775+ d

266666666666664
0

−1

0

1

0

377777777777775+ f

266666666666664
−1

0

0

0

1

377777777777775 .

292 The unique solution is

266666666666664
1

1

−1

1

1

377777777777775.
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293 The augmented matrix of the system is 26666642m 1 1 2

1 2m 1 4m

1 1 2m 2m2

3777775 .

Performing R1 ↔ R2 . 2666664 1 2m 1 4m

2m 1 1 2

1 1 2m 2m2

3777775 .

Performing R2 ↔ R3 . 2666664 1 2m 1 4m

1 1 2m 2m2

2m 1 1 2

3777775 .

Performing R2 − R1 → R1 and R3 − 2mR1 → R3 we obtain26666641 2m 1 4m

0 1 − 2m 2m − 1 2m2 − 4m

0 1 − 4m2 1 − 2m 2 − 8m2

3777775 .

If m = 1
2

the matrix becomes 26666641 1 1 2

0 0 0 − 3
2

0 0 0 0

3777775
and hence it does not have a solution. If m 6= 1

2
, by performing 1

1−2m
R2 → R2 and 1

1−2m
R3 → R3 , the matrix becomes26666641 2m 1 4m

0 1 −1
2m(m−2)

1−2m

0 1 + 2m 1 2(1 + 2m)

3777775 .

Performing R3 − (1 + 2m)R2 → R3 we obtain26666641 2m 1 4m

0 1 −1
2m(m−2)

1−2m

0 0 2 + 2m
2(1+2m)(1−m2)

1−2m

3777775 .

If m = −1 then the matrix reduces to 26666641 −2 1 −4

0 1 −1 2

0 0 0 0

3777775 .
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The solution in this case is 2666664x

y

z

3777775 =

2666664 z

2 + z

z

3777775 .

If m 6= −1, m 6= − 1
2

we have the solutions 2666664x

y

z

3777775 =

2666664 m−1
1−2m

1−3m
1−2m

(1+2m)(1−m)

1−2m

3777775 .

294 By performing the elementary row operations, we obtain the following triangular form:

ax + y − 2z = 1,

(a − 1)
2
y + (1 − a)(a − 2)z = 1 − a,

(a − 2)z = 0.

If a = 2, there is an infinity of solutions: 2666664x

y

z

3777775 =

26666641 + t

−1

t

3777775 t ∈ R.

Assume a 6= 2. Then z = 0 and the system becomes

ax + y = 1,

(a − 1)
2
y = 1 − a,

2x + (3 − a)y = 1.

We see that if a = 1, the system becomes
x + y = 1,

2x + 2y = 1,

and so there is no solution. If (a − 1)(a − 2) 6= 0, we obtain the unique solution2666664x

y

z

3777775 =

2666664 1
a−1

− 1
a−1

0

3777775 .

295 The system is solvable if m 6= 0, m 6= ±2. If m 6= 2 there is the solution

2666664x

y

z

3777775 =

2666664 1
m−2

m+3
m−2

m+2
m−2

3777775 .

296 There is the unique solution

26666666664x

y

z

t

37777777775 =

26666666664 a + d + b − c

−c − d − b + a

d + c − b + a

c − d + b + a

37777777775 .
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297 The system can be written as 2666664b a 0

c 0 a

0 c b

37777752666664x

y

z

3777775 =

2666664c

b

a

3777775 .

The system will have the unique solution2666664x

y

z

3777775 =

2666664b a 0

c 0 a

0 c b

3777775−1 2666664c

b

a

3777775
=

2666664 1
2b

1
2c

− a
2bc

1
2a

− b
2ac

1
2c

− c
2ba

1
2a

1
2b

37777752666664c

b

a

3777775
=

2666664b2 + c2 − a2

2bc

a2 + c2 − b2

2ac

a2 + b2 − c2

2ab

3777775
,

as long as the inverse matrix exists, which is as long as abc 6= 0

298

x = 2−236

y = 2−3312

z = 223−7.

299 Denote the addition operations applied to the rows by a1 , a2, a3 , a4 and the subtraction operations to the columns
by b1 , b2 , b3 , b4. Comparing A and AT we obtain 7 equations in 8 unknowns. By inspecting the diagonal entries, and the
entries of the first row of A and AT , we deduce the following equations

a1 = b1,

a2 = b2,

a3 = b3,

a4 = b4,

a1 − b2 = 3,

a1 − b3 = 6,

a1 − b4 = 9.

This is a system of 7 equations in 8 unknowns. We may let a4 = 0 and thus obtain a1 = b1 = 9, a2 = b2 = 6, a3 = b3 = 3,

a4 = b4 = 0.
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300 The augmented matrix of this system is266666666666664
−y 1 0 0 1 0

1 −y 1 0 0 0

0 1 −y 1 0 0

0 0 1 −y 1 0

1 0 0 1 −y 0

377777777777775 .

Permute the rows to obtain 266666666666664
1 0 0 1 −y 0

0 1 −y 1 0 0

0 0 1 −y 1 0

1 −y 1 0 0 0

−y 1 0 0 1 0

377777777777775 .

Performing R5 + yR1 → R5 and R4 − R1 → R4 we get266666666666664
1 0 0 1 −y 0

0 1 −y 1 0 0

0 0 1 −y 1 0

0 −y 1 −1 y 0

0 1 0 y 1 − y2 0

377777777777775 .

Performing R5 − R2 → R5 and R4 + yR2 → R4 we get266666666666664
1 0 0 1 −y 0

0 1 −y 1 0 0

0 0 1 −y 1 0

0 0 1 − y2 y − 1 y 0

0 0 y y − 1 1 − y2 0

377777777777775 .

Performing R5 − yR3 → R5 and R4 + (y2 − 1)R3 → R4 we get266666666666664
1 0 0 1 −y 0

0 1 −y 1 0 0

0 0 1 −y 1 0

0 0 0 −y3 + 2y − 1 y2 + y − 1 0

0 0 0 y2 + y − 1 1 − y − y2 0

377777777777775 .
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Performing R5 + R4 → R5 we get266666666666664
1 0 0 1 −y 0

0 1 −y 1 0 0

0 0 1 −y 1 0

0 0 0 −y3 + 2y − 1 y2 + y − 1 0

0 0 0 −y3 + y2 + 3y − 2 0 0

377777777777775 .

Upon factoring, the matrix is equivalent to266666666666664
1 0 0 1 −y 0

0 1 −y 1 0 0

0 0 1 −y 1 0

0 0 0 −(y − 1)(y2 + y − 1) y2 + y − 1 0

0 0 0 −(y − 2)(y2 + y − 1) 0 0

377777777777775 .

Thus (y − 2)(y2 + y − 1)x4 = 0. If y = 2 then the system reduces to266666666666664
1 0 0 1 −2 0

0 1 −2 1 0 0

0 0 1 −2 1 0

0 0 0 −5 5 0

0 0 0 0 0 0

377777777777775 .

In this case x5 is free and by backwards substitution we obtain266666666666664
x1

x2

x3

x4

x5

377777777777775 =

266666666666664
t

t

t

t

t

377777777777775 , t ∈ R.

If y2 + y − 1 = 0 then the system reduces to 266666666666664
1 0 0 1 −y 0

0 1 −y 1 0 0

0 0 1 −y 1 0

0 0 0 0 0 0

0 0 0 0 0 0

377777777777775 .
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In this case x4, x5 are free, and 266666666666664
x1

x2

x3

x4

x5

377777777777775 =

266666666666664
yt − s

y2s − yt − s

ys − t

s

t

377777777777775 , (s, t) ∈ R2
.

Since y2s − s = (y2 + y − 1)s − ys, this last solution can be also written as266666666666664
x1

x2

x3

x4

x5

377777777777775 =

266666666666664
yt − s

−ys − yt

ys − t

s

t

377777777777775 , (s, t) ∈ R2
.

Finally, if (y − 2)(y2 + y − 1) 6= 0, then x4 = 0, and we obtain266666666666664
x1

x2

x3

x4

x5

377777777777775 =

266666666666664
0

0

0

0

0

377777777777775 .

323
√

2a2 − 2a + 1

324 ||λv|| = 1
2

=⇒
p

(λ)2 + (−λ)2 = 1
2

=⇒ 2λ2 = 1
4

=⇒ λ = ± 1√
8

.

325 0

326 a = ±1 or a = −8.

327 [A] 2(x + y) − 1
2
z, [B] x + y − 1

2
z, [C] −(x + y + z)

328 [A]. 0, [B]. 0, [C]. 0, [D]. 0, [E]. 2c(= 2d)

329 [F]. 0, [G]. b, [H]. 20, [I]. 0.

330 Let the skew quadrilateral be ABCD and let P, Q, R, S be the midpoints of [A, B], [B, C], [C, D], [D, A], respectively.
Put x = OX, where X ∈ {A, B, C, D, P, Q, R, S}. Using the Section Formula 4.4 we have

p =
a + b

2
, q =

b + c

2
, r =

c + d

2
, s =

d + a

2
.

This gives

p − q =
a − c

2
, s − r =

a − c

2
.

This means that
−−→
QP =

−→
RS and so PQRS is a parallelogram since one pair of sides are equal and parallel.
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331 We have 2
−−→
BC =

−→
BE +

−−→
EC. By Chasles’ Rule

−−→
AC =

−−→
AE +

−−→
EC, and

−−→
BD =

−→
BE +

−−→
ED. We deduce that

−−→
AC +

−−→
BD =

−−→
AE +

−−→
EC +

−→
BE +

−−→
ED =

−−→
AD +

−−→
BC.

