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The complex inverse trigonometric and hyperbolic functions

In these notes, we examine the inverse trigonometric and hyperbolic functions, where
the arguments of these functions can be complex numbers (see e.g. ref. 1). These
are all multi-valued functions. We also carefully define the corresponding single-
valued principal values of the inverse trigonometric and hyperbolic functions following
the conventions employed by the computer algebra software system, Mathematica 8.
These conventions are outlined in section 2.2.5 of ref. 2.

The principal value of a multi-valued complex function f(z) of the complex vari-
able z, which we denote by F(z), is continuous in all regions of the complex plane,
except on a specific line (or lines) called branch cuts. The function F(z) has a dis-
continuity when z crosses a branch cut. Branch cuts end at a branch point, which
is unambiguous for each function F(z). But the choice of branch cuts is a matter
of convention.! Thus, if mathematics software is employed to evaluate the function
F(2), you need to know the conventions of the software for the location of the branch
cuts. The mathematical software needs to precisely define the principal value of f(z)
in order that it can produce a unique answer when the user types in F'(z) for a par-
ticular complex number z. There are often different possible candidates for F'(z) that
differ only in the values assigned to them when z lies on the branch cut(s). These
notes provide a careful discussion of these issues as they apply to the complex inverse
trigonometric and hyperbolic functions.

1. The inverse trigonometric functions: arctan and arccot

We begin by examining the solution to the equation

sinw 1 [ —e ™ 1 [fe*w —1
z =tanw = = | — = - w11 .
cosw 7\ e 4 emw 7 \edw + 1

We now solve for e?*,

e — 1 L 2w _ 1+iz
e?w + 1 C1—dz’

1z =

'In these notes, the principal value of the argument of the complex number z, denoted by Arg z,
is defined to lie in the interval —m < Argz < 7. That is, Argz is single-valued and is continuous at
all points in the complex plane excluding a branch cut along the negative real axis. The properties
of Arg z determine the location of the branch cuts of the principal values of the logarithm the square
root functions. If f(z) is expressible in terms of the logarithm the square root functions, then the
definition of the principal value of F'(z) is not unique. However given a specific definition of F'(z) in
terms of the principal values of the logarithm the square root functions, the location of the branch
cuts of F(z) is inherited from that of Argz and are thus uniquely determined.



Taking the complex logarithm of both sides of the equation, we can solve for w,

1 1412
w:—,ln - .
21 1—1z

The solution to z = tanw is w = arctan z. Hence,

arctan z = %ln(lJrZZ) (1)

7 1—1z

Since the complex logarithm is a multi-valued function, it follows that the arctangent
function is also a multi-valued function. Using the definition of the multi-valued
complex logarithm,

1
arctanz = — Ln
21

144z
1—1z

1—1z

.
—l—%[Arg( +Zz)+2m}, n=0,+1, 42, ..., (2)

where Arg is the principal value of the argument function.

Similarly,
oS W (i(em + e‘“”) (i(e%w + 1)
z = cotw = =(— )= .

sin w giv — g—iw eiv — 1
Again, we solve for e?*,

27w .

. e +1 - 1z — 1

= = P = )
e2iv _ 1 1z +1

Taking the complex logarithm of both sides of the equation, we conclude that

1 1z —1 1 z41
w = — In : = 35 In . )
2 1z +1 21 z2—1
after multiplying numerator and denominator by —i to get a slightly more convenient
form. The solution to z = cot w is w = arccotz. Hence,

] ,
arccotz = 5 In (Z i Z) (3)

7 Z—1

Thus, the arccotangent function is a multivalued function,

S +%{Arg<z+l,>+27m}, n=0,+1,£2, ..., (4)

Z—1 Z—1

1
arccotz = — Ln
21

Using the definitions given by eqgs. (1) and (3), the following relation is easily
derived:

z

arccot(z) = arctan (1) | (5)
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Note that eq. (5) can be used as the definition of the arccotangent function. It
is instructive to derive another relation between the arctangent and arccotangent
functions. First, we first recall the property of the multi-valued complex logarithm,

In(z129) = In(21) + In(29) , (6)

as a set equality. It is convenient to define a new variable,

- 1 |
votZ2 o _l_zHi (7)

. ) . *
1+ Z v Z—1

It follows that:

1 1 1 —v 1
arctan z + arccot z = % {lnv +1In <—;)} =5 In <—v> =5 In(—1).

Since In(—1) =i(7m + 27n) for n = 0, £1,4+2..., we conclude that

arctan z + arccot z = %71‘ + 7, for n=0,%1,42, ... (8)

Finally, we mention two equivalent forms for the multi-valued complex arctangent
and arccotangent functions. Recall that the complex logarithm satisfies

21

In (—) =1Inz —Inz, (9)

zZ9

where this equation is to be viewed as a set equality, where each set consists of all
possible results of the multi-valued function. Thus, the multi-valued arctangent and
arccotangent functions given in eqs. (1) and (5), respectively, are equivalent to

i
arccot _ 1 In 1—|—£ —1In 1—£ (11)
DY z z) |’

2. The principal values Arctan and Arccot

arctan z — 21 {ln(l i) —In(1 — iz)} | (10)

It is convenient to define principal values of the inverse trigonometric functions,
which are single-valued functions, which will necessarily exhibit a discontinuity across
branch cuts in the complex plane. In Mathematica 8, the principal values of the
complex arctangent and arccotangent functions, denoted by Arctan and Arccot re-
spectively (with a capital A), are defined by employing the principal values of the
complex logarithms in egs. (10) and (11),

1
Arctanz = % Ln(1 +1iz) — Ln(1 —iz2) |, z # +i (12)
i




and

z) 2

Arccot z = Arctan (1) ! {Ln (1 + %) —Ln (1 — %)] 2 £ +i, 2#0] (13)

Note that the points z = 4 are excluded from the above definitions, as the arctangent
and arccotangent are divergent at these two points. The definition of the principal
value of the arccotangent given in eq. (13) is deficient in one respect since it is not
well-defined at z = 0. We shall address this problem shortly. One useful feature of
the definitions egs. (12) and (13) is that they satisfy:

Arctan(—z) = —Arctan z, Arccot(—z) = —Arccot z .

