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at integers
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1 Introduction

The Riemann zeta function is one of the most
important and fascinating functions in mathematics.
It is very natural as it deals with the series of powers
of natural numbers:

=1 =1 =1
dom 2 2o oo (1)
n=1 n=1 n=1

Originally the function was defined for real argu-
ments as Leonhard Euler

((x) = Z % for x> 1. (2)

n=1

It connects by a continuous parameter all series from (1). In 1734 Leon-
hard Euler (1707 - 1783) found something amazing; namely he determined
all values ((2),¢(4),¢(6),... — a truly remarkable discovery. He also found
a beautiful relationship between prime numbers and ((x) whose significance
for current mathematics cannot be overestimated. It was Bernhard Riemann
(1826 - 1866), however, who recognized the importance of viewing ((s) as


http://www.mat.uab.cat/matmat

2 Values of the Riemann zeta function at integers.

a function of a complex variable s = x + iy rather than a real variable x.
Moreover, in 1859 Riemann gave a formula for a unique (the so-called holo-
morphic) extension of the function onto the entire complex plane C except
s = 1. However, the formula (2) cannot be applied anymore if the real part
of s, Res =z is < 1. It will be discussed more precisely in §4.

Even after more than two hundred years of study,
the Riemann zeta function is as mysterious as ever.
For instance, except for the so-called trivial zeros at
—2,—4,—6,... , the position of the other zeros is
still an open conjecture. It is a subject of the Rie-
mann Hypothesis. No unsolved conjecture is more
celebrated nor more desirable than the Riemann Hy-
pothesis.

Another problem which we consider and which is
the main goal of this note is the structure of values

((n), where n = 0,4+1,£2,... . Some values can Bernhard Riemann
be computed explicitly, but others, ((2k + 1), where
k=1,2,..., are still mysterious. Even the question whether ((2k + 1) is a

rational number, is solved only for the value ((3).

A brief discussion of references. There is an enormous amount of lit-
erature on the Riemann zeta function. Remarkably well written with only
modest, necessary background are T.M. Apostol [3], K. Ireland and M. Rosen
[14] and A. Weil [23]. J. Bruna [8], B.C. Berndt [6], G. Everest, C. Rottger
and T. Ward [12], M.R. Murty and M. Reece [18] and A. Van der Poorten
[22] contain excellent additional material related to our article approached
in an elementary way. M. Abramowitz and I.A. Stegun [1] and H. Bateman
(A. Erdelyi ed.) [5] contain a real treasure of information about the zeta func-
tion and related functions written concisely and informatively. A.B. Gon-
charov’s [13] brilliant short article provides a glimpse into more advanced
topics in current mathematics linked to the values of zeta functions in an
extraordinary way. E. Landau [15] and A.I. Markushevich [16] are a good
source of basic reference books in calculus and complex analysis for a deeper
study of the analytic properties of the zeta function. E.C. Titchmarsh [21]
is a true classic book on the Riemann zeta function with excellent end-of-
chapter notes by D.R. Heath-Brown which update the second edition. This
book, however, already requires a solid background in analysis. We hope
that these suggestions about the bibliography will help the reader in his/her
further exploration of the topics discussed in this paper.

UNB
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2 Definition of the Riemann zeta function
In the formula (2) the variable x can be replaced by complex s = x + iy,

1
C(s)—;ns for Re s=z > 1. (3)
It is customary to denote complex arguments in the Riemann zeta func-
tion by the letter s, and in arbitrary functions by z or w. Real arguments are
usually denoted by x and y, and the decomposition of a complex number into
real and imaginary parts by x + iy. The set of complex numbers z = x + iy
will be denoted by C and geometrically it can be identified with a plane.
Some clarification is needed to explain what
we mean by the complex power of a natural num-

ber. The expression n® for s € C is defined

Res>1
ns = e’ logn’
1
where log is the natural logarithm with base e
and
e = Z al for 2e€C
k=0 Figure 1: The half-plane
Consequently we have Res> 1
s\ 8 (logn)*
n= Z k! :
k=0
Formally, the function ((s) from
iR (3) is defined only for Res > 1 be-
C cause otherwise the absolute value
’L\y Lrzth of n® is too small and the series
[ ]

2 > |1/n?| diverges. However, this
¢ r/L function is holomorphic in the half-
L R plane Res > 1 as in Fig. 1.