But since ABCD is a parallelogram,
−−→
AD =

−−→
BC. Hence

−−→
AC +

−−→
BD =

−−→
AD +

−−→
BC = 2

−−→
BC.

332 We have
−→
IA = −3

−→
IB ⇐⇒

−→
IA = −3(

−→
IA +

−−→
AB) = −3

−→
IA − 3

−−→
AB. Thus we deduce

−→
IA + 3

−→
IA = −3

−−→
AB ⇐⇒ 4

−→
IA = −3

−−→
AB

⇐⇒ 4
−→
AI = 3

−−→
AB

⇐⇒
−→
AI = 3

4

−−→
AB.

Similarly

−→
JA = − 1

3

−→
JB ⇐⇒ 3

−→
JA = −

−→
JB

⇐⇒ 3
−→
JA = −

−→
JA −

−−→
AB

⇐⇒ 4
−→
JA = −

−−→
AB

⇐⇒
−→
AJ = 1

4

−−→
AB

.

Thus we take I such that
−→
AI = 3

4

−−→
AB and J such that

−→
AJ = 1

4

−−→
AB.

Now
−−−→
MA + 3

−−→
MB =

−−→
MI +

−→
IA + 3

−→
IB

= 4
−−→
MI +

−→
IA + 3

−→
IB

= 4
−−→
MI,

and

3
−−−→
MA +

−−→
MB = 3

−−→
MJ + 3

−→
JA +

−−→
MJ +

−→
JB

= 4
−−→
MJ + 3

−→
JA +

−→
JB

= 4
−−→
MJ.

333 Let G, O and P denote vectors from an arbitrary origin to the gallows, oak, and pine, respectively. The conditions of
the problem define X and Y, thought of similarly as vectors from the origin, by X = O + R(O − G), Y = P + R(P − G),
where R is the 90◦ rotation to the right, a linear transformation on vectors in the plane; the fact that −R is 90◦ leftward
rotation has been used in writing Y . Anyway, then

X + Y

2
=

O + P

2
+

R(O − P)

2

is independent of the position of the gallows. This gives a simple algorithm for treasure-finding: take P as the (hitherto)

arbitrary origin, then the treasure is at
O + R(O)

2
.

352 a = 1
2

354

p =

2644

5

375 = 2

264−1

1

375+ 3

2642

1

375 = 2r + 3s.
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355 Since a1 = a•i, a2 = a•j, we may write
a = (a•i)i + (a•j)j

from where the assertion follows.

356

αa + βb = 0 =⇒ a•(αa + βb) = a•0

=⇒ α(a•a) = 0

=⇒ α||a||
2

= 0.

Since a 6= 0, we must have ||a|| 6= 0 and thus α = 0. But if α = 0 then

αa + βb = 0 =⇒ βb = 0

=⇒ β = 0,

since b 6= 0.

357 We must shew that
(2x + 3y)•(2x − 3y) = 0.

But

(2x + 3y)•(2x − 3y) = 4||x||
2

− 9||y||
2

= 4(
9

4
||y||

2
) − 9||y||

2
= 0.

358 We have ∀v ∈ R2, v•(a − b) = 0. In particular, choosing v = a − b, we gather

(a − b)•(a − b) = ||a − b||
2

= 0.

But the norm of a vector is 0 if and only if the vector is the 0 vector. Therefore a − b = 0, i.e., a = b.

359 We have

||a ± b||
2

= (a ± b)•(a ± b)

= a•a ± 2a•b + b•b

= ||a||
2 ± 2a•b + ||b||

2
,

whence the result follows.

360 We have

||u + v||2 − ||u − v||2 = (u + v)•(u + v) − (u − v)•(u − v)

= u•u + 2u•v + v•v − (u•u − 2u•v + v•v)

= 4u•v,

giving the result.

361 By definition

proj
projax

a

=
projax•a

||a||
2

a

=

a•x

||x||2
x•a

||a||
2

a

=
(a•x)2

||x||
2
||a||

2
a,

Since 0 ≤ (a•x)2

||x||
2
||a||

2
≤ 1 by the CBS Inequality, the result follows.
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362 Clearly, if a = 0 and λ 6= 0 then there are no solutions. If both a = 0 and λ = 0, then the solution set is the whole space
R2 . So assume that a 6= 0. By Theorem 347, we may write x = u + v with projxa = u||a and v ⊥ a. Thus there are infinitely
many solutions, each of the form

x = u + v =
x•a

||a||
2
a + v =

λ

||a||
2
a + v,

where v ∈ a⊥ .

372 Since a =

264 2

−1

375 is normal to 2x − y = 1 and b =

264 1

−3

375 is normal to x − 3y = 1, the desired angle can be obtained by

finding the angle between the normal vectors:

(̂a, b) = arccos
a•b

||a||||b||
= arccos

5√
5 ·

√
10

= arccos
1√
2

=
π

4
.

373 2(x − 1) + (y + 1) = 0 or 2x + y = 1.

374 By Chasles’ Rule
−−−→
AA ′ =

−−→
AG +

−−−→
GA ′ ,

−−→
BB ′ =

−−→
BG +

−−−→
GB ′ , and

−−−→
CC ′ =

−−→
CG +

−−−→
GC ′ . Thus

0 =
−−−→
AA ′ +

−−→
BB ′ +

−−−→
CC ′

=
−−→
AG +

−−−→
GA ′ +

−−→
BG +

−−−→
GB ′ +

−−→
CG +

−−−→
GC ′

= −(
−−→
GA +

−−→
GB +

−−→
GC) + (

−−−→
GA ′ +

−−−→
GB ′ +

−−−→
GC ′)

=
−−−→
GA ′ +

−−−→
GB ′ +

−−−→
GC ′,

whence the result.

375 We have:

➊ The points F, A, D are collinear, and so
−→
FA is parallel to

−−→
FD, meaning that there is k ∈ R \ {0} such that

−→
FA = k

−−→
FD.

Since the lines (AB) and (DC) are parallel, we obtain through Thales’ Theorem that
−→
FI = k

−→
FJ and

−→
FB = k

−→
FC. This

gives
−→
FA −

−→
FI = k(

−−→
FD −

−→
FJ) =⇒

−→
IA = k

−→
JD.

Similarly
−→
FB −

−→
FI = k(

−→
FC −

−→
FJ) =⇒

−→
IB = k

−→
JC.

Since I is the midpoint of [A, B],
−→
IA +

−→
IB = 0, and thus k(

−→
JC +

−→
JD) = 0. Since k 6= 0, we have

−→
JC +

−→
JD = 0, meaning

that J is the midpoint of [C, D]. Therefore the midpoints of [A, B] and [C, D] are aligned with F.

➋ Let J ′ be the intersection of the lines (EI) and (DC). Let us prove that J ′ = J.

Since the points E, A, C are collinear, there is l 6= 0 such that
−−→
EA = l

−−→
EC. Since the lines (ab) and (DC) are parallel,

we obtain via Thales’ Theorem that
−→
EI = l

−−→
EJ ′ and

−→
EB = l

−−→
ED. These equalities give

−−→
EA −

−→
EI = l(

−−→
EC −

−−→
EJ

′
) =⇒

−→
IA = l

−−→
J

′
C,

−→
EB −

−→
EI = l(

−−→
ED −

−−→
EJ

′
) =⇒

−→
IB = l

−−→
J

′
D.

Since I is the midpoint of [A, B],
−→
IA +

−→
IB = 0, and thus l(

−−→
J ′C +

−−→
J ′D) = 0. Since l 6= 0, we deduce

−−→
J ′C +

−−→
J ′D = 0,

that is, J ′ is the midpoint of [C, D], and so J ′ = J.

376 We have:

➊ By Chasles’ Rule

−−→
AE = 1

4

−−→
AC ⇐⇒

−−→
AB +

−→
BE = 1

4

−−→
AC ,

and
−→
AF = 3

4

−−→
AC ⇐⇒

−−→
AD +

−−→
DF = 3

4

−−→
AC .
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Adding, and observing that since ABCD is a parallelogram,
−−→
AB =

−−→
CD,

−−→
AB +

−→
BE +

−−→
AD +

−−→
DF =

−−→
AC ⇐⇒

−→
BE +

−−→
DF =

−−→
AC −

−−→
AB −

−−→
AD

⇐⇒
−→
BE +

−−→
DF =

−−→
AD +

−−→
DC −

−−→
AB −

−−→
AD

⇐⇒
−→
BE = −

−−→
DF.

.

The last equality shews that the lines (BE) and (DF) are parallel.

➋ Observe that
−→
BJ = 1

2

−−→
BC = 1

2

−−→
AD =

−→
AI = −

−→
IA . Hence

−→
IJ =

−→
IA +

−−→
AB +

−→
BJ =

−−→
AB,

proving that the lines (AB) and (IJ) are parallel.

Observe that
−→
IE =

−→
IA +

−−→
AE =

1

2

−−→
DA +

1

4

−−→
AC =

1

2

−−→
CB +

−→
FC =

−→
CJ +

−→
FC =

−→
FC +

−→
CJ =

−→
FJ,

whence IEJF is a parallelogram.