Because the principal value of the complex logarithm Ln does not satisfy eq. (9)
in all regions of the complex plane, it follows that the definitions of the complex
arctangent and arccotangent functions adopted by Mathematica 8 do not coincide
with alternative definitions that employ the principal value of the complex logarithms
in egs. (1) and (4) [for further details, see Appendix A].

First, we shall identify the location of the branch cuts by identifying the lines
of discontinuity of the principal values of the complex arctangent and arccotangent
functions in the complex plane. The principal value of the complex arctangent func-
tion is single-valued for all complex values of z, excluding the two branch points at
z # +i. Moreover, the the principal-valued logarithms, Ln (1 £ iz) are discontinuous
as z crosses the lines 1 + iz < 0, respectively. We conclude that Arctan z must be
discontinuous when z = x + iy crosses lines on the imaginary axis such that

r=0 and —oo<y<-—-1 and 1<y<oo. (14)

These two lines that lie along the imaginary axis are the branch cuts of Arctanz. Note
that Arctan z is single-valued on the branch cut itself, since it inherits this property
from the principal value of the complex logarithm.

Likewise, the principal value of the complex arccotangent function is single-valued
for all complex z, excluding the branch points z # +i. Moreover, the the principal-
valued logarithms, Ln (1 + g) are discontinuous as z crosses the lines 1 £+ é < 0,
respectively. We conclude that Arccot z must be discontinuous when z = = + iy
crosses the branch cut located on the imaginary axis such that

r=0 and —-1<y<l. (15)
In particular, due to the presence of the branch cut,

lim Arccot(x + iy) # lir(1;1+ Arccot(z + 1y) , for —-1<y<1,

z—0~

for real values of z, where 0" indicates that the limit is approached from positive real
axis and 0~ indicates that the limit is approached from negative real axis. If z # 0,
eq. (13) provides unique values for Arccot z for all z # =4i in the complex plane,
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including points on the branch cut. Using eq. (12), one can easily show that if z is a
non-zero complex number infinitesimally close to 0, then

%W, for Re 2z > 0,
1 for Re z =0 and I <0
Arccot > — %71', or Re z and Im 2 : (16)
220,240 | —omr, for Re 2 < 0,
—%ﬂ', forRez=0and Im 2 > 0.

It is now apparent why z = 0 is problematical in eq. (13), since lim, o Arccot z is
not uniquely defined by eq. (16). If we wish to define a single-valued arccotangent
function, then we must separately specify the value of Arccot(0). Mathematica 8
supplements the definition of the principal value of the complex arccotangent given
in eq. (13) by declaring that

Arccot(0) = 37 (17)

With the definitions given in egs. (12), (13) and (17), Arctan z and Arccot z
are single-valued functions in the entire complex plane, excluding the branch points
z = +1, and are continuous functions as long as the complex number z does not cross
the branch cuts specified in eqs. (14) and (15), respectively.

Having defined precisely the principal values of the complex arctangent and ar-
ccotangent functions, let us check that they reduce to the conventional definitions
when z is real. First consider the principal value of the real arctangent function,
which satisfies

—%71’ < Arctanz < %W, for —oco <2 < 0, (18)

where z is a real variable. The definition given by eq. (12) does reduce to the conven-
tional definition of the principal value of the real-valued arctangent function when z
is real. In particular, for real values of z,

Arctanz = 2l Ln(1 +dxz) — Ln(1l — zx)} =1 [Arg(l +ix) — Arg(l —ix)|, (19)
i

after noting that Ln|1 + iz| = Ln|1 — iz| = 1Ln(1 + z?). Geometrically, the quantity
Arg(1l + ix) — Arg(l — ix) is the angle between the complex numbers 1 + iz and
1 — ix viewed as vectors lying in the complex plane. This angle varies between —m
and 7 over the range —oo < x < 0o. Moreover, the values +7 are achieved in the
limit as * — +o00, respectively. Hence, we conclude that the principal interval of the
real-valued arctangent function is indeed given by eq. (18). For all possible values
of x excluding * = —o0, one can check that it is permissible to subtract the two
principal-valued logarithms (or equivalently the two Arg functions) using eq. (9). In
the case of ¥ — —o0, we see that Arg(1 + iz) — Arg(1 — iz) — —m, corresponding to
N_ = —1 in the notation of eq. (82).2 Hence, an extra term appears when combining

2See eqs. (12), (13) and (55) of the class handout entitled, The complex logarithm, exponential
and power functions.



the two logarithms that is equal to 2wi/N_ = —2mi. The end result is,

1
Arctan(—oo0) = 5 In(—1) — 27i] = —3m,
7
as required. As a final check, we can use the results of Tables 1 and 2 in the class hand-
out, The Argument of a Complex Number, to conclude that Arg(a+bi) = Arctan(b/a)
for a > 0. Setting a = 1 and b = x then yields:

Arg (1 +iz) = Arctanx, Arg (1 —ix) = Arctan(—x) = —Arctanz .

