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Evaluation of ζ(2n) in terms of Bernoulli numbers

In this note, I will provide an elementary method for evaluating∗

ζ(2n) ≡

∞
∑

k=1

1

k2n
.

The method relies on a particular formula, whose rigorous proof I shall omit.
However, I will provide some motivation for why this formula is true.

The formula we require is:

sin x

x
= lim

n→∞

(

1 −
x2

π2

) (

1 −
x2

(2π)2

)

· · ·

(

1 −
x2

(nπ)2

)

. (1)

How might we attempt to justify such a formula? Consider a polynomial of
degree n of the form

P (x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0 .

We shall call this a finite-order polynomial since the highest degree that appears
is a finite positive integer. We know that an nth order polynomial has n roots.†

If we call those roots‡ r1, r2, . . . , rn, then we can rewrite the polynomial in the
form:

P (x) = an(x − r1)(x − r2) · · · (x − rn) .

An alternative (and equivalent) way of factoring this polynomial is:

P (x) = P (0)

(

1 −
x

r1

) (

1 −
x

r2

)

· · ·

(

1 −
x

rn

)

, (2)

where P (0) = a0. Both forms above satisfy P (ri) = 0 [i = 1, 2, . . . , n].
The Taylor series of (sin x)/x about x = 0 is given by:

sin x

x
= 1 −

x2

3!
+

x4

5!
−

x6

7!
+ · · · (3)

Thus, (sin x)/x is a polynomial, albeit of infinite order. Recall that sinnπ = 0
for any integer n. Since limx→0(sin x)/x = 1, it follows that the roots of (sin x)/x

∗Further details can be found in a wonderful book by George Boros and Victor H. Moll,
Irresitible Integrals,” sections 6.8 and 6.9.

†By definition, if r is a root then P (r) = 0.
‡Some of the ri may not be distinct, in which case they are called multiple roots.
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occur at x = nπ for n = ±1, ±2, ±3, . . .. If eq. (2) is valid for polynomials of
infinite order, then we could conclude that:

sin x

x
= lim

n→∞

(

1 −
x

π

)(

1 +
x

π

)(

1 −
x

2π

)(

1 +
x

2π

)

· · ·
(

1 −
x

nπ

)(

1 +
x

nπ

)

.

Multiplying out each pair of adjacent terms then yields eq. (1). The reason why
this is not a strictly valid proof is that eq. (2) does not always hold for infinite
order polynomials. Since we have a product of an infinite number of terms, there
is a delicate convergence issue that must be addressed. In this particular example,
our instincts turn out to be correct. But, one requires addition analysis to verify
this.§

We shall henceforth accept the correctness of eq. (1). By multiplying out the
terms in this formula, one can quickly establish a remarkable result. For example,
keeping track of terms up to and including O(x2),

sin x

x
= 1 − x2

[

1

π2
+

1

(2π)2
+

1

(3π)2
+ · · ·

]

+ O(x4) . (4)

Equating the coefficients of x2 in eqs. (3) and (4), we conclude that:

−
1

6
= −

1

π2

∞
∑

k=1

1

k2
, =⇒

∞
∑

k=1

1

k2
=

π2

6
. (5)

In fact, this was the original “proof” of eq. (5) by Euler. I placed the word proof
in quotes, since Euler simply assumed (incorrectly in general) that infinite-order
polynomials possess all of the properties of finite-order polynomials.

Using eq. (1), we shall now derive a formula for cot x. The idea is to compute
the logarithmic derivative of sin x:

d

dx
ln sin x =

1

sin x

d

dx
sin x =

cos x

sin x
= cot x .

Thus, taking the logarithm of eq. (1), we obtain

ln(sin x) = ln x +

∞
∑

n=1

ln

(

1 −
x2

(nπ)2

)

.

Taking the derivative of this expression then yields:

cotx =
1

x
+

∞
∑

n=1

2x

x2 − (nπ)2
, (6)

§An elementary derivation of eq. (1) which proves that the resulting product is convergent
and converges to the right result can be found in K. Venkatachaliengar, American Mathematical
Monthly, 69 (1962) 541–545.
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after a little algebraic simplification. We can resolve the denominator into partial
fractions, and rewrite eq. (6) as:

cot x =
1

x
+

∞
∑

n=1

(

1

x + nπ
+

1

x − nπ

)

, (7)

as long as we keep in mind that we must keep these two terms in the sum adjacent
(since the summation over the two terms taken separately each diverge).

We also know the Taylor series expansion for cot x. In the class handout on
Taylor series, you will find:

cot x =
1

x
−

∞
∑

n=1

(−1)n−1 22nB2n

x2n−1

(2n)!
, 0 < |x| < π . (8)

That is, we now possess two series expansions [eqs. (7) and (8)] for cotx. By
comparing the two series, we will discover the remarkable connection between the
Bernoulli numbers B2n and the Riemann zeta function ζ(2n).

In order to make this comparison, we need to convert eq. (7) into the form of a
power series. To accomplish this, we expand out the two denominators of eq. (7)
in a power series about x = 0.

cot x =
1

x
+

∞
∑

n=1

1

nπ





1

1 +
x

nπ

−
1

1 −
x

nπ



 ,

=
1

x
+

∞
∑

n=1

1

nπ

[

∞
∑

k=0

(−1)k
( x

nπ

)k

−

∞
∑

k=0

( x

nπ

)k

]

.

Note that in the sum over k, all the even k terms cancel exactly. Thus, all we
need to do is sum over odd values of k. Setting k = 2j − 1 and interchanging the
order of summation,

cot x =
1

x
− 2

∞
∑

n=1

1

nπ

∞
∑

j=1

( x

nπ

)2j−1

=
1

x
− 2

∞
∑

j=1

x2j−1

π2j

∞
∑

n=1

1

n2j

=
1

x
− 2

∞
∑

j=1

x2j−1

π2j
ζ(2j) .

We have therefore proven that

cot x =
1

x
−

∞
∑

n=1

(−1)n−1B2n

22nx2n−1

(2n)!
=

1

x
− 2

∞
∑

n=1

x2n−1

π2n
ζ(2n) ,
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after relabeling the j index and calling it n. By comparing the coefficients of
x2n−1, it follows that:

ζ(2n) = (−1)n−1
(2π)2n

2(2n)!
B2n , for n = 1, 2, 3, . . . . (9)

This is the desired result. Finally, by noting that the Bernoulli number B2n is
positve (negative) whn n is odd (even), it follows that B2n = (−1)n+1|B2n|. Hence,
we can rewrite eq. (9) as:

ζ(2n) =
(2π)2n

2(2n)!
|B2n| , for n = 1, 2, 3, . . . .

For completeness, we can also evaluate ζ(1−2n) using the functional relation:

ζ(x) = 2 x πx−1 sin
(

1

2
πx

)

Γ(1 − x) ζ(1 − x) .

Let x = 1−2n (assuming n is a positive integer), and note that Γ(2n) = (2n−1)!
and

sin(1

2
π(1 − 2n)) = sin(1

2
π − πn) = sin(π/2) cos(πn) − cos(π/2) sin(πn) = (−1)n ,

since cos(πn) = (−1)n and sin(πn) = 0 for integer values of n. Hence, it follows
that:

ζ(1 − 2n) = −
B2n

2n
, n = 1, 2, 3, . . . .

4