377 Since
−→
IE = 1

3

−→
ID and [I, D] is a median of △ABD, E is the centre of gravity of △ABD. Let M be the midpoint of

[B, D], and observe that M is the centre of the parallelogram, and so 2
−−−→
AM =

−−→
AB +

−−→
AD. Thus

−−→
AE =

2

3

−−−→
AM =

1

3
(2

−−−→
AM) =

1

3
(
−−→
AB +

−−→
AD).

To shew that A, C, E are collinear it is enough to notice that
−−→
AE = 1

3

−−→
AC.

378 Suppose A, B, C are collinear and that
||[A, B]||

||[B, C]||
=

λ

µ
. Then by the Section Formula 4.4,

b =
λc + µa

λ + µ
,

whence µa−(λ +µ)b+λc = 0 and clearly µ −(λ +µ)+λ = 0. Thus we may take α = µ, β = λ +µ, and γ = λ. Conversely,

suppose that
αa + βb + γc = 0, α + β + γ = 0

for some real numbers α, β, γ, not all zero. Assume without loss of generality that γ 6= 0. Otherwise we simply change the
roles of γ, and α and β Then γ = −(α + β) 6= 0. Hence

αa + βb = (α + β)c =⇒ c =
αa + βb

α + β
,

and thus [O, C] divides [A, B] into the ratio
β

α
, and therefore, A, B, C are collinear.

379 Put
−−→
OX = x for X ∈ {A, A ′, B, B ′, C, C ′, L, M, N, V}. Using problem 378 we deduce

v + αa + α
′a ′

= 0, 1 + α + α
′

= 0, (A.1)

v + βa + β
′a ′

= 0, 1 + β + β
′

= 0, (A.2)

v + γa + γ
′a ′

= 0, 1 + γ + γ
′

= 0. (A.3)

From A.2, A.3, and the Section Formula 4.4 we find

βb − γc

β − γ
=

β ′b ′ − γ ′c ′

β ′ − γ ′ = l,

whence (β − γ)l = βb − γc. In a similar fashion, we deduce

(γ − α)m = γc − αa,

(α − β)n = αa − βb.

This gives
(β − γ)l + (γ − α)m + (α − β)n = 0,

(β − γ) + (γ − α) + (α − β) = 0,

and appealing to problem 378 once again, we deduce that L, M, N are collinear.
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391 [A]
−−→
AS, [B]

−−→
AB.

392 Put

a =

26666641

1

1

3777775×

26666641

1

0

3777775 = (i + j + k)×(i + j) = j − i =

2666664−1

1

0

3777775 .

Then either

3a

||a||
=

3a√
2

=

2666664− 3√
2

3√
2

0

3777775 ,

or

−
3a

||a||
=

2666664 3√
2

− 3√
2

0

3777775
will satisfy the requirements.

393 The desired area is ������−−→PQ×−→
PR

������ =

����������������������2666664 0

1

−1

3777775×

2666664 1

0

−1

3777775���������������������� =

����������������������2666664−1

−1

−1

3777775���������������������� =
√

3.

394 It is not associative, since i×(i×j) = i×k = −j but (i×i)×j = 0×j = 0.

395 We have x×x = −x×x by letting y = x in 4.15. Thus 2x×x = 0 and hence x×x = 0.

396 2a×b

397
a×(x×b) = b×(x×a) ⇐⇒ (a•b)x − (a•x)b = (b•a)x − (b•x)a ⇐⇒ a•x = b•x = 0.

The answer is thus {x : x ∈ Ra×b}.

398

x =
(a•b)a + 6b + 2a×c

12 + 2||a||
2

y =
(a•c)a + 6c + 3a×b

18 + 3||a||
2

399 Assume contrariwise that a, b, c are three unit vectors in R3 such that the angle between any two of them is >
2π

3
. Then

a•b < −
1

2
, b•c < −

1

2
, and c•a < −

1

2
. Thus

||a + b + c||
2

= ||a||
2

+ ||b||
2

+ ||c||
2

+2a•b + 2b•c + 2c•a

< 1 + 1 + 1 − 1 − 1 − 1

= 0,

which is impossible, since a norm of vectors is always ≥ 0.
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410 The vectors 2666664a − (−a)

0 − 1

a − 0

3777775 =

26666642a

−1

a

3777775
and 26666640 − (−a)

1 − 1

2a − 0

3777775 =

2666664 a

0

2a

3777775
are coplanar. A vector normal to the plane is 26666642a

−1

a

3777775×

2666664 a

0

2a

3777775 =

2666664−2a

−3a2

a

3777775 .

The equation of the plane is thus given by 2666664−2a

−3a2

a

3777775 •

2666664x − a

y − 0

z − a

3777775 = 0,

that is,

2ax + 3a
2
y − az = a

2
.

411 The vectorial form of the equation of the line is

r =

26666641

0

1

3777775+ t

2666664 1

−2

−1

3777775 .

Since the line follows the direction of

2666664 1

−2

−1

3777775, this means that

2666664 1

−2

−1

3777775 is normal to the plane, and thus the equation of the

desired plane is

(x − 1) − 2(y − 1) − (z − 1) = 0.

412 Observe that (0, 0, 0) (as 0 = 2(0) = 3(0)) is on the line, and hence on the plane. Thus the vector2666664 1 − 0

−1 − 0

−1 − 0

3777775 =

2666664 1

−1

−1

3777775
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lies on the plane. Now, if x = 2y = 3z = t, then x = t, y = t/2, z = t/3. Hence, the vectorial form of the equation of the line
is

r =

26666640

0

0

3777775+ t

2666664 1

1/2

1/3

3777775 = t

2666664 1

1/2

1/3

3777775 .

This means that

2666664 1

1/2

1/3

3777775 also lies on the plane, and thus2666664 1

−1

−1

3777775×

2666664 1

1/2

1/3

3777775 =

2666664 1/6

−4/3

3/2

3777775
is normal to the plane. The desired equation is thus

1

6
x −

4

3
y +

3

2
z = 0.

413 Put ax = by = cz = t, so x = t/a; y = t/b; z = t/c. The parametric equation of the line is2666664x

y

z

3777775 = t

26666641/a

1/b

1/c

3777775 , t ∈ R.

Thus the vector

26666641/a

1/b

1/c

3777775 is perpendicular to the plane. Therefore, the equation of the plane is26666641/a

1/b

1/c

3777775 •

2666664x − 1

y − 1

z − 1

3777775 =

26666640

0

0

3777775 ,

or
x

a
+

y

b
+

z

c
=

1

a
+

1

b
+

1

c
.

We may also write this as

bcx + cay + abz = ab + bc + ca.

414 A vector normal to the plane is

2666664 a

a2

a2

3777775. The line sought has the same direction as this vector, thus the equation of the



200 Appendix A

line is 2666664x

y

z

3777775 =

26666640

0

1

3777775+ t

2666664 a

a2

a2

3777775 , t ∈ R.

415 We have

x − z − y = 1 =⇒ −1 − y = 1 =⇒ y = −2.

Hence if z = t, 2666664x

y

z

3777775 =

2666664t − 1

−2

t

3777775 =

2666664−1

−2

0

3777775+ t

26666641

0

1

3777775 .

416 The vector 2666664 2 − 1

1 − 0

1 − (−1)

3777775 =

26666641

1

2

3777775
lies on the plane. The vector 26666641

0

1

3777775×

26666641

1

2

3777775 =

2666664 1

1

−1

3777775
is normal to the plane. Hence the equation of the plane is2666664 1

1

−1

3777775 •

2666664x − 1

y

z + 1

3777775 = 0 =⇒ x + y − z = 2.

417 We have c×a = −i + 2j and a×b = 2k − 3i. By Theorem 408, we have

b×c = −a×b − c×a = −2k + 3i + i − 2j = 4i − 2j − 2k.

418 4x + 6y = 1

419 There are 7 vertices (V0 = (0, 0, 0), V1 = (11, 0, 0), V2 = (0, 9, 0), V3 = (0, 0, 8), V4 = (0, 3, 8), V5 = (9, 0, 2),
V6 = (4, 7, 0)) and 11 edges (V0V1 , V0V2 , V0V3, V1V5 , V1V6 , V2V4 , V3V4, V3V5, V4V5 , and V4V6).

427 Expand
����∑n

i=1 ai

����2 = 0.

428 Observe that
∑n

k=1 1 = n. Then we have

n
2

=

 
n∑

k=1

1

!2

=

 
n∑

k=1

(ak)

�
1

ak

�!2

≤
 

n∑

k=1

a
2
k

! 
n∑

k=1

1

a2
k

!
,

giving the result.
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429 This follows at once from the CBS Inequality by putting

v =

26666666664
a1

1

a2

2

. . .

an

n

37777777775 , u =

26666666664 1

2

. . .

n

37777777775
and noticing that

n∑

k=1

k
2

=
n(n + 1)(2n + 1)

6
.

442 No, since 1Fv = v is not fulfilled. For example

1 ·

2641

1

375 =

2641 · 1

0

375 6=

2641

1

375 .

443 We expand (1F + 1F)(a + b) in two ways, first using 5.7 first and then 5.8, obtaining

(1F + 1F)(a + b) = (1F + 1F)a + (1F + 1F)b = a + a + b + b,

and then using 5.8 first and then 5.7, obtaining

(1F + 1F)(a + b) = 1F(a + b) + 1F(a + b) = a + b + a + b.

We thus have the equality
a + a + b + b = a + b + a + b.

