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The Big-Oh Symbol and the behavior of f(x)

Suppose we wish to study the behavior of a function f(x) for values of = in the
neighborhood of = a, where a is a real (or complex) number. The first step is to
compute

lim () = f(a).

This provides a rather limited piece of information. It would be more informative if
we knew how f(x) approaches f(a) as  — a. This is what is meant by the behavior
of f(z) as * — a. To be more specific, we first must introduce the concept of the
big-Oh (or order) symbol.

1. The big-Oh (or order) symbol

We say that
f(x) =0(g(z)), asz—a,

if there exist a finite positive real constant M such that |f(z)] < M|g(z)| for all
values of x in the neighborhood of x = a. This definition is more general than what
is required in these notes. In practice, we will choose g(z) = (z — a)” in the case
of ¥ — a and g(x) = 27" in the case of a = 0o, where n is a non-negative integer.
Note that the meaning of the big-Oh symbol depends on the value of a. In most
applications, the value of a can be ascertained from the context. The most common
case is a = 0, in which case,

fla)=0@"), asz—0 <= limlz™"f(2)] =K, (1)

where K is a finite non-negative constant. As an example, f(z) = O(1) (correspond-
ing to n = 0) means that |f(0)| is a finite non-negative number.

Our primary application of the big-Oh symbol is in specifying the size of the
omitted terms in a Taylor series or more generally in an asymptotic series. For
example, consider a Maclaurin series (which is defined to be a Taylor series about
x =0). Then,

N

f@) =Y ana + O, = f(0), e

n=0

where f((0) = (d"f/dz™)y—o. The O(xzN*') term above represents higher order
terms in the series that start with ay V™!, The sum of the omitted terms is
called the remainder term, Ry(x), which satisfies lim, oz~ V"V Ry(z) = K, which
is consistent with eq. (1). In this case, the constant is simply K = ayy1.
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The following properties of the order symbol are noteworthy. Let m and n be
non-negative integers. First, if ¢ is any finite constant (either positive or negative),
then

cO(z™) = O(z"). (3)

That is, multiplication by a non-zero constant does not alter the order. This follows
from the basic definitions above which do not specify a specific value for the constant,
K =lim, o |z7"f(z)|. Second,

0(0(z")) = O(z"), (4)
which is a consequence of eq. (3). Third, under multiplication,
O(z™)O(z™) = O(x™™) . (5)
Fourth, under addition,
If m > n, then O(z") + O(2™) = O(z2"), asx — 0. (6)

This result is a consequence of the fact that as x — 0, 2™ approaches zero faster than
2™ if m > n. Finally, we have the strange looking result

If m > n, then O(z™) = 0O(z"), asz — 0. (7)

This is consistent with eq. (1) with f(z) = 2™ since lim,_o|2™ " = 0 (which is
certainly a finite constant) if m > n. Eq. (7) seems to contradict our interpretation
of O(zV*1) in eq. (2) as the power of the first neglected term of the Maclaurin series.
Indeed, eq. (7) implies that O(zV*!) = O(2P) for any non-negative integer p < N +1.
Thus, it would be mathematically correct to replace O(z¥*1) with O(2?) in eq. (2).
However, the most useful form of such an equation is obtained by choosing p to be
the largest possible power, which for the case of eq. (2) is p= N + 1.

2. The behavior of f(x) asx — 0

Suppose that one can expand f(x) in an asymptotic series (which may or may not
be a Taylor series) as x — 0,

f(x) = ap+ a1z + aza® + aza® + - - - .

Then, assuming that the coefficients a; and as are non-vanishing, the behavior of f(z)
as x — 0 is given by:
f(x) = £(0) + a1z + O(a?) .

The term a;z indicates that the deviation of f(x) from f(0) as  — 0 is linear, and
the O(x?) indicates the size of the first neglected term of the expansion. Of course,
other possible behaviors are possible. More generally, the behavior of f(z) as z — 0
is given by:

f() = £(0) + anz™ + O(2")

2



where M is the smallest positive integer for which ay; # 0 and N > M indicates the
index of the first nonzero coeflicient in the series after ay,.
A few examples will illustrate the above concepts.

(a) Find the behavior of f(z) = cos*z as z — 0.

Starting with the Taylor series for cosz,
cosz =1— 327+ O(z?),
we square the above result to obtain:
cos’z = [1— 327 + O(x4)]2 =1-24+0(z").

Note that (1 —$2%)* =1 — 2% — 12*, but we do not have to explicitly exhibit the Jz*
term above since according to eq. (6),

12t + 0(2) = O(2").
Similarly, egs. (5) and (6) imply that*
220(x) = O(2%) = O(2*).

We conclude that the behavior of cos?z as * — 0 is cos? x = 1 — 22 + O(x?).

(b) Find the behavior of f(x) =

5 as r — 0.
cos?

In this case, we can first use the results of (a) above to obtain:

1 1
cos?z 1 —a2+4 Oxt)’

To complete the problem, we make use of the well known geometric series
1 = n 2
mzzy =1+y+0(y). (9)
n=0

We can evaluate eq. (8) by taking y = 2*> — O(z*) in eq. (9). Hence,

1
cos? x

=1+2> - O0@") + O([z* — O@@"))?) =1+ 22 + O(a").

In obtaining this result, we used the properties of the big-Oh symbol given at the
end of Section 1. In particular, [z? — O(z?)]> = O(z?) and O(z*) = —O(2*) [the
latter follows from eq. (3) with ¢ = —1]. We conclude that the behavior of 1/ cos® z
as z — 0 s cos’x = 1 + 2% + O(z*).

*Equivalently, one can cay that as z — 0, any O(x%) term is negligible as compared to an O(z*)
term and can simply be neglected.



1
(c) Find the behavior of — — 7,88 T = 0.
T

er —

In order to find the behavior, we must make sure that we keep enough explicit
terms in our expansions. First, we write:

11 [«
x e —1 =z et — 1|

Next, we note that

€T xn
e —lzza:x+%x2+%x3+0(:)§4):x[1+%x+%x2+0(:)§3)} .

It then follows that
r 1
er —1 1+3iz+ 12+ 0(s3)

To evaluate this expression, we make use of the geometric series,

[e.e]

1

R _lnnzl_ + 2+O 3‘
T (=1)"y y+y (v°)

3
o

By choosing y = %x + %xz + O(z?), and making use of the properties of the big-Oh

T
symbol, it follows that O(y?) = O(x?), and
x J—

er —1

=1-3lo+4+ (3 -1%) 2" +0(°)

1— 31z —12® - O@%) + Jo + 12 + O(°)]” + O(2%).

=1-1o+ L2 +0@%.
Thus,

r e*—1 T

1 1
= - [lx - 527+ 0(2%)| =

! — 5o+ O0(2?).
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3. The behavior of f(x) as * — oo

One can also consider Taylor series or asymptotic series about the point of infinity.
In this case, we simply replace x with 1/x and 0 with oo in eq. (1). That is,

f(:c)z(’)(%), as r — 00 <= :}Lrgo\x"f(:cﬂ:K, (10)

where K is a non-negative finite constant. As a simple example, the behavior of
eV as  — oo is given by

=1 1\" 1 1
—1/:1,‘2_ I o o -
; _Zn,( I) _ 2;52”(:64)-

n=0



