Taylor Series Expansions

In this short note, a list of well-known Taylor series expansions is provided. We focus on Taylor series about the point $x=0$, the so-called Maclaurin series. In all cases, the interval of convergence is indicated. The variable x is real.

We begin with the infinite geometric series:

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}, \quad|x|<1
$$

If we change the sign of x, we also obtain

$$
\begin{equation*}
\frac{1}{1+x}=\sum_{n=0}^{\infty}(-1)^{n} x^{n}, \quad|x|<1 \tag{1}
\end{equation*}
$$

The above expansions diverge for all $|x| \geq 1$.
Next we write down the binomial expansion,

$$
(1+x)^{p}=1+\sum_{n=1}^{\infty} \frac{p(p-1) \cdots(p-n+1)}{n!} x^{n}, \quad|x|<1
$$

For $x=1$, the series converges absolutely for $p>0$, converges conditionally for $-1<p<0$ and diverges for $p \leq-1$. For $x=-1$, the series converges absolutely for $p>0$, and diverges for $p<0$. Note that if p is a non-negative integer, then the sum above is finite and therefore converges for all x.

We now list the Taylor series for the exponential and logarithmic functions.

$$
\begin{align*}
e^{x} & =\sum_{n=0}^{\infty} \frac{x^{n}}{n!}, \quad|x|<\infty \\
\ln (1+x) & =\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}, \quad-1<x \leq 1 . \tag{2}
\end{align*}
$$

Note that the Taylor expansion for $\ln (1+x)$ can be easily derived by integrating eq. (1).
$\ln (1+x)=\int_{0}^{x} \frac{1}{1+t} d t=\sum_{n=0}^{\infty}(-1)^{n} \int_{0}^{x} t^{n} d t=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{n+1}=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}$,
after shifting the summation index by one unit. Although eq. (1) diverges at $x=1$, one can show that eq. (2) is conditionally convergent at $x=1$.

Next, we examine the Taylor series of the trigonometric functions.

$$
\begin{aligned}
& \sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}, \quad|x|<\infty \\
& \cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}, \quad|x|<\infty \\
& \tan x=\sum_{n=0}^{\infty}(-1)^{n} T_{2 n+1} \frac{x^{2 n+1}}{(2 n+1)!}, \quad|x|<\frac{1}{2} \pi \\
& \cot x=\frac{1}{x}-\sum_{n=1}^{\infty}(-1)^{n-1} 2^{2 n} B_{2 n} \frac{x^{2 n-1}}{(2 n)!}, \quad 0<|x|<\pi \\
& \sec x=\sum_{n=0}^{\infty}(-1)^{n} E_{2 n} \frac{x^{2 n}}{(2 n)!}, \quad|x|<\frac{1}{2} \pi \\
& \csc x=\frac{1}{x}+\sum_{n=1}^{\infty}(-1)^{n-1} 2\left(2^{2 n-1}-1\right) B_{2 n} \frac{x^{2 n-1}}{(2 n)!}, \quad 0<|x|<\pi
\end{aligned}
$$

which defines the tangent numbers $T_{2 n+1}$, the Bernoulli numbers $B_{2 n}$, and the Euler numbers $E_{2 n}$, for all non-negative integers n.* A table of the these numbers for $n \leq 8$ is provided below.

n	$T_{2 n+1}$	$B_{2 n}$	$E_{2 n}$
0	1	1	1
1	-2	$\frac{1}{6}$	-1
2	16	$-\frac{1}{30}$	5
3	-272	$\frac{1}{42}$	-61
4	7936	$-\frac{1}{30}$	1385
5	-353792	$\frac{5}{66}$	-50521
6	22368256	$-\frac{691}{2730}$	2702765
7	-1903757312	$\frac{7}{6}$	-199360981
8	209865342976	$-\frac{3617}{510}$	19391512145

The theory of these numbers is quite interesting. Here, I shall simply summarize a number of simple facts. First, the tangent numbers can be expressed simply

[^0]in terms of the Bernoulli numbers,
\[

$$
\begin{equation*}
T_{2 k+1}=2^{2 k+2}\left(2^{2 k+2}-1\right) \frac{B_{2 k+2}}{2 k+2} \tag{3}
\end{equation*}
$$

\]

It follows that

$$
\tan x=\sum_{n=1}^{\infty}(-1)^{n-1} 2^{2 n}\left(2^{2 n}-1\right) B_{2 n} \frac{x^{2 n-1}}{(2 n)!}, \quad|x|<\frac{1}{2} \pi .
$$

You will also notice that whereas tangent numbers and Euler numbers are integers, the Bernoulli numbers (for $n \neq 0$) are non-integer rational numbers. In addition, $T_{2 n+1}$ and $E_{2 n}$ are positive [negative] for even [odd] n, whereas the Bernoulli numbers $B_{2 n}($ for $n \neq 0)$ are positive [negative] for odd [even] n.