Cancelling a from the left and b from the right, we obtain

a + b = b + a,

which is what we wanted to shew.

444 We must prove that each of the axioms of a vector space are satisfied. Clearly if (x, y, α) ∈ R+ × R+ × R then
x ⊕ y = xy > 0 and α ⊗ x = xα > 0, so V is closed under vector addition and scalar multiplication. Commutativity and
associativity of vector addition are obvious.

Let A be additive identity. Then we need

x ⊕ A = x =⇒ xA = x =⇒ A = 1.

Thus the additive identity is 1. Suppose I is the additive inverse of x. Then

x ⊕ I = 1 =⇒ xI = 1 =⇒ I =
1

x
.

Hence the additive inverse of x is
1

x
.

Now
α ⊗ (x ⊕ y) = (xy)

α
= x

α
y

α
= x

α ⊕ y
α

= (α ⊗ x) ⊕ (α ⊗ y),

and
(α + β) ⊗ x = x

α+β
= x

α
x

β
= (x

α
) ⊕ (x

β
) = (α ⊗ x) ⊕ (β ⊗ x),

whence the distributive laws hold.

Finally,
1 ⊗ x = x

1
= x,

and
α ⊗ (β ⊗ x) = (β ⊗ x)

α
= (x

β
)

α
= x

αβ
= (αβ) ⊗ x,

and the last two axioms also hold.
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445 C is a vector space over R, the proof is trivial. But R is not a vector space over C, since, for example taking i as a scalar
(from C) and 1 as a vector (from R) the scalar multiple i · 1 = i 6∈ R and so there is no closure under scalar multiplication.

446 One example is

(Z2)
3

=






26666640

0

0

3777775 ,

26666640

0

1

3777775 ,

26666640

1

0

3777775 ,

26666640

1

1

3777775 ,

26666641

0

0

3777775 ,

26666641

0

1

3777775 ,

26666641

1

0

3777775 ,

26666641

1

1

3777775




.

Addition is the natural element-wise addition and scalar multiplication is ordinary element-wise scalar multiplication.

447 One example is

(Z3)
2

=






2640

0

375 ,

2640

1

375 ,

2640

2

375 ,

2641

0

375 ,

2641

1

375 ,

2641

2

375 ,

2642

0

375 ,

2642

1

375 ,

2642

2

375



.

Addition is the natural element-wise addition and scalar multiplication is ordinary element-wise scalar multiplication.

454 Take α ∈ R and

x =

26666666664a

b

c

d

37777777775 ∈ X, a − b − 3d = 0, y =

26666666664a ′

b ′

c ′

d ′

37777777775 ∈ X, a
′
− b

′
− 3d

′
= 0.

Then

x + αy =

26666666664a

b

c

d

37777777775+ α

26666666664a ′

b ′

c ′

d ′

37777777775 =

26666666664a + αa ′

b + αb ′

c + αc ′

d + αd ′

37777777775 .

Observe that

(a + αa
′
) − (b + αb

′
) − 3(d + αd

′
) = (a − b − 3d) + α(a

′
− b

′
− 3d

′
) = 0 + α0 = 0,

meaning that x + αy ∈ X, and so X is a vector subspace of R4.

455 Take

u =

266666666666664
a1

2a1 − 3b1

5b1

a1 + 2b1

a1

377777777777775 , v =

266666666666664
a2

2a2 − 3b2

5b2

a2 + 2b2

a2

377777777777775 , α ∈ R.
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Put s = a1 + αa2, t = b1 + αb2 . Then

u + αv =

266666666666664
a1 + αa2

2(a1 + αa2) − 3(b1 + αb2)

5(b1 + αb2)

(a1 + αa2) + 2(b1 + αb2)

a1 + αa2

377777777777775 =

266666666666664
s

2s − 3t

5t

s + 2t

s

377777777777775 ∈ X,

since this last matrix has the basic shape of matrices in X. This shews that X is a vector subspace of R5 .

456 Take (u, v) ∈ X2 and α ∈ R. Then

a•(u + αv) = a•u + αa•v = 0 + 0 = 0,

proving that X is a vector subspace of Rn.

457 Take (u, v) ∈ X2 and α ∈ R. Then

a×(u + αv) = a×u + αa×v = 0 + α0 = 0,

proving that X is a vector subspace of Rn.

462 We shew that some of the properties in the definition of vector subspace fail to hold in these sets.

➊ Take x =

26666640

1

0

3777775 , α = 2. Then x ∈ V but 2x =

26666640

2

0

3777775 6∈ V as 02 + 22 = 4 6= 1. So V is not closed under scalar

multiplication.

➋ Take x =

26666640

1

0

3777775 , y =

26666641

0

0

3777775. Then x ∈ W, y ∈ W but x + y =

26666641

1

0

3777775 6∈ W as 1 · 1 = 1 6= 0. Hence W is not closed under

vector addition.

➌ Take x =

264−1 1

0 0

375 . Then x ∈ Z but −x = −

264−1 1

0 0

375 =

2641 −1

0 0

375 6∈ Z as 1 + (−1)2 = 2 6= 0. So Z is not closed

under scalar multiplication.

463 Assume U1 * U2 and U2 * U1 . Take v ∈ U2 \ U1 (which is possible because U2 * U1) and u ∈ U1 \ U2 (which is
possible because U1 * U2). If u + v ∈ U1 , then—as −u is also in U1—the sum of two vectors in U1 must also be in U1

giving

u + v − u = v ∈ U1,

a contradiction. Similarly if u + v ∈ U2 , then—as −v also in U2—the sum of two vectors in U2 must also be in U1 giving

u + v − u = u ∈ U2,

another contradiction. Hence either U1 ⊆ U2 or U2 ⊆ U1 (or possibly both).

464 Assume contrariwise that V = U1

S
U2

S
· · ·
S

Uk is the shortest such list. Since the Uj are proper subspaces, k > 1.

Choose x ∈ U1, x 6∈ U2

S
· · ·
S

Uk and choose y 6∈ U1 . Put L = {y + αx|α ∈ F}. Claim: L
T

U1 = ∅. For if u ∈ L
T

U1

then ∃a0 ∈ F with u = y + a0x and so y = u − a0x ∈ U1 , a contradiction. So L and U1 are disjoint.
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We now shew that L has at most one vector in common with Uj , 2 ≤ j ≤ k. For, if there were two elements of F, a 6= b

with y + ax, y + bx ∈ Uj , j ≥ 2 then

(a − b)x = (y + ax) − (y + bx) ∈ Uj ,

contrary to the choice of x.

Conclusion: since F is infinite, L is infinite. But we have shewn that L can have at most one element in common with the
Uj . This means that there are not enough Uj to go around to cover the whole of L. So V cannot be a finite union of proper
subspaces.

465 Take F = Z2, V = F × F. Then V has the four elements2640

0

375 ,

2640

1

375 ,

2641

0

375 ,

2641

1

375 ,

with the following subspaces

V1 =






2640

0

375 ,

2640

1

375



, V2 =






2640

0

375 ,

2641

0

375



, V3 =






2640

0

375 ,

2641

1

375



.

It is easy to verify that these subspaces satisfy the conditions of the problem.

475 If

a

26666641

0

0

3777775+ b

26666641

1

0

3777775+ c

26666641

1

1

3777775 = 0,

then 2666664a + b + c

b + c

c

3777775 =

26666640

0

0

3777775 .

This clearly entails that c = b = a = 0, and so the family is free.

476 Assume

a

266666666641

1

1

1

37777777775+ b

26666666664 1

1

−1

−1

37777777775+ c

26666666664 1

−1

1

−1

37777777775+ d

266666666641

1

0

1

37777777775 =

266666666640

0

0

0

37777777775 .

Then

a + b + c + d = 0,

a + b − c + d = 0,

a − b + c = 0,

a − b − c + d = 0.

Subtracting the second equation from the first, we deduce 2c = 0, that is, c = 0. Subtracting the third equation from the
fourth, we deduce −2c + d = 0 or d = 0. From the first and third equations, we then deduce a + b = 0 and a − b = 0, which
entails a = b = 0. In conclusion, a = b = c = d = 0.
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Now, put

x

266666666641

1

1

1

37777777775+ y

26666666664 1

1

−1

−1

37777777775+ z

26666666664 1

−1

1

−1

37777777775+ w

266666666641

1

0

1

37777777775 =

266666666641

2

1

1

37777777775 .

Then

x + y + z + w = 1,

x + y − z + w = 2,

x − y + z = 1,

x − y − z + w = 1.

Solving as before, we find

2

266666666641

1

1

1

37777777775+
1

2

26666666664 1

1

−1

−1

37777777775−
1

2

26666666664 1

−1

1

−1

37777777775−

266666666641

1

0

1

37777777775 =

266666666641

2

1

1

37777777775 .

477 Since a, b are linearly independent, none of them is 0. Assume that there are (α, β, γ) ∈ R3 such that

αa + βb + γa×b = 0. (A.4)

Since a•(a×b) = 0, taking the dot product of A.4 with a yields α||a||
2

= 0, which means that α = 0, since ||a|| 6= 0. Similarly,
we take the dot product with b and a×b obtaining respectively, β = 0 and γ = 0. This establishes linear independence.

478 Assume that
λ1a1 + · · · + λkak = 0.

Taking the dot product with aj and using the fact that ai
•aj = 0 for i 6= j we obtain

0 = 0•aj = λjaj
•aj = λj ||aj ||

2
.