Subtracting these two results yields eq. (19).

In contrast to the real arctangent function, there is no generally agreed definition
for the principal range of the real-valued arccotangent function. However, a growing
consensus among computer scientists has led to the following choice for the principal
range of the real-valued arccotangent function,

—%7? < Arccotx < %ﬂ, for —oco < < 0, (20)

where x is a real variable. Note that the principal value of the arccotangent function
does not include the endpoint —37 [contrast this with eq. (18) for Arctan]. The
reason for this behavior is that Arccot x is discontinuous at x = 0, with

lim Arccotz = —

z—0~

T, (21)

T, lim Arccotz = %

1
2 z—0t

as a consequence of eq. (16). In particular, eq. (20) corresponds to the convention in
which Arccot(0) = 3 [cf. eq. (17)]. Thus, as x increases from negative to positive
values, Arccot x never reaches —%w but jumps discontinuously to %w at v = 0.

Finally, we examine the the analog of eq. (8) for the corresponding principal
values. Employing the Mathematica 8 definitions for the principal values of the
complex arctangent and arccotangent functions, we find that

%w, for Re 2 > 0,
A %7‘(‘, forRez=0,and Im z>1or -1 <Im 2 <0,
rctan z + Arccot z = : ¢
—3T, or Re 2 <0,
—%w, forRez=0,andImz< —-lor0<Imz<1.

(22)
The derivation of this result will be given in Appendix B. In Mathematica, one can
confirm eq. (22) with many examples.
The relations between the single-valued and multi-valued functions can be sum-
marized by:

arctan z = Arctan z + nm, n=0,+1, £2, -,

arccot z = Arccot z + nm, n=0,=+1,+£2,---.

Note that we can use these relations along with eq. (22) to confirm the result obtained
in eq. (8).



3. The inverse trigonometric functions: arcsin and arccos

The arcsine function is the solution to the equation:

6iw _ 6—iw
z =sinw = -
21

Letting v = €™, we solve the equation

1
vV— — =21z
)

Multiplying by v, one obtains a quadratic equation for v,
vP—2iz0—1=0.

The solution to eq. (23) is:
v=iz+ (1—2%)"2.

(23)

(24)

Since z is a complex variable, (1 — 22)/2 is the complex square-root function. This is
a multi-valued function with two possible values that differ by an overall minus sign.
Hence, we do not explicitly write out the + sign in eq. (24). To avoid ambiguity, we

shall write

v =iz + (1 _ 22)1/2 =iz + e%ln(l—zz) =iz + e%[Ln\l—ZQ\-l-iarg(l—zz)]

. i —22
— gz + |1 _Z2|1/262arg(1 z )

In particular, note that

% arg(1—22) —

e

which exhibits the two possible sign choices.
By definition, v = €, from which it follows that

1 i
w= - Inv = — In (ZZ + |1 o Z2|1/26§arg(1_22)> .
¢ 1

The solution to z = sinw is w = arcsin z. Hence,

1 %
arcsin z = — In (iz + )1 — Z2‘1/2e§arg(1—z2))
{

The arccosine function is the solution to the equation:

eiw + e—iw
Z=CoswWw = ——
2
Letting v = ™, we solve the equation
1
v+ —=2z2.
v

7

i —22) 4 i 2
62Arg(l z )ezmr — :tezArg(l z )7 for n = 0’ 1’



Multiplying by v, one obtains a quadratic equation for v,

v?—220+1=0. (25)
The solution to eq. (25) is:

v=1z+ (22 = 1),

Following the same steps as in the analysis of arcsine, we write
w:arccosz:zlnv:%ln [z+(z2—1)1/2} : (26)
where (22 — 1)!/? is the multi-valued square root function. More explicitly,
arccos z = %ln (z + 2% — 1|1/26%arg(22_1)> . (27)

It is sometimes more convenient to rewrite eq. (27) in a slightly different form. Recall
that

arg(z122) = argz + arg 2o, (28)
as a set equality. We now substitute z; = z and z3 = —1 into eq. (28) and note that
arg(—1) =7+ 2mn (forn =0,£1,42,...) and argz = arg z + 27n as a set equality.
It follows that

arg(—z) =7+ arg z,

as a set equality. Thus,

i

€2

i

arg(22—1) _ eiﬂ'/2 02 arg(1—22) %arg(l—zQ)

=1e ,

and we can rewrite eq. (26) as follows:

1
arccos z = — In (z +iv1— 22) ) (29)

1

which is equivalent to the more explicit form,

1 %
arccos z = — In (z +1 — Z2|1/26§ arg(l—z2))
1

The arcsine and arccosine functions are related in a very simple way. Using
eq. (24),

A R N
voodz+V1—22 (iz+ V1 —22)(—iz+ V1 —2?)

which we recognize as the argument of the logarithm in the definition of the arccosine
[cf. eq. (29)]. Using eq. (6), it follows that

) 1 ) 1 w 1.
arcsin z + arccos z = — [lnv+1n (—)] =—-In (—) = —Inz<.

