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2.4 BRANCHES OF FUNCTIONS

In Section 2.2 we defined the principal square root function and investigated some
of its properties. We left unanswered some questions concerning the choices
of square roots. We now look at these questions because they are similar to
situations involving other elementary functions.
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In our definition of a function in Section 2.1, we specified that each value of
the independent variable in the domain is mapped onto one and only one value
in the range. As a result, we often talk about a single-valued function, which
emphasizes the “only one” part of the definition and allows us to distinguish
such functions from multiple-valued functions, which we now introduce.

Let w = f (z) denote a function whose domain is the set D and whose range
is the set R. If w is a value in the range, then there is an associated inverse
relation z = g (w) that assigns to each value w the value (or values) of z in D
for which the equation f (z) = w holds. But unless f takes on the value w at
most once in D, then the inverse relation g is necessarily many valued, and we
say that g is a multivalued function. For example, the inverse of the function
w = f (z) = z2 is the square root function z = g (w) = w

1
2 . For each value z

other than z = 0, then, the two points z and −z are mapped onto the same point
w = f (z); hence g is, in general, a two-valued function.

The study of limits, continuity, and derivatives loses all meaning if an ar-
bitrary or ambiguous assignment of function values is made. For this reason
we did not allow multivalued functions to be considered when we defined these
concepts. When working with inverse functions, you have to specify carefully
one of the many possible inverse values when constructing an inverse function,
as when you determine implicit functions in calculus. If the values of a function
f are determined by an equation that they satisfy rather than by an explicit for-
mula, then we say that the function is defined implicitly or that f is an implicit
function. In the theory of complex variables we present a similar concept.

We now let w = f (z) be a multiple-valued function. A branch of f is any
single-valued function f0 that is continuous in some domain (except, perhaps, on
the boundary). At each point z in the domain, it assigns one of the values of f (z).

� EXAMPLE 2.20 We consider some branches of the two-valued square root
function f (z) = z

1
2 (z �= 0). Recall that the principal square root function is
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where r = |z| and θ = Arg (z) so that −π < θ ≤ π. The function f1 is a branch
of f . Using the same notation, we can find other branches of the square root
function. For example, if we let
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(2-29)

then
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so f1 and f2 can be thought of as “plus” and “minus” square root functions.
The negative real axis is called a branch cut for the functions f1 and f2. Each
point on the branch cut is a point of discontinuity for both functions f1 and f2.

� EXAMPLE 2.21 Show that the function f1 is discontinuous along the neg-
ative real axis.

Solution Let z0 = r0eiπ denote a negative real number. We compute the limit
as z approaches z0 through the upper half-plane {z : Im (z) > 0} and the limit as
z approaches z0 through the lower half-plane {z : Im (z) < 0}. In polar coordi-
nates these limits are given by
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The two limits are distinct, so the function f1 is discontinuous at z0.

Remark 2.4 Likewise, f2 is discontinuous at z0. The mappings w = f1 (z),
w = f2 (z), and the branch cut are illustrated in Figure 2.18. �

We can construct other branches of the square root function by specifying
that an argument of z given by θ = arg z is to lie in the interval α < θ ≤ α+2π.
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Figure 2.18 The branches f1 and f2 of f (z) = z
1
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Figure 2.19 The branch fα of f (z) = z
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The corresponding branch, denoted fα, is

fα (z) = r
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2
, (2-30)

where z = reiθ �= 0 and α < θ ≤ α+ 2π.
The branch cut for fα is the ray r ≥ 0, θ = α, which includes the origin.

The point z = 0, common to all branch cuts for the multivalued square root
function, is called a branch point. The mapping w = fα (z) and its branch cut
are illustrated in Figure 2.19.

2.4.1 The Riemann Surface for w = z
1
2

A Riemann surface is a construct useful for visualizing a multivalued function.
It was introduced by G. F. B. Riemann (1826–1866) in 1851. The idea is
ingenious—a geometric construction that permits surfaces to be the domain or
range of a multivalued function. Riemann surfaces depend on the function being
investigated. We now give a nontechnical formulation of the Riemann surface
for the multivalued square root function.

Consider w = f (z) = z
1
2 , which has two values for any z �= 0. Each function

f1 and f2 in Figure 2.18 is single-valued on the domain formed by cutting the z
plane along the negative x-axis. Let D1 and D2 be the domains of f1 and f2,
respectively. The range set for f1 is the set H1 consisting of the right half-plane,
and the positive v-axis; the range set for f2 is the set H2 consisting of the left
half-plane and the negative v-axis. The sets H1 and H2 are “glued together”
along the positive v-axis and the negative v-axis to form the w plane with the
origin deleted.

We stack D1 directly above D2. The edge of D1 in the upper half-plane
is joined to the edge of D2 in the lower half-plane, and the edge of D1 in the
lower half-plane is joined to the edge of D2 in the upper half-plane. When these
domains are glued together in this manner, they form R, which is a Riemann
surface domain for the mapping w = f (z) = z

1
2 . The portions of D1, D2, and

R that lie in {z : |z| < 1} are shown in Figure 2.20.
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(a) A portion of D1 and its image under w = z
1
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(c) A portion of R and its image under w = z .
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Figure 2.20 Formation of the Riemann surface for w = z
1
2 : (a) a portion of D1 and its

image under w = z
1
2 ; (b) a portion of D2 and its image under w = z

1
2 ; (c) a portion of

R and its image under w = z
1
2 .
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The beauty of this structure is that it makes this “full square root func-
tion” continuous for all z �= 0. Normally, the principal square root function
would be discontinuous along the negative real axis, as points near −1 but above
that axis would get mapped to points close to i, and points near −1 but below
the axis would get mapped to points close to −i. As Figure 2.20(c) indicates,
however, between the point A and the point B, the domain switches from the
edge of D1 in the upper half-plane to the edge of D2 in the lower half-plane.
The corresponding mapped points A

′
and B

′
are exactly where they should be.

The surface works in such a way that going directly between the edges of D1 in
the upper and lower half-planes is impossible (likewise for D2). Going counter-
clockwise, the only way to get from the point A to the point C, for example, is
to follow the path indicated by the arrows in Figure 2.20(c).


