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On Integrating and Differentiating a Series

Consider a sum of continuous and differentiable functions:

F (x) =
∞

∑

n=1

fn(x) . (1)

Assume that this sum is point-wise convergent on the interval a ≤ x ≤ b.

Differentiating the series

Can we compute the derivative of F (x) by differentiating the series term by
term? That is, does eq. (1) imply that for all a ≤ x ≤ b,

F ′(x) =
∞

∑

n=1

f ′

n
(x) , (2)

where F ′(x) ≡ dF/dx. The answer is yes if the series in eq. (2) is uniformly
convergent. Otherwise, it is possible that eq. (2) is false at least at one point in
the interval a ≤ x ≤ b. As an example, consider

G(x) =

∞
∑

n=1

gn(x) , (3)

where

gn(x) ≡
x2 sin x

(1 + nx2)[1 + (n − 1)x2]
. (4)

To compute this series, use partial fractions to write:

x2

(1 + nx2)[1 + (n − 1)x2]
=

1

1 + (n − 1)x2
−

1

1 + nx2
. (5)

Then we recognize that the sum of the first N terms of G(x) is a telescoping sum,
which is easily computed:

GN(x) =
N

∑

n=1

gn(x) = sin x

[

1 −
1

1 + Nx2

]

,

=
Nx2 sin x

1 + Nx2
. (6)
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Thus, G(x) = limN→∞ GN(x) = sin x. Because of the x2 in the numerator of
eq. (4), it is clear that g ′

n
(0) = 0 for all n. Thus,

∞
∑

n=1

g ′

n
(0) = 0 . (7)

However, since G(x) = sin x, we have G ′(x) = cos x, and G′(0) = 1. Thus,

G ′(0) 6=

∞
∑

n=1

g ′

n
(0) . (8)

The reason for this odd behavior is that G(x) is not uniformly convergent at x = 0.

Integrating the series

We now turn to integration. Can we compute the integral of F (x) defined in
eq. (1) by integrating the series term by term? That is, does eq. (1) imply that

∫

b

a

F (x) dx =
∞

∑

n=1

∫

b

a

fn(x) dx . (9)

The answer is yes if eq. (1) is a uniformly converging series. Otherwise, it is
possible that eq. (9) is false. As an example, consider

F (x) =

∞
∑

n=1

fn(x) , (10)

for |x| < 1 [and F (1) = 0] where

fn(x) = xn−1(1 − x)
[

n2x − (n − 1)2
]

. (11)

Then we recognize that the sum of the first N terms of F (x) is a telescoping sum,
which is easily computed:

FN(x) =

N
∑

n=1

fn(x) = N2xN (1 − x) . (12)

Thus, F (x) = limN→∞ FN(x) = 0 for |x| < 1 and F (1) = 0. Hence,
∫

1

0

F (x) dx = 0 . (13)

However, notice that

N
∑

n=1

∫

1

0

fn(x) dx =

∫

1

0

dx
N

∑

n=1

fn(x) =

∫

1

0

FN (x) dx

= N2

∫

1

0

xN (1 − x) dx

= N2

[

1

N + 1
−

1

N + 2

]

=
N2

(N + 1)(N + 2)
, (14)
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where we have used the fact that it is always permissible to interchange the order
of integration and summation if the latter is a sum over a finite number of terms.
Taking the limit of eq. (14) as N → ∞ yields

∞
∑

n=1

∫

1

0

fn(x) dx = 1 . (15)

Comparing eq. (13) with eq. (15), we conclude that

∫

1

0

dx

∞
∑

n=1

fn(x) 6=

∞
∑

n=1

∫

1

0

fn(x)dx . (16)

Again, this behavior can be attributed to the fact that the sum is not uniformly
convergent at x = 1.

To understand what is happening, consider a plot of FN(x) [eq. (12)] for various
values of N . Below, I have plotted FN(x) for N = 2, 5, 10, 25 and 50. As N
increases, the hump in the graph of FN (x) gets higher and narrower and is pushed
further to the right.
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As N → ∞, FN(x) → 0 but in a very non-uniform way, since the area under the
graph of FN (x) approaches 1 in the same limit!

Reference: David, Bressoud, A Radical Approach to Real Analysis (Mathematical
Association of America, Washington, DC, 1994).
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