By definition, a complex-valued
function f = f(z) defined in an
open, connected set G C C (i.e.,
G is a domain) is holomorphic if it
is differentiable in the complex sense in GG, namely,

o)t FEE I = 1)

h—0 h

Figure 2: z + h approaches z

, 2 €@,
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exists.
Even that formally the definition of the
derivative is the same as in the real case, the
main difference is that the point z+h can ap-
proach z from different directions as in Fig. 2. @ ¢
This means that this condition is extremely
strong in comparison with the real variable
case.
Another, equivalent definition of holomor-
phic functions is by expansion into power series. Namely a function f = f(z),

z € G, is holomorphic in the domain G if for any a € G there exists a con-
vergent power series such that

Figure 3: Disc of convergence

f(z) = ch(z —a)® for |z—al<r, r>0.
n=0

i.e., f(2) is equal to the power series in the disc {|z — a| < r} as in Fig. 3.

3 The Riemann zeta function in terms of
prime numbers

As we hinted before, Euler found another formula for the zeta function,

namely
1\ !
((s) = (1——) for Res > 1, 4
() 1;[ p (4)
where p runs through all primes p = 2,3,5,7,11,... . He thus proved the

equivalence of both formulas (4) and (3). Here is the key idea of the proof.
We start with the product

1\ ! 1\ ! 1\ !
162"~ (-8) (3
» b

and write each factor as

1\ ! 1 11 1
1-— = =l =ttt
p

UrnB
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In the next calculations we use the basic property that any natural number
can be expressed uniquely (up to the order of factors) as a product of prime
numbers. Taking the product over prime numbers < N and denoting by P
the greatest prime number that satisfies this inequality, we get

= (1L 1y 1Ly
= SR IO 5t Bt

S SR L T D B
- 9s 3s 225 5s 9s3s 73

+ ...

1 1 1 .
= 1+§+§+...+ﬁ+remamden
Since Res > 1, it is elementary calculus to show that the remainder can be
made arbitrarily small if N is sufficiently large. When N will go to infinity,
the formula as the product (4) becomes equal to the formula as the sum (3).
Therefore, for ((s) we have two formulas: one in terms of series and another
one in terms of product.

4 Extensions of holomorphic functions

One of the main properties of holomorphic
functions is uniqueness in the sense that if two
holomorphic functions f and ¢ defined in a do-
main GG are equal on a sequence z, € GG, lim z,=

20 € G, ie., f(z,) = g(z,) forn=1,2,..., then  Figure 4: Sequence of points
f = gin G; see Fig. 4. Of course such a property
is not true for functions in real calculus.

In particular, if a holomorphic function f is defined in a domain G; C C
and another holomorphic function ¢ is defined in a domain G C C with
G1NGy # 0 and f = g on the intersection, then g is determined uniquely by
f; see Fig. 5.

If a holomorphic function f is defined by a power series which converges
in a disc and diverges outside that disc, it does not mean that the function
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f cannot be holomorphically extended beyond this disc. A simple example:

Figure 5: Holomorphic extensions

|z] < 1.

Obviously the series diverges for val-
ues |z| > 1. However, the function f
can be holomorphically extended to
the entire complex plane C except
z =1, by the formula

A natural question appears: whet-
her the Riemann zeta function can
be holomorphically extended beyond
the half-plane Re s > 17 The answer

is yes, which we show in two steps. The first step is easy, the second more

difficult.

4.1 Extension of {(s) from {Res > 1} to {Res > 0}

Let us calculate

-2 = (1-2-5)

L L1,
1528 3

S Y (N A
- 1s 9s 3s 9s 43 65
111111
o 18 9s 3s 453 5s 6 o

- 1
SIS

n=1 n

We obtained another formula for (s

(s) = g S

ns
n=1

UrnB
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Res >0

Figure 6: The alternating series converges for Res > 0

so the alternating series converges in a bigger half-plane (see Fig. 6) than the
originally defined function ((s) in (3), but we have to remove s = 1 since
the denominator 1 — 2!~ vanishes there. This rather easy extension of ((s)
from s with Res > 1 to s with Res > 0 is already significant as it allows us
to formulate the Riemann Hypothesis about the zeros of ((s) in the critical
strip (see Subsection 4.3).