Since aj 6= 0 =⇒ ||aj ||
2 6= 0, we must have λj = 0. Thus the only linear combination giving the zero vector is the trivial

linear combination, which proves that the vectors are linearly independent.

481 We have
(v1 + v2) − (v2 + v3) + (v3 + v4) − (v4 + v1) = 0,

a non-trivial linear combination of these vectors equalling the zero-vector.

483 Yes. Suppose that a + b
√

2 = 0 is a non-trivial linear combination of 1 and
√

2 with rational numbers a and b. If one
of a, b is different from 0 then so is the other. Hence

a + b
√

2 = 0 =⇒
√

2 = −
b

a
.

The sinistral side of the equality
√

2 = −
b

a
is irrational whereas the dextral side is rational, a contradiction.

484 No. The representation 2 · 1 + (−
√

2)
√

2 = 0 is a non-trivial linear combination of 1 and
√

2.

485 1. Assume that
a + b

√
2 + c

√
3 = 0, a, b, c, ∈ Q, a

2
+ b

2
+ c

2 6= 0.

If ac 6= 0, then

b
√

2 = −a − c
√

3 ⇔ 2b
2

= a
2

+ 2ac
√

3 + 3c
2 ⇔

2b2 − a2 − 3c2

2ac
=

√
3.
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The dextral side of the last implication is irrational, whereas the sinistral side is rational. Thus it must be the case that
ac = 0. If a = 0, c 6= 0 then

b
√

2 + c
√

3 = 0 ⇔ −
b

c
=

r
3

2
,

and again the dextral side is irrational and the sinistral side is rational. Thus if a = 0 then also c = 0. We can similarly
prove that c = 0 entails a = 0. Thus we have

b
√

2 = 0,

which means that b = 0. Therefore

a + b
√

2 + c
√

3 = 0, a, b, c, ∈ Q, ⇔ a = b = c = 0.

This proves that {1,
√

2,
√

3} are linearly independent over Q.

2. Rationalising denominators,

1

1 −
√

2
+

2√
12 − 2

=
1 +

√
2

1 − 2
+

2
√

12 + 4

12 − 4

= −1 −
√

2 +
1

2

√
3 +

1

2

= −
1

2
−

√
2 +

1

2

√
3.

486 Assume that
ae

x
+ be

2x
+ ce

3x
= 0.

Then
c = −ae

−2x
− be

−x
.

Letting x → +∞, we obtain c = 0. Thus
ae

x
+ be

2x
= 0,

and so
b = −ae

−x
.

Again, letting x → +∞, we obtain b = 0. This yields

ae
x

= 0.

Since the exponential function never vanishes, we deduce that a = 0. Thus a = b = c = 0 and the family is linearly
independent over R.

487 This follows at once from the identity
cos 2x = cos2

x − sin2
x,

which implies
cos 2x − cos2

x + sin2
x = 0.

500 Given an arbitrary polynomial
p(x) = a + bx + cx

2
+ dx

3
,

we must shew that there are real numbers s, t, u, v such that

p(x) = s + t(1 + x) + u(1 + x)
2

+ v(1 + x)
3
.

In order to do this we find the Taylor expansion of p around x = −1. Letting x = −1 in this last equality,

s = p(−1) = a − b + c − d ∈ R.

Now,
p

′
(x) = b + 2cx + 3dx

2
= t + 2u(1 + x) + 3v(1 + x)

2
.

Letting x = −1 we find
t = p

′
(−1) = b − 2c + 3d ∈ R.

Again,
p

′′
(x) = 2c + 6dx = 2u + 6v(1 + x).

Letting x = −1 we find
u = p

′′
(−1) = c − 3d ∈ R.

Finally,
p

′′′
(x) = 6d = 6v,

so we let v = d ∈ R. In other words, we have

p(x) = a + bx + cx
2

+ dx
3

= (a − b + c − d) + (b − 2c + 3d)(1 + x) + (c − 3d)(1 + x)
2

+ d(1 + x)
3
.
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501 Assume contrariwise that 2666664 1

1

−1

3777775 = a

2666664 1

0

−1

3777775+ b

2666664 0

1

−1

3777775 .

Then we must have
a = 1,

b = 1,

−a − b = −1,

which is impossible. Thus

2666664 1

1

−1

3777775 is not a linear combination of

2666664 1

0

−1

3777775 ,

2666664 0

1

−1

3777775 and hence is not in span

0BBBBB�2666664 1

0

−1

3777775 ,

2666664 0

1

−1

37777751CCCCCA.

502 It is

a

2641 0

0 0

375+ b

2640 0

0 1

375+ c

264 0 1

−1 0

375 =

264 a c

−c b

375 ,

i.e., this family spans the set of all skew-symmetric 2 × 2 matrices over R.

515 We have 266666666666664
a

2a − 3b

5b

a + 2b

a

377777777777775 = a

266666666666664
1

2

0

1

1

377777777777775+ b

266666666666664
0

−3

5

2

0

377777777777775 ,

so clearly the family 




266666666666664
1

2

0

1

1

377777777777775 ,

266666666666664
0

−3

5

2

0

377777777777775





spans the subspace. To shew that this is a linearly independent family, assume that

a

266666666666664
1

2

0

1

1

377777777777775+ b

266666666666664
0

−3

5

2

0

377777777777775 =

266666666666664
0

0

0

0

0

377777777777775 .
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Then it follows clearly that a = b = 0, and so this is a linearly independent family. Conclusion:






266666666666664
1

2

0

1

1

377777777777775 ,

266666666666664
0

−3

5

2

0

377777777777775





is a basis for the subspace.

516 Suppose

0 = a(v1 + v2) + b(v2 + v3) + c(v3 + v4) + d(v4 + v5) + f(v5 + v1)

= (a + f)v1 + (a + b)v2 + (b + c)v3 + (c + d)v4 + (d + f)v5.

Since {v1, v2, . . . , v5} are linearly independent, we have

a + f = 0,

a + b = 0

b + c = 0

c + d = 0

d + f = 0.

Solving we find a = b = c = d = f = 0, which means that the

{v1 + v2, v2 + v3, v3 + v4, v4 + v5, v5 + v1}

are linearly independent. Since the dimension of V is 5, and we have 5 linearly independent vectors, they must also be a basis
for V.

517 The matrix of coefficients is already in echelon form. The dimension of the solution space is n − 1 and the following
vectors in R2n form a basis for the solution space

a1 =

2666666666666666666666666666666664

−1

1

0

...

0

−1

1

0

...

0

3777777777777777777777777777777775
, a2 =

2666666666666666666666666666666664

−1

0

1

...

0

−1

0

1

...

0

3777777777777777777777777777777775
, . . . , an−1 =

266666666666666666666666666664

−1

0

. . .

1

−1

0

...

0

1

377777777777777777777777777775
.

(The “second” −1 occurs on the n-th position. The 1’s migrate from the 2nd and n + 1-th position on a1 to the n − 1-th
and 2n-th position on an−1 .)
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518 Take (u, v) ∈ X2 and α ∈ R. Then

u =

26666666664a

b

c

d

37777777775 , b + 2c = 0, v =

26666666664a ′

b ′

c ′

d ′

37777777775 , b
′
+ 2c

′
= 0.

We have

u + αv =

26666666664a + αa ′

b + αb ′

c + αc ′

d + αd ′

37777777775 ,

and to demonstrate that u + αv ∈ X we need to shew that (b + αb ′) + 2(c + αc ′) = 0. But this is easy, as

(b + αb
′
) + 2(c + αc

′
) = (b + 2c) + α(b

′
+ 2c

′
) = 0 + α0 = 0.

Now 26666666664a

b

c

d

37777777775 =

26666666664 a

−2c

c

d

37777777775 = a

266666666641

0

0

0

37777777775+ c

26666666664 0

−2

1

0

37777777775+ d

266666666640

0

0

1

37777777775
It is clear that 266666666641

0

0

0

37777777775 ,

26666666664 0

−2

1

0

37777777775 ,

266666666640

0

0

1

37777777775
are linearly independent and span X. They thus constitute a basis for X.

519 As a basis we may take the
n(n + 1)

2
matrices Eij ∈ Mn(F) for 1 ≤ i ≤ j ≤ n.

520 dim X = 2, as basis one may take {v1, v2}.

521 dim X = 3, as basis one may take {v1, v2, v3}.

522 dim X = 3, as basis one may take {v1, v2, v3}.

523 Since a ⊥ a×x = b, there are no solutions if a•b 6= 0. Neither are there solutions if a = 0 and b 6= 0. If both a = b = 0,
then the solution set is the whole of R3. Assume thus that a•b = 0 and that a and b are linearly independent. Then a, b, a×b
are linearly independent, and so they constitute a basis for R3 . Any x ∈ R3 can be written in the form

x = αa + βb + γa×b.
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We then have

b = a×x

= βa×b + γa×(a×b)

= βa×b + γ((a•b)a − (a•a)b).

= βa×b − γ(a•ab)

= βa×b − γ||a||
2b,

from where
βa×b + (−γ||a||

2
− 1)b = 0,

which means that β = 0 and γ = − 1

||a||2
, since a, b, a×b are linearly independent. Thus

x = αa −
1

||a||
2
a×b

in this last case.