7 v 2
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Since Ini = z(%w + 27mn) for n = 0,£1,+2. .., we conclude that

arcsin z + arccos z = i + 2mn, for n=0,%1,42,... (30)

4. The principal values Arcsin and Arccos

In Mathematica 8, the principal value of the arcsine function is obtained by em-
ploying the principal value of the logarithm and the principle value of the square-root
function (which corresponds to employing the principal value of the argument). Thus,

1 i
Arcsin z = —Ln (zz +1]1— z2|1/265Arg(1_Z2)) . (31)
i

It is convenient to introduce some notation for the the principle value of the square-
root function. Consider the multivalued square root function, denoted by /2. Hence-
forth, we shall employ the symbol 1/z to denote the single-valued function,

NEERVIE It (32)

where 4/|z| denotes the unique positive squared root of the real number |z|. In this
notation, eq. (31) is rewritten as:

1
Arcsin z = ~Ln (iz +V1-— z2> (33)
i

One noteworthy property of the principal value of the arcsine function is
Arcsin(—z) = —Arcsin z. (34)

To prove this result, it is convenient to define:

1 1
v=1iz+V1—22, —= =iz + V122 35
vz 41— 22 (35)

Then,

1 1 1
Arcsinz = —Lnuw, Arcsin(—z) = = Ln (—) .
i i v

The second logarithm above can be simplified by making use of eq. (57) of the class
handout entitled, The complex logarithm, exponential and power functions,

—Ln(z) + 27, if z is real and negative, (36)
—Ln(z), otherwise .

Ln(l/z) = {

In Appendix C, we prove that v can never be real and negative. Hence it follows from
eq. (36) that

1 1 1
Arcsin(—z) = — Ln (—) = ——Lnv = —Arcsin z,

7 (% 7
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as asserted in eq. (34).
We now examine the principal value of the arcsine for real-valued arguments such
that —1 <2 < 1. Setting z = x, where x is real and |z| < 1,

Axcsing = <Ln (i + VT = 22) = = [Lnliz + VI = 22| + iArg (i + VT = 22)]

1
= Arg (zx +V1-— x2> , for |[z] <1, (37)

since iz + v/1 — 22 is a complex number with magnitude equal to 1 when z is real
with |z| < 1. Moreover, iz + /1 — 22 lives either in the first or fourth quadrant of
the complex plane, since Re(iz + /1 — 22) > 0. It follows that:

T .
—5 < Arcsinz <

bl

: for |z| <1.

In Mathematica 8, the principal value of the arccosine is defined by:

Arccosz = 17 — Arcsin z . (38)

We demonstrate below that this definition is equivalent to choosing the principal
value of the complex logarithm and the principal value of the square root in eq. (29).
That is,

1
Arccos z = ~Ln (z +iv1— z2> (39)
i

To verify that eq. (38) is a consequence of eq. (39), we employ the notation of eq. (35)
to obtain:

1 1 )
Arcsin z + Arccos z = — {LH|U‘ + Ln (—) + iArgv + tArg (3)]
v

i 0]

1
(%

:Argv—l—Arg< ) : (40)
It is straightforward to check that:

Argv—l—Arg( ):%w, for Rev > 0.

1

v
However in Appendix C, we prove that Re v = Re (iz+ v/1 — 22) > 0 for all complex
numbers z. Hence, eq. (40) yields:

Arcsin z + Arccos z = 57,

1
2

as claimed.
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We now examine the principal value of the arccosine for real-valued arguments
such that —1 < x < 1. Setting z = z, where z is real and |z| < 1,

Arccosz = %Ln (m + z@) = % [Ln ’Sc +ivV1 —a? ‘ + iArg (:c + Zﬂ)}
= Arg (x n Zm) , for o] < 1, (41)

since x + iv/1 — 22 is a complex number with magnitude equal to 1 when z is real
with |z| < 1. Moreover, z + iy/1 — 22 lives either in the first or second quadrant of
the complex plane, since Im(z + iy/1 — %) > 0. It follows that:

0 < Arccosz <, for |z] <1.

The principal value of the complex arcsine and arccosine functions are single-
valued for all complex z. The choice of branch cuts for Arcsin z and Arccos z must
coincide in light of eq. (38). Moreover, due to the standard branch cut of the principal
value square root function,? it follows that Arcsin z is discontinuous when z = x + iy
crosses lines on the real axis such that*

y=0 and —oo<z<-1 and 1<z<o0. (42)

These two lines comprise the branch cuts of Arcsin z and Arccos z; each branch cut
ends at a branch point located at z = —1 and = = 1, respectively (although the
square root function is not divergent at these points).®

To obtain the relations between the single-valued and multi-valued functions, we
first notice that the multi-valued nature of the logarithms imply that arcsin z can take
on the values Arcsin z+ 27n and arccos z can take on the values Arccos z+27n, where
n is any integer. However, we must also take into account the fact that (1 — 22)/2
can take on two values, +=+/1 — 22. In particular,

= st VI = i (Y S ) — G 1/7_2]
arcsin z = Z,ln(zz:t 1—22) = Z,ln (zzZFM) = [ln( 1) —In(iz F V1 — 22)

1
=——In(izFv1—-22)+(2n+ 1),
i

where n is any integer. Likewise,

1 1 1 1
arccosz = —In(ztivl —22)=-In| ————— | = ——In(z Fiv1 — 22) + 27n,
i =i () = eV

30ne can check that the branch cut of the Ln function in eq. (33) is never encountered for any
finite value of z. For example, in the case of Arcsin z, the branch cut of Ln can only be reached if
iz + /1 — 22 is real and negative. But this never happens since if iz + /1 — 22 is real then z = iy
for some real value of y, in which case iz + V1 — 22 = —y + /1 + 42 > 0.