4.2 Functional equation for the Riemann zeta function

The second step, which provides a holomorphic extension for ((s) from
{Res >0, s # 1} to {Re s < 0}, see Fig. 7, was proved by Riemann in 1859.
We do not give a proof here of the so-called functional equation, but the proof
can be found, e.g. in the book by Titchmarsh [21]. Alternatively one can first
holomorphically extend ((s) step by step to half-planes {Res > k, s # 1},
where k is any negative integer. For details of this method, see for example
the papers [11] and [12].

There are few versions of the functional equation; here we formulate two
of them:

C(1—s)=2(2m) % cos(ms/2) T'(s) ((s) , for Res>0, (5)
((s) = 2(2m)* tsin(ms/2) T(1 — 8) (1 —s) , for Res<1, (6)

where
['(s) = / v*te™*dr  for  Res>0. (7)
0
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Rez >0

Figure 7: Holomorphic extension domain from the right half-plane to the left half-plane

Before we give more information about the function I'(s), we mention
that each of the equations (5) and (6) give an extension of ((s) on the entire
plane C except s = 1, as is illustrated in Fig. 7.

The gamma function was already known to Euler. It generalizes the
factorial n!, namely

['(n) =(n—1)! for n=1,2,....

Its basic properties are that I'(z) is holomorphic on the entire plane C ex-
cept for the points z = 0,—1,—2,... . At these points there are simple
singularities, called poles, where we have the limits

. (—1)*
hmk(z—l—k:)f‘(z): o k=0,1,2,....

From the definition of the gamma function (7) it is not clear that it can
be extended onto the entire plane except for z =0, —1,—2,—3,..., and that
is non-vanishing. Fortunately there are other equivalent definitions of I'(z)
from which these properties follow more easily; see [16]. Namely we have

z

[(z)=e* [z ﬁ (1 + i) ez/”] ) , I'(z) = lim nin .

n n—oo z(z+1)-...- (2 +mn)

n=1

From the second formula for the gamma function we see that I'(z) is
holomorphic and nonvanishing for Re z > 0.

UrnB
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|
4.3 The Riemann Hypothesis

The Riemann Hypothesis is the most famous open problem in mathematics.
Originally formulated by Riemann, David Hilbert then included the con-
jecture on his list of the most important problems during the Congress of
Mathematicians in 1900, and recently the hypothesis found a place on the
list of the Clay Institute’s seven greatest unsolved problems in mathematics.

It follows from the formula of ((s) as the product (4) that the function
does not vanish for Re s > 1. Next, using the functional equation (6) and the
fact that I'(z) # 0 for Rez > 0, we see that ((s) vanishes in the half-plane
Re s < 0 only at the points where the function sine is zero, namely from (6)
we obtain

C(—2k) = 2(2m) *sin(n(—2k)/2) T(1+2k) (1 +2k) =0, k=1,2,... .

=0
(8)
The above considerations do not tell us
about the zeros of ((s) in the strip 0 <
Res < 1. Actually there are zeros in this 0<Res < 1
strip and they are called nontrivial zeros.
Calculation of some number of these non-
trivial zeros shows that they are lying ex-
actly on the line Res = %, called the crit-
ical line; see Fig. 8. Now with the help
of computers it is possible to calculate an
enormous number of zeros, currently at the
level of 10" (ten trillion). It is interesting
to mention that before the computer era began roughly in the middle of the
twentieth century, only about a thousand zeros were calculated. Of course
all of these zeros are calculated with some (high) accuracy: they are lying on
the critical line. However, there is no proof that really all nontrivial zeros lie
on this line and this conjecture is called the Riemann Hypothesis.

0 1

. —
Res = 3

Figure 8: Critical line

Riemann Hypothesis: All nontrivial zeros are on the line Re s = %

Many great mathematicians have contributed to a better understanding
of the Riemann Hypothesis. There is no room to even partially list them
here. Only we mention four of them: André Weil (1906 - 1998), Atle Selberg
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(1917 - 2007), Enrico Bombieri (1940 - ), and Alain Connes (1947 - ). The
last three received the Fields Medal (in 1950, 1974, and 1982, respectively),
which is considered an equivalent to a Nobel Prize in mathematics. The
Fields Medal is awarded only to scientists under the age of forty. If someone
proves the Riemann Hypothesis and is relatively young, then they surely will

receive this prize.

