
Physics 116A Final Exam Winter 2010

INSTRUCTIONS: This is a three-hour exam. During the exam, you may refer to
the textbook, the class handouts, or your own personal notes. Collaboration with
your neighbor is strictly forbidden. In answering the questions, it is not sufficient
to simply write the final result. You must provide the intermediate steps needed
to arrive at the solution in order to get full credit.

The exam consists of six problems with a total of 16 parts. Each part is worth
ten points, for a total of 160 points.

1. Consider the function F (x) =
x

1 − x − 2x2
.

(a) Use the method of partial fractions to express F (x) in terms of a sum (or
difference) of two simpler terms. [HINT: factor the denominator.]

(b) Express F (x) as a power series about x = 0,

F (x) =

∞
∑

n=0

anxn . (1)

This is most easily done by separately expanding the two terms obtained in
part (a) and then combining the two sums. Determine a closed-form expression for
an as a function of n. Write out the first seven values of an (for n = 0, 1, 2, . . . , 6).

(c) What is the radius of convergence of the series obtained in eq. (1)?

2. Evaluate the following integral:

∫

∞

−∞

e−t 2

cos(2xt) dt (2)

in two different ways.

(a) Before we attempt to integrate eq. (2), consider a related integral,

∫

∞

−∞

e−t 2

e2ct dt = ec2
∫

∞

−∞

e−(t−c)2 dt . (3)

By a change of variables, u = t − c, evaluate the integral on the right-hand side
of eq. (3). Use this result to evaluate the integral given eq. (2) by first writing
cos(2xt) = Re e2ixt. Then, you may choose c = ix, assuming that your result for
eq. (3) is still valid for a purely imaginary c.



(b) Expand cos(2xt) in a Taylor series about x = 0. Integrate term by term,
and sum the resulting series. Can you reproduce the answer obtained in part (a)?

HINT: Using the duplication formula for the gamma function, given on p. 545 of
Boas, show that

Γ(n + 1
2
)

Γ(2n + 1)
=

√
π

22nn!
.

Use this result to simplify the series obtained at the end of part (b). You should
then be able to sum the series in closed form.

3. A complex number x + iy can be represented by the 2 × 2 matrix

(

x −y

y x

)

, (4)

where x and y are real numbers. Verify that this is a sensible representation by
answering the following questions.

(a) Show that the matrix representation of (x + iy)(a + ib) is equal to

(

x −y

y x

) (

a −b

b a

)

.

To show this, you should express the product (x+ iy)(a+ ib) in the form of X + iY

and show that the matrix product above, when evaluated, is consistent with the
form given by eq. (4).

(b) Show that the matrix representation of the complex number
1

x + iy
is

correctly given by the inverse of eq. (4).

(c) How is the determinant of the matrix given in eq. (4) related to the corre-
sponding complex number, x + iy?



4. Consider the following interesting series of numbers:

0, 1, 1, 3, 5, 11, 21, . . . (5)

This series has been generated by the following rules. First, we define

x0 = 0 and x1 = 1 . (6)

Then for all positive integers n = 1, 2, 3, . . . ,

xn+1 = xn + 2xn−1 . (7)

Starting with x0 = 0 and x1 = 1, we can derive the values for x2, x3, x4, . . .

sequentially. For example, setting n = 1 in eq. (7) yields x2 = x1 + 2x0 = 1. Next
we can determine x3 = x2 +2x1 = 3 followed by x4 = x3 +2x2 = 5, etc. However,
this is a very inefficient way of computing xn for some large value of n (as it would
take n separate computations).

Matrix methods can help us derive a simple rule for directly determining an
arbitrary term xn in the series. Consider the matrix equation:

(

xn+1

xn

)

=

(

1 2
1 0

) (

xn

xn−1

)

. (8)

(a) Show that this matrix equation is equivalent to the rule given in eq. (7).

(b) Defining the matrix:

M ≡

(

1 2
1 0

)

,

which appears in eq. (8), prove that for any non-negative integer n:

(

xn+1

xn

)

= Mn

(

1
0

)

. (9)

HINT: Verify eq. (9) for n = 0 and n = 1. Then iterate the process using eq. (8).

(c) Compute Mn (for arbitrary n) by first diagonalizing the matrix M and
raising the resulting diagonal matrix to the nth power. Once you have obtained
an expression for Mn, use eq. (9) to write an explicit formula for xn as a function
of n. Check that your formula reproduces the series given in eq. (5).



5. We have learned two methods in this class for computing the inverse of a
matrix. One method involves row reduction and the second method involves the
transpose of the cofactor matrix. Consider the matrix

M =





4 0 −1
−2 1 2

2 0 1



 . (10)

(a) Using one of the two methods mentioned above, compute M−1. Check
your result by computing MM−1.

(b) Here is a third method for computing M−1. Diagonalize M and take the
inverse of the diagonalizing equation. Then solve for M−1 (your formula should
involve the inverse of a diagonal matrix, which can be obtained by inspection).
Apply this technique to the matrix M given by eq. (10). Verify that the result
obtained for M−1 by this method is correct.

(c) Here is a fourth method for computing M−1. By the Cayley-Hamilton
theorem, M solves its own characteristic equation. Compute the characteristic
equation for the matrix M given by eq. (10). Multiply this equation by M−1, and
show that M−1 can be expressed in terms of M2, M and the identity matrix. Use
this result to evaluate M−1, and compare with the results of parts (a) and (b).

6. A totally antisymmetric third-rank Cartesian tensor Bijk is defined by the
property that Bijk changes sign if any two of its indices are interchanged.

(a) If i, j, and k can assume the values 1, 2 or 3, determine the number of
non-zero components of Bijk. How many components of Bijk vanish? You may
assume that the component B123 is nonzero.

(b) Show that Bijk is proportional to the Levi-Civita tensor ǫijk. What is the
constant of proportionality?