531 1. It is enough to prove that the matrix

A =

266666666641 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

37777777775
is invertible. But an easy computation shews that

A
2

=

266666666641 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

37777777775
2

= 4I4 ,

whence the inverse sought is

A
−1

=
1

4
A =

1

4

266666666641 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

37777777775 =

266666666641/4 1/4 1/4 1/4

1/4 1/4 −1/4 −1/4

1/4 −1/4 1/4 −1/4

1/4 −1/4 −1/4 1/4

37777777775 .

2. Since the ak are four linearly independent vectors in R4 and dim R4 = 4, they form a basis for R4 . Now, we want to
solve

A

26666666664 x

y

z

w

37777777775 =

266666666641 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

37777777775
26666666664 x

y

z

w

37777777775 =

266666666641

2

1

1

37777777775
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and so 26666666664 x

y

z

w

37777777775 = A
−1

266666666641

2

1

1

37777777775 =

266666666641/4 1/4 1/4 1/4

1/4 1/4 −1/4 −1/4

1/4 −1/4 1/4 −1/4

1/4 −1/4 −1/4 1/4

37777777775
266666666641

2

1

1

37777777775 =

26666666664 5/4

1/4

−1/4

−1/4

37777777775 .

It follows that 266666666641

2

1

1

37777777775 =
5

4

266666666641

1

1

1

37777777775+
1

4

26666666664 1

1

−1

−1

37777777775−
1

4

26666666664 1

−1

1

−1

37777777775−
1

4

26666666664 1

−1

−1

1

37777777775 .

The coordinates sought are �
5

4
,
1

4
, −

1

4
, −

1

4

�
.

3. Since we have 266666666641

2

1

1

37777777775 =
5

4

266666666641

1

1

1

37777777775−
1

4

26666666664 1

−1

1

−1

37777777775+
1

4

26666666664 1

1

−1

−1

37777777775−
1

4

26666666664 1

−1

−1

1

37777777775 ,

the coordinates sought are �
5

4
, −

1

4
,
1

4
, −

1

4

�
.

532 [1] a = 1, [2] (A(a))−1 =

26666666664
1

a − 1
0 0 −

1

a − 1

−1 1 − a −1 a + 1

−
1

a − 1
−1 0

a

a − 1

1 a 1 −a − 1

37777777775 [3]

266666666640
1

a − 1

1

a − 1

1

a − 1

0 −a − 1 −a −1

0 − −
a

a − 1
−

a

a − 1
−

1

a − 1

1 2 + a a + 1 1

37777777775
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539 Let α ∈ R. Then

L

2666664x + αa

y + αb

z + αc

3777775 =

2666664(x + αa) − (y + αb) − (z + αc)

(x + αa) + (y + αb) + (z + αc)

z + αc

3777775
=

2666664x − y − z

x + y + z

z

3777775+ α

2666664a − b − c

a + b + c

c

3777775
= L

2666664x

y

z

3777775+ αL

2666664a

b

c

3777775 ,

proving that L is a linear transformation.

540 Let x, y, x ′, y ′ be vectors in R3 and let α ∈ R be a scalar. Then

L((x, y) + α(x ′, y ′)) = L(x + αx ′, y + αy ′)

= (x + αx ′)×k + h×(y + αy ′)

= x×k + αx ′×k + h×y + h×αy ′

= L(x, y) + αL(x ′, y ′)

541

L(H + αH ′) = −A−1(H + αH ′)A−1

= −A−1HA−1 + α(−A−1H ′A−1)

= L(H) + αL(H ′),

proving that L is linear.

542 Let S be convex and let a, b ∈ T(S). We must prove that ∀α ∈ [0; 1], (1 − α)a + αb ∈ T(S). But since a, b belong
to T(S), ∃x ∈ S, y ∈ S with T(x) = a, T(y) = b. Since S is convex, (1 − α)x + αy ∈ S. Thus

T((1 − α)x + αy) ∈ T(S),

which means that

(1 − α)T(x) + αT(y) ∈ T(S),

that is,

(1 − α)a + αb ∈ T(S),

as we wished to show.



Answers and Hints 213

550 Assume

2666664x

y

z

3777775 ∈ ker (L). Then

L

2666664x

y

z

3777775 =

26666640

0

0

3777775 ,

that is

x − y − z = 0,

x + y + z = 0,

z = 0.

This implies that x − y = 0 and x + y = 0, and so x = y = z = 0. This means that

ker (L) =






26666640

0

0

3777775




,

and L is injective.

By the Dimension Theorem 546, dim Im (L) = dim V − dimker (L) = 3 − 0 = 3, which means that

Im (L) = R3

and L is surjective.

551 Assume that

2666664a

b

c

3777775 ∈ ker (T), 2666664a

b

c

3777775 = (a − b)

26666641

0

0

3777775+ b

26666641

1

0

3777775+ c

26666640

0

1

3777775 .
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Then 266666666640

0

0

0

37777777775 = T

2666664a

b

c

3777775
= (a − b)T

26666641

0

0

3777775+ bT

26666641

1

0

3777775+ cT

26666640

0

1

3777775
= (a − b)

26666666664 1

0

−1

0

37777777775+ b

26666666664 2

−1

0

0

37777777775+ c

26666666664 1

−1

1

0

37777777775
=

26666666664 a + b + c

−b − c

−a + b + c

0

37777777775 .

It follows that a = 0 and b = −c. Thus

ker (T) =






c

2666664 0

−1

1

3777775 : c ∈ R






,

and so dimker (T) = 1.

By the Dimension Theorem 546,

dim Im (T) = dim V − dimker (T) = 3 − 1 = 2.

We readily see that 26666666664 2

−1

0

0

37777777775 =

26666666664 1

0

−1

0

37777777775+

26666666664 1

−1

1

0

37777777775 ,
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and so

Im (T) = span

0BBBBBBBBB�
26666666664 1

0

−1

0

37777777775 ,

26666666664 1

−1

1

0

37777777775
1CCCCCCCCCA .

552 Assume that

L

264x

y

375 =

2666664x + 2y

x + 2y

0

3777775 =

26666640

0

0

3777775 .

Then x = −2y and so 264x

y

375 = y

264−2

1

375 .

This means that dim ker (L) = 1 and ker (L) is the line through the origin and (−2, 1). Observe that L is not injective.

By the Dimension Theorem 546, dim Im (L) = dim V − dimker (L) = 2 − 1 = 1. Assume that

2666664a

b

c

3777775 ∈ Im (L). Then

∃(x, y) ∈ R2 such that

L

264x

y

375 =

2666664x + 2y

x + 2y

0

3777775 =

2666664a

b

c

3777775 .

This means that 2666664a

b

c

3777775 =

2666664x + 2y

x + 2y

0

3777775 = (x + 2y)

26666641

1

0

3777775 .

Observe that L is not surjective.

553 Assume that

L

264x

y

375 =

2666664x − y

x + y

0

3777775 =

26666640

0

0

3777775 .

Then x + y = 0 = x − y, that is, x = y = 0, meaning that

ker (L) =






2640

0

375



,
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and so L is injective.

By the Dimension Theorem 546, dim Im (L) = dim V − dimker (L) = 2 − 0 = 2. Assume that

2666664a

b

c

3777775 ∈ Im (L). Then

∃(x, y) ∈ R2 such that

L

264x

y

375 =

2666664x − y

x + y

0

3777775 =

2666664a

b

c

3777775 .

This means that 2666664a

b

c

3777775 =

2666664x − y

x + y

0

3777775 = x

26666641

1

0

3777775+ y

2666664−1

1

0

3777775 .

Since 26666641

1

0

3777775 ,

2666664−1

1

0

3777775
are linearly independent, they span a subspace of dimension 2 in R3 , that is, a plane containing the origin. Observe that L

is not surjective.

554 Assume that

L

2666664x

y

z

3777775 =

264x − y − z

y − 2z

375 =

2640

0

375 .

Then y = 2z; x = y + z = 3z. This means that ker (L) =






z

26666643

2

1

3777775 : z ∈ R






. Hence dimker (L) = 1, and so L is not

injective.

Now, if

L

2666664x

y

z

3777775 =

264x − y − z

y − 2z

375 =

264a

b

375 .

Then 264a

b

375 =

264x − y − z

y − 2z

375 = x

2641

0

375+ y

264−1

1

375+ z

264−1

−2

375 .
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Now,

−3

2641

0

375− 2

264−1

1

375 =

264−1

−2

375
and 2641

0

375 ,

264−1

1

375
are linearly independent. Since dim Im (L) = 2, we have Im (L) = R2 , and so L is surjective.

555 Assume that

0 = tr

0B�264a b

c d

3751CA = a + d.

Then a = −d and so, 264a b

c d

375 =

264−d b

c d

375 = d

264−1 0

0 1

375+ b

2640 1

0 0

375+ c

2640 0

1 0

375 ,

and so dimker (L) = 3. Thus L is not injective. L is surjective, however. For if α ∈ R, then

α = tr

0B�264α 0

0 0

3751CA .

556 1. Let (A, B)2 ∈ M2(R), α ∈ R. Then

L(A + αB) = (A + αB)T + (A + αB)

= AT + BT + A + αB

= AT + A + αBT + αB

= L(A) + αL(B),

proving that L is linear.