Atle Selberg

Enrico Bombieri Alain Connes
5 What is known about the values of {(s) at
integers?

Here we sum up what is known about the values of the Riemann zeta function
at integers. In Section 7 we discuss these statements more precisely.

UFnB
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e ((—2k) =0, k =1,2,..., these are trivial zeros and are evaluated
in (8).

e The values ((2k) for k =1,2..., have been found by L. Euler in 1734;
we give a proof of these formulas in Section 7.

o ((—2k+1)fork=1,2,.... When we know ((2k), then we can evaluate
C(—2k + 1) = 2(21) " sin(m(—2k + 1)/2) T'(2k) C(2k)

= 2(27) " (—1)*(2k — 1)!((2k).

e ((2k+1) 777 for k =1,2,.... There is a mystery about these values.
Among the few known results is that ((3) is irrational (Apéry) and the
results of Rivoal show that there are an infinite number of irrationals
among them.

1
e ((0)= =5 follows from (9) and (6).
e ((1) does not exist, but v = Euler’s constant can be extracted:

1
() == +7+9(s—1), where g(s—1)—0ass—1 (9
S_

Amagzingly, it is not known whether ~ is rational or not.

6 Bernoulli numbers

6.1 An original way to evaluate Bernoulli numbers

To explain some values of the Riemann zeta function
at integers, we have to go back and learn about Bernoulli
numbers, which were named after Jacob Bernoulli (1654 -
1705). He set a goal for himself to find a formula for the
finite sum of powers of consecutive positive integers:

Se(n) = 1% + ...+ (n — 1)*,

Jacob Bernoulli

where k = 1,2,..., n =2,3,.... It turned out that Si(n)
is a polynomial in n of degree k + 1, as we will see in a moment. Bernoulli
was successful in finding a general formula for these polynomials, and as he
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wrote in his book, Ars Conjectandi, that “in less than a half of a quarter of
an hour he was able to sum the tenth powers of the first thousand integers”
(see [14]).

There is a large amount of literature on Bernoulli numbers and their
relations to various areas of mathematics (see the bibliography [9] on this

subject between the years 1713 - 1990).

If k& is small, then it is relatively easy to find formulas for Sk(n), namely

Si(n) = 50
So(n) — %nB
Sy(n) = }ln‘l
Suln) = zn”
Sa(n) = zn
Se(n) = %M
Se(n) = énS
Ss(n) = gn’
So(n) = 1i0
Sio(n) = %n
|
(==}
So we have
Sk(n) = k —Iil_ &

UrnB
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+
Wl = O

3

V)

n

+En
1 2
+ﬁn
2 1
-n® ——n
9 30
1 4 3 2
NPT
1
5 13
+n 2
N2
0
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For technical reasons, it is better to adjust the coefficients of the polyno-

(k ;_ 1). Then we get

1 k+1 k+1

mial Si(n) by the factor

kE+1

k (10)
1 k+1 kel
=— . B, nf =i
kE+1 Z < J ) i
7=0

There are the recurrence relations for By:
BO = 17
B() + ZBl — 0,
By+3B1+ 3By =0,
BQ + 4B1 + 682 + 4B3 - O,

k
Z(kfl)szo, k>1.
prN

These beautiful rational numbers are Bernoulli numbers.

6.2 An analytic way to evaluate Bernoulli numbers
Amazingly, we can evaluate Bernoulli numbers in a completely different way.
Consider the holomorphic function

z

er —

for |z] <27

and expand it into the power series

2 1 11 1 1 > 2"
—l— a2 (A =N"B 2 11
e —1 i togr Tl * nz:% nl (11)

It appears that the coefficients B,, of the series above are exactly the same
numbers which were defined in a completely different way.

The first Bernoulli numbers give a misleading impression that they con-
verge to zero:
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ni|0] 1 (23] 4 |56 |7 8 |9]10]11 | 12

B || 1| =44 [o] =% [o % oo & 0 |-
Actually the opposite is true
2(2k)!
(=11 By, >0, (=1)""'By, ~ e as k — 0o .
The latter statement means that
. (—1)k+1(2ﬂ')2kB2k .