The Taylor series for the hyperbolic functions are closely related to those of the trigonometric functions.

$$
\begin{aligned}
& \sinh x=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!}, \quad|x|<\infty \\
& \cosh x=\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!}, \quad|x|<\infty \\
& \tanh x=\sum_{n=0}^{\infty} T_{2 n+1} \frac{x^{2 n+1}}{(2 n+1)!}, \quad|x|<\frac{1}{2} \pi \\
& \operatorname{coth} x=\frac{1}{x}+\sum_{n=1}^{\infty} 2^{2 n} B_{2 n} \frac{x^{2 n-1}}{(2 n)!}, \quad 0<|x|<\pi \\
& \operatorname{sech} x=\sum_{n=0}^{\infty} E_{2 n} \frac{x^{2 n}}{(2 n)!}, \quad|x|<\frac{1}{2} \pi \\
& \operatorname{csch} x=\frac{1}{x}-\sum_{n=1}^{\infty} 2\left(2^{2 n-1}-1\right) B_{2 n} \frac{x^{2 n-1}}{(2 n)!}, \quad 0<|x|<\pi
\end{aligned}
$$

Finally, we examine the Taylor series of the inverse trigonometric and inverse hyperbolic functions. We list only those functions that possess Taylor series about $x=0$.

$$
\begin{array}{rlrl}
\arcsin x & =\frac{1}{2} \pi-\arccos x=\sum_{n=0}^{\infty} \frac{(2 n)!}{2^{2 n}(n!)^{2}(2 n+1)} x^{2 n+1}, & |x| \leq 1, \\
\arctan x & =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} x^{2 n+1}, & & |x| \leq 1, \\
\operatorname{arcsinh} x & =\sum_{n=0}^{\infty} \frac{(-1)^{n}(2 n)!}{2^{2 n}(n!)^{2}(2 n+1)} x^{2 n+1}, & |x| \leq 1, \\
\operatorname{arctanh} x & =\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{2 n+1}, & |x|<1 .
\end{array}
$$

The Taylor series above for $\arcsin x, \arccos x$ and $\arctan x$ correspond to the corresponding principal values of these functions, respectively. In our conventions, $\operatorname{arccot} x \equiv \arctan (1 / x)$ is not continuous at $x=0$ and thus does not possess a Taylor series about $x=0$. For further details, see the class handout on the inverse trigonometric and hyperbolic functions.

To end these notes, I will provide two simple algorithms for generating the Bernoulli numbers and Euler numbers. Tangent numbers can then be obtained from eq. (3). All Bernoulli numbers can be evaluated starting with B_{2} by using

$$
\begin{equation*}
\sum_{n=1}^{N}\binom{2 N}{2 n-1} \frac{B_{2 n}}{2 n}=\frac{2 N-1}{2(2 N+1)}, \quad N=1,2,3, \ldots \tag{4}
\end{equation*}
$$

and all Euler numbers can be evaluated starting with E_{2} by using

$$
\begin{equation*}
\sum_{n=1}^{N}\binom{2 N}{2 n} E_{2 n}=-1, \quad N=1,2,3, \ldots \tag{5}
\end{equation*}
$$

where

$$
\binom{n}{r} \equiv \frac{n!}{r!(n-r)!}=\frac{n(n-1)(n-2) \cdots(n-r+1)}{r!},
$$

is the binomial coefficient. Eqs. (4) and (5) can be used to build up the table of Bernoulli and Euler numbers presented earlier in this note.

You may wonder why I have not presented a formula for directly computing the Bernoulli and Euler numbers. Such formulae do exist, but they are not simple. Here is one example:

$$
B_{n}=\sum_{k=1}^{n+1} \frac{(-1)^{k-1}}{k}\binom{n+1}{k} \sum_{j=0}^{k-1} j^{n}
$$

The only formulae that exist for computing a particular Bernoulli or Euler number necessarily involve at least a double sum.

References

1. An excellent reference book for Taylor series of functions and many other properties of mathematical functions ca be found in Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions (Dover Publications, Inc., New York, 1965). This resource is available free on the web and can be either viewed or downloaded from: http://www.math.ucla.edu/ ${ }^{\sim}$ cbm/aands/.
2. The notation for tangent numbers and Bernoulli numbers varies in the mathematical literature. I have followed the conventions of Henri Cohen, Number Theory Volume II (Springer Science, New York, 2007). This is a rather advanced book, although it has a very nice presentation of the theory of Bernoulli and Euler numbers in Chapter 9.

[^0]: *One can generalize the definitions of these numbers for all non-negative subscripts, n, by defining $B_{2 n+1}=T_{2 n}=E_{2 n-1}=0$ for $n=1,2,3, \ldots$, and $B_{1}=-\frac{1}{2}$ and $E_{0}=-1$. But, we will have no need for these more general definitions here.