2. Assume that A =

264a b

c d

375 ∈ ker (L). Then2640 0

0 0

375 = L(A) =

264a b

c d

375+

264a c

b d

375 =

264 2a b + c

b + c 2d

375 ,

whence a = d = 0 and b = −c. Hence

ker (L) = span

0B�2640 −1

1 0

3751CA ,

and so dimker (L) = 1.
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3. By the Dimension Theorem, dim Im (L) = 4 − 1 = 3. As above,

L(A) =

264 2a b + c

b + c 2d

375
= a

2642 0

0 0

375+ (b + c)

2640 1

1 0

375+ d

2640 0

0 2

375 ,

from where

Im (L) = span

0B�2642 0

0 0

375 ,

2640 1

1 0

375 ,

2640 0

0 2

3751CA .

557 ➊ Observe that
(I − T)

2
= I − 2T + T

2
= I − 2T + T = I − T,

proving the result.

➋ The inverse is I − 1
2
T , for

(I + T)(I −
1

2
T) = I + T −

1

2
T −

1

2
T

2
= I + T −

1

2
T −

1

2
T = I,

proving the claim.

➌ We have

x ∈ ker (T) ⇐⇒ x − T(x) ∈ ker (T)

⇐⇒ I(x) − T(x) ∈ ker (T)

⇐⇒ (I − T)(x) ∈ ker (T)

⇐⇒ x ∈ Im (I − T) .

562 1. Since the image of T is the plane x + y + z = 0, we must have

a + 0 + 1 = 0 =⇒ a = −1,

3 + b − 5 = 0 =⇒ b = 2,

−1 + 2 + c = 0 =⇒ c = −1.

2. Observe that

26666641

1

1

3777775 ∈ ker (T) and so

T

26666641

1

1

3777775 =

26666640

0

0

3777775 .

Thus

T

26666641

0

0

3777775 = T

26666642

1

1

3777775− T

26666641

1

1

3777775 =

2666664 3

2

−5

3777775 ,
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T

26666640

1

0

3777775 = T

26666641

2

1

3777775− T

26666641

1

1

3777775 =

2666664−1

2

−1

3777775 ,

T

26666640

0

1

3777775 = T

26666641

1

2

3777775− T

26666641

1

1

3777775 =

2666664−1

0

1

3777775 .

The required matrix is therefore 2666664 3 −1 −1

2 2 0

−5 −1 1

3777775 .

563 1. Let α ∈ R. We have

T

0B�264x

y

375+ α

264u

v

3751CA = T

0B�264x + αu

y + αv

3751CA
=

2666664 x + αu + y + αv

x + αu − y − αv

2(x + αu) + 3(y + αv)

3777775
=

2666664 x + y

x − y

2x + 3y

3777775+ α

2666664 u + v

u − v

2u + 3v

3777775
= T

0B�264x

y

3751CA+ αT

0B�264u

v

3751CA ,

proving that T is linear.

2. We have

T

0B�264x

y

3751CA =

26666640

0

0

3777775 ⇐⇒

2666664 x + y

x − y

2x + 3y

3777775 =

26666640

0

0

3777775 ⇐⇒ x = y = 0,

dimker (T) = 0, and whence T is injective.

3. By the Dimension Theorem, dim Im (T) = 2 − 0 = 2. Now, since

T

0B�264x

y

3751CA =

2666664 x + y

x − y

2x + 3y

3777775 = x

26666641

1

2

3777775+ y

2666664 1

−1

3

3777775 ,
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whence

Im (T) = span

0BBBBB�26666641

1

2

3777775 ,

2666664 1

−1

3

37777751CCCCCA .

4. We have

T

0B�2641

2

3751CA =

2666664 3

−1

8

3777775 =
11

2

26666641

1

1

3777775−
5

2

2666664 1

0

−1

3777775−
13

2

26666640

1

0

3777775 =

2666664 11/2

−5/2

−13/2

3777775
B

,

and

T

0B�2641

3

3751CA =

2666664 4

−2

11

3777775 =
15

2

26666641

1

1

3777775−
7

2

2666664 1

0

−1

3777775−
19

2

26666640

1

0

3777775 =

2666664 15/2

−7/2

−19/2

3777775
B

.

The required matrix is 2666664 11/2 15/2

−5/2 −7/2

−13/2 −19/2

3777775
B

.

564 The matrix will be a 2 × 3 matrix. In each case, we find the action of L on the basis elements of R3 and express the
result in the given basis for R3 .

1. We have

L

0BBBBB�26666641

0

0

37777751CCCCCA =

2641

3

375 , L

0BBBBB�26666640

1

0

37777751CCCCCA =

2642

0

375 , L

0BBBBB�26666640

0

1

37777751CCCCCA =

264 0

−1

375 .

The required matrix is 2641 2 0

3 0 −1

375 .

2. We have

L

0BBBBB�26666641

0

0

37777751CCCCCA =

2641

3

375 , L

0BBBBB�26666641

1

0

37777751CCCCCA =

2643

3

375 , L

0BBBBB�26666641

1

1

37777751CCCCCA =

2643

2

375 .

The required matrix is 2641 3 3

3 3 2

375 .
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3. We have

L

0BBBBB�26666641

0

0

37777751CCCCCA =

2641

3

375 = −2

2641

0

375+ 3

2641

1

375 =

264−2

3

375
A

,

L

0BBBBB�26666641

1

0

37777751CCCCCA =

2643

3

375 = 0

2641

0

375+ 3

2641

1

375 =

2640

3

375
A

,

L

0BBBBB�26666641

1

1

37777751CCCCCA =

2643

2

375 = 1

2641

0

375+ 2

2641

1

375 =

2641

2

375
A

.

The required matrix is 264−2 0 1

3 3 2

375 .

565 Observe that

2642

3

375 ∈ Im (T) = ker (T) and so

T

2642

3

375 =

2640

0

375 .

Now

T

2641

0

375 = T

0B�3

2641

1

375−

2642

3

3751CA = 3T

2641

1

375− T

2642

3

375 =

2646

9

375 ,

and

T

2640

1

375 = T

0B�2642

3

375− 2

2641

1

3751CA = T

2642

3

375− 2T

2641

1

375 =

264−4

−6

375 .

The required matrix is thus 2646 −4

9 −6

375 .

566 The matrix will be a 1 × 4 matrix. We have

tr

0B�2641 0

0 0

3751CA = 1,

tr

0B�2640 1

0 0

3751CA = 0,
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tr

0B�2640 0

1 0

3751CA = 0,

tr

0B�2640 0

0 1

3751CA = 1.

Thus
ML = (1 0 0 1).

567 First observe that ker (B) ⊆ ker (AB) since ∀X ∈ Mq×1(R),

BX = 0 =⇒ (AB)X = A(BX) = 0.

Now

dimker (B) = q − dim Im (B)

= q − rank (B)

= q − rank (AB)

= q − dim Im (AB)

= dimker (AB) .

Thus ker (B) = ker (AB) . Similarly, we can demonstrate that ker (ABC) = ker (BC) . Thus

rank (ABC) = dim Im (ABC)

= r − dimker (ABC)

= r − dimker (BC)

= dim Im (BC)

= rank (BC) .

594 This is clearly (1 2 3 4)(6 8 7) of order lcm(4, 3) = 12.

621 Multiplying the first column of the given matrix by a, its second column by b, and its third column by c, we obtain

abcΩ =

2666664abc abc abc

a2 b2 c2

a3 b3 c3

3777775 .

We may factor out abc from the first row of this last matrix thereby obtaining

abcΩ = abc det

2666664 1 1 1

a2 b2 c2

a3 b3 c3

3777775 .

Upon dividing by abc,

Ω = det

2666664 1 1 1

a2 b2 c2

a3 b3 c3

3777775 .
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622 Performing R1 + R2 + R3 → R1 we have

Ω = det

2666664a − b − c 2a 2a

2b b − c − a 2b

2c 2c c − a − b

3777775
= det

2666664a + b + c a + b + c a + b + c

2b b − c − a 2b

2c 2c c − a − b

3777775 .

Factorising (a + b + c) from the first row of this last determinant, we have

Ω = (a + b + c) det

2666664 1 1 1

2b b − c − a 2b

2c 2c c − a − b

3777775 .

Performing C2 − C1 → C2 and C3 − C1 → C3 ,

Ω = (a + b + c) det

2666664 1 0 0

2b −b − c − a 0

2c 0 −c − a − b

3777775 .

This last matrix is triangular, hence

Ω = (a + b + c)(−b − c − a)(−c − a − b) = (a + b + c)
3
,

as wanted.

623 det A1 = det A = −540 by multilinearity. det A2 = − det A1 = 540 by alternancy. det A3 = 3 det A2 = 1620 by both
multilinearity and homogeneity from one column. det A4 = det A3 = 1620 by multilinearity, and det A5 = 2 det A4 = 3240

by homogeneity from one column.

624 From the given data, det B = −2. Hence

det ABC = (det A)(det B)(det C) = −12,

det 5AC = 5
3 det AC = (125)(det A)(det C) = 750,

(det A
3
B

−3
C

−1
) =

(det A)3

(det B)3(det C)
= −

27

16
.

625 Pick λ ∈ R \ {0, a11, a22, . . . , ann}. Put

X =

266666666666664
a11 − λ 0 0 · · · 0

a21 a22 − λ 0 · · · 0

a31 a32 a33 − λ · · · 0

...
...

...
...

...

an1 an2 an3 · · · ann − λ

377777777777775



224 Appendix A

and

Y =

266666666666664
λ a12 a13

... a1n

0 λ a23

... a2n

0 0 λ
... a3n

...
...

...
...

...