6.3 Bernoulli polynomials
We can define Bernoulli polynomials in terms of Bernoulli numbers:

2 (5)e

k
Jj=0

or by expansion of the complex analytic function

ze™? > By(z) 4
e :kz:; T for |z] <27. (12)

It is not difficult to prove that the polynomials have nice recurrence re-

lations
Bi(z + 1) — Bi(z) = ka*=1 if k>1,

By(0) = By(1) it k> 2.

From the definition of the Bernoulli numbers (11) and polynomials (12), we
immediately obtain

By, = Bi(0) forall k> 1.

Using these properties we see that the sums Si(n) in (10) can be expressed
in terms of Bernoulli polynomials:

Se(n) = By11(n) — By _ Bjy1(n) — By41(0) _ Byi1(n) — By (1)
i k+ 1 k+ 1 k+1 '

UrnB
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]
7 What is known about some values at inte-

gers?

7.1 Euler’s calculations of {(2k)

After several years of struggle, Leonhard Euler proved in 1734 a stunning
formula for ((2k), where n is a natural number. For |z| < 7 we have

COS 2 z
zcotz = 2— = 1—25 S R
sin 2 n’m

n=1 k=

o0 o0 1 22k+2
= 1-2 Z (Z n2k+2> T2kt2

k=0 n=1

k=1 n=1

Another formula for zcot z:

cosz . eF4e 2iz (2iz)*
zcotz =2 = =12+ — :1—|—E By ,
sin z etz — e~z ez —1 ps k!

where By, are Bernoulli numbers. Comparing the coefficients of powers of z*
from the above two calculations, we get the famous formula

(k) = (—1p C g

2(2k)!
Just the first few values:
w2 v 76 8
@="" =T )= ()=
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|
7.2 Are the relations between ((k) and By, accidental?

What are the following sums? If we just formally substitute in formula (3) for

((s) arguments s = 0, —1,—2, ..., ignoring the fact that our series diverges,
we obtain:
1
14243+ = =((-1) = !
= = = s
12422432 +... = =((-2) = 0
By
1Fpok 43k = =((—k) = — =2
+ 2k 3k ¢(=k) o

The relations between (k) and By, are not accidental! In paper [17] we
have the following calculations, where in Si(n) the argument n is replaced
by a variable x and then the corresponding function is integrated over the
interval [0, 1]:

1
1
l+...+1l=n—1~ 2—1 ~ /(x—l)d$=—§=C(0)>
0

I+.. 4+(n—-1) =

n(n—1) x(r —1) Ya(z —1) 1
5 ~ 5 «»»/0 Tdaz ——E—C(—l),

n(n—1)(2n —1) z(r—1)(2x —1) -
6

P+, +(n-1)>%= 5 s
Y2z —-1)Q2z-1) ,

_ Bin
k+1

Se(n) =1+ ...+ (n = 1% ~ Si(z) W/Osk(x)d$ = = ((—k) .

See also [18] and [12] for another nice variant of obtaining this relation in
a very simple way.

UrnB
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7.3 What is known about {(2k 4+ 1)?

One of the most spectacular discoveries about ((2k + 1) was the proof by
R. Apéry in 1978 that ((3) is irrational (see Apéry [2]). Apéry gave another
formula for this value in terms of a series that converges quickly

:iki gi ( ) (13)
k

k=1

There is a theorem in number theory which says that if a series of rational
numbers converges “fast enough”, then the sum of the series is an irrational
number. The series on the right of (13) satisfies the assumption of this
theorem, therefore the conclusion is that ((3) is irrational.

There are also similar formulas for {(2) and ¢(4)

=1 = N1 36— 1
;k_ ; < ) 2 ki (%)
= k2 3 k=1 k=1 [4 )

however explicit formulas for these values were already found by Euler,
namely 72/6 and 7%/90, respectively. Unfortunately there are no related
formulas for other values ((n), n = 5,6,7,... , which give at least the irra-
tionality of them. For a simple version of Apéry’s proof, the reader is referred
to a paper by Van der Poorten [22].