4Note that for real w, we have |sinw| < 1 and |cosw| < 1. Hence, for both the functions
w = Arcsin z and w = Arccos z, it is desirable to choose the branch cuts to lie outside the interval
on the real axis where |Re z| < 1.

®The functions Arcsin z and Arccos z also possess a branch point at the point of infinity (which
is defined more precisely in footnote 5). This can be verified by demonstrating that Arcsin(1/z) and
Arccos(1/z) possess a branch point at z = 0. For further details, see e.g. Section 58 of ref 3.
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where n is any integer. Hence, it follows that

arcsin z = (—1)"Arcsin z 4+ nr, n=0,+1, £2, .-, (43)
arccos z = Arccos z + 2nm, n=0,+l,£2, -, (44)

where either +Arccos z can be employed to obtain a possible value of arccosz. In
particular, the choice of n = 0 in eq. (44) implies that:

arccos z = — arccos z (45)

which should be interpreted as a set equality. Note that one can use eqgs. (43) and
(44) along with eq. (38) to confirm the result obtained in eq. (30).

5. The inverse hyperbolic functions: arctanh and arccoth

Consider the solution to the equation
sinh w eV — eV e —1
z = tanhw = = =] .
cosh w ev + e v e?v + 1

We now solve for e?¥,

e —1 . w142
e + 1 S 1—z

Taking the complex logarithm of both sides of the equation, we can solve for w,

11 1+ 2
=—In .
eI

The solution to z = tanhw is w = arctanhz. Hence,

1 1
arctanh z = —1In ( i Z) (46)

2 1—2z

Similarly, by considering the solution to the equation

h w —w 2w 1
» — cothuw = & w:<e +e ):<e + )

sinh w ew — =W e2w — 1

we end up with:

z—1

1 1
arccothz = 3 In (Z i ) (47)

The above results then yield:

z

1
arccoth(z) = arctanh (—) )

12



as a set equality.
Finally, we note the relation between the inverse trigonometric and the inverse
hyperbolic functions:

arctanh z = i arctan(—iz) ,

arccoth z = i arccot(iz) .

As in the discussion at the end of Section 1, one can rewrite egs. (46) and (47) in
an equivalent form:

arctanh z = 1 [In(1 + 2) — In(1 — 2)] , (48)
arceoth z = 1 {m (1 + %) I (1 - %)} | (49)

6. The principal values Arctanh and Arccoth

Mathematica 8 defines the principal values of the inverse hyperbolic tangent and
inverse hyperbolic cotangent, Arctanh and Arccoth, by employing the principal value
of the complex logarithms in eqs. (48) and (49). We can define the principal value
of the inverse hyperbolic tangent function by employing the principal value of the
logarithm,

Arctanhz = 1 [Ln(1 + z) — Ln(1 — 2)] (50)

Arccoth z = Arctanh (1) = % {Ln (1 + 1) —Ln (1 — 1)} (51)
2z z z

Note that the branch points at z = £1 are excluded from the above definitions, as
Arctanh z and Arccoth z are divergent at these two points. The definition of the
principal value of the inverse hyperbolic cotangent given in eq. (51) is deficient in one
respect since it is not well-defined at z = 0. For this special case, Mathematica 8
defines

and

Arccoth(0) = Lirr. (52)

2

Of course, this discussion parallels that of Section 2. Moreover, alternative def-
initions of Arctanh z and Arccoth z analogous to those defined in Appendix A for
the corresponding inverse trigonometric functions can be found in ref. 4. There is
no need to repeat the analysis of Section 2 since a comparison of egs. (12) and (13)
with egs. (50) and (51) shows that the inverse trigonometric and inverse hyperbolic
tangent and cotangent functions are related by:

Arctanh z = tArctan(—iz), (53)
Arccoth z = ¢ Arccot(iz) . (54)

13



Using these results, all other properties of the inverse hyperbolic tangent and cotan-
gent functions can be easily derived from the properties of the corresponding arctan-
gent and arccotangent functions.

For example the branch cuts of these functions are easily obtained from eqgs. (14)
and (15). Arctanh z is discontinuous when z = x + iy crosses the branch cuts located
on the real axis such that®

y=0 and —oco<z<—-1 and 1<z<oo. (55)

Arccoth z is discontinuous when z = x + iy crosses the branch cuts located on the
real axis such that
y=0 and —-1l<zx<l1. (56)

The relations between the single-valued and multi-valued functions can be sum-
marized by:

arctanhz = Arctanh z + inm , n=0,=+1,+£2, ---,
arccoth z = Arccoth z + inm n=0,+1,£2,---.

7. The inverse hyperbolic functions: arcsinh and arccosh

The inverse hyperbolic sine function is the solution to the equation:

w —w

e’ —e
z =sinhw =
2
Letting v = ", we solve the equation
1
v——=2z.
v

Multiplying by v, one obtains a quadratic equation for v,
v =220 —-1=0. (57)

The solution to eq. (57) is:
v=1z+ (142312, (58)

Since z is a complex variable, (1 + 22)/2 is the complex square-root function. This is
a multi-valued function with two possible values that differ by an overall minus sign.
Hence, we do not explicitly write out the £ sign in eq. (58). To avoid ambiguity, we
shall write

vV=2z-+ (1 + 22)1/2 — 2+ e%ln(l—i-zQ) =24 e%[Ln\l-l-ZQHiarg(l—i-z?)]