0 0 0
... λ

377777777777775
Clearly A = X + Y , det X = (a11 − λ)(a22 − λ) · · · (ann − λ) 6= 0, and det Y = λn 6= 0. This completes the proof.

626 No.

636 We have

det A = 2(−1)
1+2 det

2644 6

7 9

375+ 5(−1)
2+2 det

2641 3

7 9

375+ 8(−1)
2+3 det

2641 3

4 6

375
= −2(36 − 42) + 5(9 − 21) − 8(6 − 12) = 0.

637 Since the second column has three 0’s, it is advantageous to expand along it, and thus we are reduced to calculate

−3(−1)
3+2 det

26666641 −1 1

2 0 1

1 0 1

3777775
Expanding this last determinant along the second column, the original determinant is thus

−3(−1)
3+2

(−1)(−1)
1+2 det

2642 1

1 1

375 = −3(−1)(−1)(−1)(1) = 3.
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638 Expanding along the first column,

0 = det

266666666641 1 1 1

x a 0 0

x 0 b 0

x 0 0 c

37777777775
= det

2666664a 0 0

0 b 0

0 0 c

3777775− x det

26666641 1 1

0 b 0

0 0 c

3777775
+x det

26666641 1 1

a 0 0

0 0 c

3777775− x det

26666641 1 1

a 0 0

0 b 0

3777775
= xabc − xbc + x det

26666641 1 1

a 0 0

0 0 c

3777775− x det

26666641 1 1

a 0 0

0 b 0

3777775 .

Expanding these last two determinants along the third row,

0 = abc − xbc + x det

26666641 1 1

a 0 0

0 0 c

3777775− x det

26666641 1 1

a a 0

0 b 0

3777775
= abc − xbc + xc det

2641 1

a 0

375+ xb det

2641 1

a 0

375
= abc − xbc − xca − xab.

It follows that
abc = x(bc + ab + ca),

whence
1

x
=

bc + ab + ca

abc
=

1

a
+

1

b
+

1

c
,

as wanted.

639 Expanding along the first row the determinant equals

−a det

2666664a b 0

0 0 b

1 1 1

3777775+ b det

2666664a 0 0

0 a b

1 1 1

3777775 = ab det

264a b

1 1

375+ ab det

264a b

1 1

375
= 2ab(a − b),

as wanted.
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640 Expanding along the first row, the determinant equals

a det

2666664a 0 b

0 d 0

c 0 d

3777775+ b det

26666640 a b

c 0 0

0 c d

3777775 .

Expanding the resulting two determinants along the second row, we obtain

ad det

264a b

c d

375+ b(−c) det

264a b

c d

375 = ad(ad − bc) − bc(ad − bc) = (ad − bc)
2
,

as wanted.

641 For n = 1 we have det(1) = 1 = (−1)1+1 . For n = 2 we have

det

2641 1

1 0

375 = −1 = (−1)
2+1

.

Assume that the result is true for n − 1. Expanding the determinant along the first column

det

2666666666666666664
1 1 1 · · · 1 1

1 0 0
... 0 0

0 1 0 · · · 0 0

0 0 1 · · · 0 0

...
... · · ·

...
...

0 0 0 · · · 1 0

3777777777777777775 = 1 det

266666666666664
0 0

... 0 0

1 0 · · · 0 0

0 1 · · · 0 0

... · · ·
...

...

0 0 · · · 1 0

377777777777775
−1 det

2666666666666666664
1 1 · · · 1 1

1 0 · · ·
... 0

0 1 · · · · · · 0

0 0 · · · · · · 0

...
... · · ·

...

0 0 · · · 1 0

3777777777777777775
= 1(0) − (1)(−1)n

= (−1)n+1,

giving the result.
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642 Perform Ck − C1 → Ck for k ∈ [2; n]. Observe that these operations do not affect the value of the determinant. Then

det A = det

2666666666666666664
1 n − 1 n − 1 n − 1 · · · n − 1

n 2 − n 0 0
... 0

n 0 3 − n 0 · · · 0

n 0 0 4 − n · · · 0

...
...

... · · ·
...

n 0 0 0 0 0

3777777777777777775 .

Expand this last determinant along the n-th row, obtaining,

det A = (−1)1+nn det

2666666666666666664
n − 1 n − 1 n − 1 · · · n − 1 n − 1

2 − n 0 0
... 0 0

0 3 − n 0 · · · 0 0

0 0 4 − n · · · 0 0

...
... · · ·

...
...

0 0 0 · · · −1 0

3777777777777777775
= (−1)1+nn(n − 1)(2 − n)(3 − n)

· · · (−2)(−1) det

2666666666666666664
1 1 1 · · · 1 1

1 0 0
... 0 0

0 1 0 · · · 0 0

0 0 1 · · · 0 0

...
... · · ·

...
...

0 0 0 · · · 1 0

3777777777777777775
= −(n!) det

2666666666666666664
1 1 1 · · · 1 1

1 0 0
... 0 0

0 1 0 · · · 0 0

0 0 1 · · · 0 0

...
... · · ·

...
...

0 0 0 · · · 1 0

3777777777777777775
= −(n!)(−1)n

= (−1)n+1n!,

upon using the result of problem 641.
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643 Recall that
�

n

k

�
=
�

n

n−k

�
,

n∑

k=0

�
n

k

�
= 2

n

and
n∑

k=0

(−1)
k

�
n

k

�
= 0, if n > 0.

Assume that n is odd. Observe that then there are n + 1 (an even number) of columns and that on the same row,
�

n

k

�
is on a

column of opposite parity to that of
�

n

n−k

�
. By performing C1 − C2 + C3 − C4 + · · · + Cn − Cn+1 → C1 , the first column

becomes all 0’s, whence the determinant if 0 if n is odd.

659 We have

det(λI2 − A) = det

264λ − 1 1

1 λ − 1

375 = (λ − 1)
2

− 1 = λ(λ − 2),

whence the eigenvalues are 0 and 2. For λ = 0 we have

0I2 − A =

264−1 1

1 −1

375 .

This has row-echelon form 2641 −1

0 0

375 .

If 2641 −1

0 0

375264a

b

375 =

2640

0

375
then a = b. Thus 264a

b

375 = a

2641

1

375
and we can take

2641

1

375 as the eigenvector corresponding to λ = 0. Similarly, for λ = 2,

2I2 − A =

2641 3

1 3

375 ,

which has row-echelon form 2641 3

0 0

375 .

If 2641 3

0 0

375264a

b

375 =

2640

0

375
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then a = −3b. Thus 264a

b

375 = a

264 1

−3

375
and we can take

264 1

−3

375 as the eigenvector corresponding to λ = 2.

660 ➊ We have

det(λI3 − A) = det

2666664 λ −2 1

−2 λ − 3 2

1 2 λ

3777775
= λ det

264λ − 3 2

2 λ

375+ 2 det

264−2 2

1 λ

375+ det

264−2 λ − 3

1 2

375
= λ(λ2 − 3λ − 4) + 2(−2λ − 2) + (−λ − 1)

= λ(λ − 4)(λ + 1) − 5(λ + 1)

= (λ2 − 4λ − 5)(λ + 1)

= (λ + 1)2(λ − 5)

➋ The eigenvalues are −1, −1, 5.

➌ If λ = −1,

(−I3 − A) =

2666664−1 −2 1

−2 −4 2

1 2 −1

37777752666664a

b

c

3777775 =

26666640

0

0

3777775 ⇐⇒ a = −2b + c

⇐⇒

2666664a

b

c

3777775 = b

2666664−2

1

0

3777775+ c

26666641

0

1

3777775 .

We may take as eigenvectors

2666664−2

1

0

3777775 ,

26666641

0

1

3777775, which are clearly linearly independent.
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If λ = 5,

(5I3 − A) =

2666664 5 −2 1

−2 2 2

1 2 5

37777752666664a

b

c

3777775 =

26666640

0

0

3777775 ⇐⇒ a = −c, b = −2c,

⇐⇒

2666664a

b

c

3777775 = c

2666664−1

−2

1

3777775 .

We may take as eigenvector

2666664 1

2

−1

3777775.

664 Solution: Put

D =

2641 0

0 −2

375 , , P =

2641 0

1 −1

375 .

We find

P
−1

=

2641 1

0 −1

375 .

Since A = PDP−1

A
10

= PD
10

P
−1

=

2641 0

1 −1

3752641 0

0 1024

3752641 1

0 −1

375 =

2641 −1023

0 1024

375 .

665 Put

D =

2666664−1 0 0

0 −1 0

0 0 3

3777775 , X =

26666641 1 1

0 1 1

0 0 1

3777775 .

Then we know that A = XDX−1 and so we need to find X−1 . But this is readily obtained by performing R1 − R2 → R1 and
R2 − R3 → R3 in the augmented matrix 26666641 1 1 1 0 0

0 1 1 0 1 0

0 0 1 0 0 1

3777775 ,

getting

X
−1

=

26666641 −1 0

0 1 −1

0 0 1

3777775 .
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Thus

A = XDX−1

=

26666641 1 1

0 1 1

0 0 1

37777752666664−1 0 0

0 −1 0

0 0 3

377777526666641 −1 0

0 1 −1

0 0 1

3777775
=

2666664−1 0 4

0 −1 4

0 0 3

3777775 .

666 The determinant is 1, A = A−1 , and the characteristic polynomial is (λ2 − 1)2 .
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