Relatively recently, other substantial, remarkable results were obtained
by Tanguy Rivoal and others. We have

Theorem 1 (Rivoal, 2000, [19]) There are infinitely many irrational val-
ues of the Riemann zeta function at odd positive integers. Moreover, if

N(n) = # irrational numbers among ((3),((5),...,{(2n + 1),

then

N(n) 2 Clogn - forn large, where C can be taken 57—

Theorem 2 (Rivoal, 2002, [20]) At least one of the nine numbers ((5),
¢(7),...,¢(21) is irrational.
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A reviewer for Math. Reviews, Vadim Zudilin, of Rivoal’s 2002 paper,
improved the result:

Theorem 3 (V. Zudilin, 2001, [24]) At least one of the four numbers ((5),
¢(7), €(9), C(11) s irrational.

8 Relations between the values of the zeta
function

The best result about the values ((2k+1), k= 1,2,..., would be if there are
explicit formulas as in the case of ((2k). However, currently it seems a very
difficult problem. Another significant result would be to give finite relations
between the values ((2k + 1), involving only a finite number of such values
in a single relation, or show that there are no such relations. Again, it looks
like a very difficult problem.

In the remaining part of this note, we describe a result which was ob-
tained by the authors [10] giving infinite relations between ((2k + 1). In
the literature, one can find many infinite relations among these values. The
significance of the result in [10] is in its universality: plugging a holomorphic
function from a relatively large class of functions, we get an infinite relation
between the values ((2k + 1), k =1,2,....

8.1 The values of {(n) in terms of integrals

The following formulas are well-known in the literature:

1 (1)1 (2m)2 [ .
oz = 25)! /0 Bok(t) cos(2mjt) dt ,
1 (_1)k71(2ﬂ_)2k+1 1 ' '
j2k+1 - (2]{3 i 1>| A B2k+1(t) Sln(Qth) dt )
where 7,k =1,2,..., and k£ = 0 in the second formula is allowed.

Then, using the standard summation formulas for sine and cosine

sin((n +1/2)0)
2sin(0/2)

1
5 + cos @ + cos(26) + ... + cos(nd) =

UrnB
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and
o | cos(6/2) — cos((n +1/2)0)
2 o =
sin 0 + sin(20) + ... 4 sin(nd) 25sin(0/2) ’
we obtain:
In the even case
1 (—D*'en* sin((2n + 1))
2k) =1 % S ool b
C(2Kk) ngilo;j% 2 o)l nir{)lo/o 2k (1) sin () dt
(_1 k—1 27T)2k
and in the odd case
. - 1
C@k+1) = lm 37—
=1
(—1)F1(2m) 2+ 1 cos(mt) — cos((2n + 1)mt)
1 B
RS el e I
Sy
Boj1(t) cot(t)dt. 1
2@y PrnDeet() "

8.2 Class of functions &4

In mathematics, the most common expansions of functions are power series
expansions, i.e., with respect to {(z — ¢)"}32, or Fourier series expansions,
i.e., with respect to {cos(nz)}>, and {sin(nz)}5> ,, namely

f(z)= Z an(z—c)" or f(z)=ay+ Z(an cos(nz) + by, sin(nz)).

n=1

However, in many situations, expansions with respect to other families
of functions are important as well. Taking into account the formulas (14)
and (15) for values of the zeta function in terms of integrals, expansions of
functions with respect to the Bernoulli polynomials seem to be useful. Not
all functions can be expanded in terms of Bernoulli polynomials. There are
some restrictions on the class of such functions. A very nice book [7] related
to this subject is by Boas and Buck.
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1

"
// neighborhood

polydisc

/A ||

a

Figure 9: Polydisc and its neighborhood

We define the following class # of functions. Let f = f(z,t) be a holo-
morphic function of two variables in a neighborhood of the closed polydisc,
e, |2 < a(a>0), It <1,

o0

f(z,t) = Z a2 t",

n,k=0

for |z] < a+e, |t| <1+ ¢, where ¢ > 0 is a small real number. Moreover,
assume that f has the property

f(Z,t) = an(t)zna

and for each n = 0,1,... there exist constants c,;, j = 0,1,..., such that
falt) = chij (t) converges for |t| < 1+¢,
§=0

that is, each f, can be expanded into a series with respect to Bernoulli
polynomials.

We also define a subclass %, C # of functions. Let f = f(z,t) be a
holomorphic function of two variables in the closed polydisc |z| < a (a > 0),
|t|] <1, as above. Moreover, assume that f has the property

f(z>t> = Z fn<t>zn> (16)
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where f,(t) is a polynomial of degree [,,. Since

~ (n+1
= By (t
() B

therefore we have %, C 4.