=24 |1 + Z2|1/2e%arg(1+22) )

®Note that for real w, we have |tanhw| < 1 and |cothw| > 1. Hence, for w = Arctanh z it
is desirable to choose the branch cut to lie outside the interval on the real axis where |Re z| < 1.
Likewise, for w = Arccoth z it is desirable to choose the branch cut to lie outside the interval on the
real axis where |Re z| > 1.
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By definition, v = €%, from which it follows that
w=Inv=1In (Z + |1+ 22|1/2e% 8brg(1+zz)) .

The solution to z = sinh w is w = arcsinhz. Hence,

arcsinh z = In (z + 1+ Z2|1/26% arg(HZQ)) (59)

The inverse hyperbolic cosine function is the solution to the equation:

e’ +e v
Z=Ccosw = ———
2
Letting v = ", we solve the equation
1
v+ —=2z2.
v

Multiplying by v, one obtains a quadratic equation for v,
v? —220+1=0. (60)

The solution to eq. (60) is:
v=2z+ (2 - 1)Y2.

Following the same steps as in the analysis of inverse hyperbolic sine function, we

write
w = arccoshz = Inv =In [z + (22 — 1)'/?] | (61)

where (22 — 1)!/2 is the multi-valued square root function. More explicitly,

arccosh z = In <z + |22 — 1|1/26%arg(z2—1)>

The multi-valued square root function satisfies:
(22— )2 = (2 + 1)V2(2 — 1)V2.
Hence, an equivalent form for the multi-valued inverse hyperbolic cosine function is:
arccoshz =1In [z + (2 + DY2(z - 1)1/2} ,
or equivalently,

arccosh z = In (z 4|22 — 1|2z et gs arg(z‘”) . (62)

Finally, we note the relations between the inverse trigonometric and the inverse
hyperbolic functions:

arcsinh z = 7 arcsin(—iz) , (63)

arccosh z = £ arccos z , (64)
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where the equalities in eqgs. (63) and (64) are interpreted as set equalities for the
multi-valued functions. The % in eq. (64) indicates that both signs are employed
in determining the members of the set of all possible arccosh z values. In deriving
eq. (64), we have employed egs. (26) and (61). In particular, the origin of the two
possible signs in eq. (64) is a consequence of eq. (45) [and its hyperbolic analog,

eq. (73)].

8. The principal values Arcsinh and Arccosh

The principal value of the inverse hyperbolic sine function, Arcsinh z, is defined
by Mathematica 8 by replacing the complex logarithm and argument functions of
eq. (59) by their principal values. That is,

Arcsinh z = Ln <z +V1+ 22) (65)

For the principal value of the inverse hyperbolic cosine function Arccosh z, Mathemat-
ica 8 chooses eq. (62) with the complex logarithm and argument functions replaced
by their principal values. That is,

Arccoshz =Ln (2 + vz +1vz - 1) (66)

In egs. (65) and (66), the principal values of the square root functions are employed
following the notation of eq. (32).

The relation between the principal values of the inverse trigonometric and the
inverse hyperbolic sine functions is given by

Arcsinh z = {Arcsin(—iz) , (67)

as one might expect in light of eq. (63). A comparison of egs. (39) and (66) reveals
that

A n 1Arccos z , for either Im z > 0 or for Im z =0 and Re 2 <1,
rccosh z =
—1Arccos z , for either Im z < O or for Im z =0 and Re 2 > 1.
(68)

The existence of two possible signs in eq. (68) is not surprising in light of the + that
appears in eq. (64). Note that either choice of sign is valid in the case of Im z = 0 and
Re z = 1, since for this special point, Arccosh(1) = Arccos(1) = 0. For a derivation
of eq. (68), see Appendix D.

The principal value of the inverse hyperbolic sine and cosine functions are single-
valued for all complex z. Moreover, due to the branch cut of the principal value
square root function,” it follows that Arcsinh z is discontinuous when z = x + iy

"One can check that the branch cut of the Ln function in eq. (65) is never encountered for any
value of z. In particular, the branch cut of Ln can only be reached if 24 /1 + 22 is real and negative.
But this never happens since if z + /1 + 22 is real then z is also real. But for any real value of z,
we have z +v1+ 22 > 0.
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crosses lines on the imaginary axis such that
r=0 and —oco<y<-—-1 and 1<y<oo. (69)

These two lines comprise the branch cuts of Arcsinh z, and each branch cut ends
at a branch point located at z = —¢ and z = 1, respectively, due to the square root
function in eq. (65), although the square root function is not divergent at these points.
The function Arcsinh z also possesses a branch point at the point of infinity, which
can be verified by examining the behavior of Arcsinh(1/z) at the point z = 0.8
The branch cut for Arccosh z derives from the standard branch cuts of the square
root function and the branch cut of the complex logarithm. In particular, for real z
satisfying |z| < 1, we have a branch cut due to (z + 1)*?(z — 1)1/2, whereas for real z
satisfying —oo < z < —1, the branch cut of the complex logarithm takes over. Hence,
it follows that Arccosh z is discontinuous when z = x + iy crosses lines on the real
axis such that?
y=0 and —oco<z<l1. (70)