8.3 Formulation of results
Let

2 ) =Y [ fall) =) s By(1)

j=0
have the meaning as in the preceding subsection

Theorem 4 ([10]) If f € # and additionally f(z,0)

/0 f(z,t) cot(nt) dt Z[Zan2k+1g2k+1)

k=1

= f(2,1) =0, then

n=0
where

2(—1)F+1(2k + 1)!
An2k+1 = (27r)2k+1 Cn2k+1 -

f(2,0)

Remark. The results are valid for any f € % without the assumption
,0) = f(z,1) =0 if instead of the function f = f(z,t) we take

f(z,t) = f(z,8) = f(2,0) = t(f(z,1) = f(2,0)).

Corollary 1 ([10]) If f € By and additionally f(z,0) =

for each n there are complex constants a,opi1,
L=

l, = deg f,, such that

f(z,

1) =0, then
3 < 2k+1< 1,

where

/ f(z,t) cot(mt) d Z Z anok+1C(2k +1)| 2

n=0 [3<2k+1<1,

A natural question is: which functions f(z,t) produce trivial relations in
Theorem 4 and Corollary 17 In the cases
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e f = f(z,t) polynomial in (z, t);
o f=f(z,t) = g(2)h(t), where g, h are holomorphic functions;

then theorem 4 and Corollary 1 do not provide any information, just trivial
identities.
However, if

e f(z,t) = f(zt), where f is a holomorphic function in the closed unit
disc (here f has a double meaning) with a power series with infinitely
many nonzero coefficients, i.e.,

f(z,t) = Z ant"z", a, #0 for infinitely many n; (17)
n=0

e a generalization of the above case: let f = f(z,t) be from the class %,
i.e., as in (16), where f,(t) are polynomials; assume additionally that
the degrees of these polynomials are not bounded, i.e., max,(deg f,,) =
005

e most of the functions from the class %;

we get nontrivial equalities.
Finally we formulate one more corollary of Theorem 4 when applying it
to functions from (17).

Corollary 2 Assume that f(z,t) = f(zt) as in (17) and additionally f(0) =
0. Then

/0 [f(zt) — tf(2)] cot(nmt)dt =
(18)

2" .

> 2= 12k + 1) [ n+1
~3oo| 3 HEEE (1 e

n=3 3<2k+1<n

Some comments regarding the above corollary. If we can find a function
f asin (17) and are able to evaluate explicitly the integral on the left-hand
side of (18), say

/0 [f(2t) = tf(2)] cot(mt) dt =D " cn2",
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e ——
then from (18) we get finite relations between the values ((2k 4 1), namely

_1)k+1 n
Z 2( 1()27)g§f1+ 1)! <2k111) C(2k+1) = co/an if an # 0.

3<2k+1<n

This would be a fantastic result. However, the question whether it is possible
or not to find such a function f is open. Similar considerations hold for any
function from the class 4.

8.4 Applications

As an application of the results formulated above, we take the function

7TZ€27”Zt

f(Z,t) =

which can be obtained from the definition of Bernoulli polynomials in (12),

which we recall here,
zezt e Zk
= Bi(t)—
er —1 ; D7

by plugging 27iz for z in the above equation and dividing the result by (—2).
Applying Corollary 1 and after some calculations (see [10]), the following
formulas hold:

_627riz -1 )

oo 1
ZC(Qk + 1) = _eQWLl/ [t — 1 — t(e*™ — 1)] cot(t) dt
k=1 -0

= 2z /7T cos(2zt) In(sint) dt + In2

~ sin(272) Jo

- = /ﬂs' (224) In(sin ) dt + In2

= T cosnd) J, in(2zt) In(sin n2.

One more application to the digamma function v, which is defined

) = diz[lnr(z)] - FF((;) .

In the literature the following formula is known

(2

_%mﬂb(z) +ap(—2)] =Y C(2k + 1), (19)
k=1
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where 7y is the Euler constant. We note that the right-hand side in (19) coin-
cides with the previous evaluation above. Consequently we get the identity

—%[27 +(2) +(—2)] = Q—Z) /Owcos(Zzt) In(sint) dt + In 2.

 sin(27z
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