In particular, there are branch points at z = 41 due to the square root functions in
eq. (66) and a branch point at the point of infinity due to the logarithm [cf. footnote 5].
As a result, eq. (70) actually represents two branch cuts made up of a branch cut
from z =1 to z = —1 followed by a second branch cut from z = —1 to the point of
infinity. 1

The relations between the single-valued and multi-valued functions can be ob-
tained by following the same steps used to derive egs. (43) and (44). Alternatively,
we can make use of these results along with those of egs. (63), (64), (67) and (68).
The end result is:

arcsinh z = (—1)"Arcsinh z + in7 n=0,+1,+£2, -, (71)
arccosh z = +Arccosh z + 2inm n=0,+1,+2, .-, (72)

where either +Arccosh z can be employed to obtain a possible value of arccosh z. In
particular, the choice of n = 0 in eq. (72) implies that:

arccosh z = —arccosh z | (73)

8In the complex plane, the behavior of the complex function F(z) at the point of infinity, z = oo,
corresponds to the behavior of F'(1/z) at the origin of the complex plane, z = 0 [cf. footnote 3].
Since the argument of the complex number 0 is undefined, the argument of the point of infinity
is likewise undefined. This means that the point of infinity (sometimes called complex infinity)
actually corresponds to |z| = oo, independently of the direction in which infinity is approached in
the complex plane. Geometrically, the complex plane plus the point of infinity can be mapped onto
a surface of a sphere by stereographic projection. Place the sphere on top of the complex plane such
that the origin of the complex plane coincides with the south pole. Consider a straight line from any
complex number in the complex plane to the north pole. Before it reaches the north pole, this line
intersects the surface of the sphere at a unique point. Thus, every complex number in the complex
plane is uniquely associated with a point on the surface of the sphere. In particular, the north pole
itself corresponds to complex infinity. For further details, see Chapter 5 of ref. 3.

9Note that for real w, we have coshw > 1. Hence, for w = Arccosh z it is desirable to choose the
branch cut to lie outside the interval on the real axis where Re z > 1.

10Given that the branch cuts of Arccoshz and iArccos z are different, it is not surprising that the
relation Arccosh z = iArccos z cannot be respected for all complex numbers z.
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which should be interpreted as a set equality.
This completes our survey of the multi-valued complex inverse trigonometric and
hyperbolic functions and their single-valued principal values.

APPENDIX A: Alternative definitions for Arctan and Arccot

The well-known reference book for mathematical functions by Abramowitz and
Stegun (see ref. 1) defines the principal values of the complex arctangent and arc-

cotangent functions by employing the principal values of the logarithms in eqgs. (1)
and (4). This yields,"

1 141z
Arctan z = % Ln (1 — iz) : (74)
1 1 '
Arccot z = Arctan <—) =—1Ln <Z + Z) : (75)
z 21 z—1

Note that with these definitions, the branch cuts are still given by eqs. (14) and (15),
respectively. Comparing the above definitions with those of egs. (12) and (13), one
can check that the two definitions differ only on the branch cuts and at certain points
of infinity. In particular, there is no longer any ambiguity in how to define Arccot(0).
Plugging z = 0 into eq. (75) yields

1
Arccot(0) = iLn(—l) =1ir.
i
It is convenient to define a new variable,
- 1 :
v=t"2 L _1_Ztr (76)
1+ 2z vz

Then, we can write:

1 1
Arctan z + Arccot z = % [an + Ln <——)}

) v

:i, Ln|v| + Ln 1 + iArgv + tArg 1
2i |v| v

! {Argv | Arg (_%)] | (77)

A definition of the principal value of the arccotangent function that is equivalent to eq. (75) for
all complex numbers z is:

Arccot z = 2l [Ln(iz — 1) — Ln(iz + 1)] .
i

A proof of the equivalence of this form and that of eq. (75) can be found in Appendix C of the first
reference in ref. 5.
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It is straightforward to check that for any non-zero complex number v,

1 s for Im v > 0
Argo+Arg (| —= ) = ’ - 78
R rg( v) {—7?, for Im v < 0. (78)
Using eq. (76), we can evaluate Im v by computing
i—z (i—z)(—-i—%) 1—|2]?4+2iRez
itz (i+2)(—=i+2) |z2+1+2Imz’
Writing |z|> = (Re 2)? + (Im 2)? in the denominator,
i—z  1—|z?+2iRez
i+z (Re2)2+ (Imz+1)2°
Hence,
I v = T =z 2Re 2
V= = .
i+z (Re 2)2 + (Im z + 1)2
We conclude that
Imv>0 = Rez2>0, Imv<0 =— Rez<O0.
Therefore, egs. (77) and (78) yield:
%w, for Re 2 > 0,
Arctan z 4+ Arccot z = (79)
—%w, for Re 2 < 0.

This relation differs from eq. (22) when z lives on one of the branch cuts, i.e. for
Re z =0 and z # +i.

One disadvantage of the definition of the principal value of the arctangent given
by eq. (74) concerns the value of Arctan(—o0). In particular, if z = z is real,

1+4+x
1—x

=1, (80)

Since Ln 1 = 0, it would follow from eq. (74) that for all real x,

L4
Arctanz = L Arg (1 i zx) . (81)
—ix

Indeed, eq. (81) is correct for all finite real values of x. It also correctly yields
Arctan (c0) = fArg(—1) = 3w, as expected. However, if we take z — —oo in

)
eq. (81), we would also get Arctan (—o0) = 1Arg(—1) = ir, in contradiction with the

-2
conventional definition of the principal value of the real-valued arctangent function,

where Arctan (—oco) = —%W. This slight inconsistency is not surprising, since the

principal value of the argument of any complex number z must lie in the range
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—7 < Argz < 7. Consequently, eq. (81) implies that —i7 < Arctanxz < %w, which is

2
not quite consistent with eq. (18) as the endpoint at —%w is missing.

Some authors finesse this defect by defining the value of Arctan (—oo) as the limit
of Arctan (z) as * — —oo. Note that

lim Arg (1—Hx) = —T,

r——00 1—x

since for any finite real value of x < —1, the complex number (1 + iz)/(1 — iz) lies
in Quadrant IT1'? and approaches the negative real axis as  — —oo. Hence, eq. (81)
yields

lim Arctan (z) = —i7.

ot 2
With this interpretation, eq. (74) is a perfectly good definition for the principal value
of the arctangent function.

It is instructive to consider the difference of the two definitions of Arctan z given
by egs. (12) and (74). Using egs. (13) and (55) of the class handout entitled, The
complex logarithm, exponential and power functions, it follows that

Ln <1 + ZZ) — [Ln(1 +i2) — Lo(1 — i2)] = 2miN_,

11—z
where
—1, if Arg(l+iz) — Arg(l —iz) >,
N_ = 0, if —7m <Arg(l+iz) —Arg(l —iz) <, (82)
1, if Arg(l+iz) £ Arg(l —iz) < —7.

To evaluate N_ explicitly, we must examine the quantity Arg(1l+iz) — Arg(l —iz) as
a function of the complex number z = z + iy. Hence, we shall focus on the quantity
Arg(l —y +ix) — Arg(l + y — iz) as a function of z and y. If we plot the numbers
1 —y+ir and 1+ y — iz in the complex plane, it is evident that for finite values of
x and y and x # 0 then

—m < Arg(1 —y+izx) — Arg(l +y —ix) < 7.
The case of x = 0 is easily treated separately, and we find that

T, ify>1,
Arg(l —y) — Arg(1+y) = 0, if—1l<y<1,
—T, ify<—1.

12This is easily verified. We write:

1+ix71+i:1: 1+ix71—x2+2ix
1—dx 1—dxz l4+iz 1422

z

Thus, for real values of x < —1, it follows that Rez < 0 and Imz < 0, i.e. the complex number z lies in
Quadrant ITI. Moreover, as x — —o0o, we see that Rez — —1 and Imz — 07, where 0~ indicates that
one is approaching 0 from the negative side. Some authors write limy_, oo (1 +iz)/(1 —iz) = —1—140
to indicate this behavior, and then define Arg(—1 —i0) = —7.
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Note that we have excluded the points x = 0, y = £1, which correspond to the branch
points where the arctangent function diverges.
Therefore, it follows that in the finite complex plane excluding the branch points
at z = +1i,
1, if Re z =0 and I < -1,
N - { if Re z and Im z

0, otherwise.

This means that in the finite complex plane, the two possible definitions for the
principal value of the arctangent function given by eqs. (12) and (74) differ only on
the branch cut along the negative imaginary axis below z = —i. That is, for finite
values of z # =i,

1
_ T+ — [Ln(l +iz) — Ln(1 —i2)] , if Rez=0and Im z < —1,
1 1412 2
—Ln ; =
21 1—1z 1
% [Ln(1l +idz) — Ln(1 —iz)] , otherwise .
i
(83)

In order to compare the two definitions of Arctan z in the limit of |z| — oo, we can
employ the relation Arccot z = Arctan(1/z) [which holds for both sets of definitions],
and examine the behavior of Arccot z in the limit of z — 0.

The difference of the two definitions of Arccot z given by eqs. (13) and (75) follows
immediately from eq. (83). For z # 4 and z # 0,3

z

21 z—1 1 i i
— {Ln (1 + —) — Ln (1 — —)] , otherwise .
z

21 z

W+E{Ln<1+3)—Ln(1—z)], ifRez=0and 0<Im z<1,
z

(84)
We can now derive the behavior of Arccot z when 2z is a non-zero complex number
infinitesimally close to z = 0. Using the results of eq. (84), it follows that eq. (16) is
modified to:
T, for Re 2 > 0,

T, for Re 2 < 0.

D= N[

z—0, 2#£0

Arccotz = {

As expected, Arccot z is discontinuous across the branch cut, which corresponds to
the line in the complex plane corresponding to Re z = 0 and |Im z| < 1. However,
Arccot z as defined by eq. (75) is a continuous function of z along the branch cut,
with

lim Arccot(iy) = lim Arccot(iy) = i7. (85)

y—0+ y—0~ 2

13Eq. (84) is also valid for |2| — oo, in which case both definitions of the arccotangent yield
Arccot(oo) = 0, independently of the direction in the complex plane in which z approaches complex
infinity. This behavior is equivalent to the statement that both definitions of the principal value of
the arctangent in eq. (83) yield Arctan(0) = 0.
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This is in contrast to the behavior of Arccot as defined in Mathematica 8 [cf. eq. (13)],
where the value of Arccot is discontinuous at z = 0 on the branch cut, in which case
one must separately define the value of Arccot(0).

So which set of conventions is best? Of course, there is no one right or wrong
answer to this question. The authors of refs. 4-6 argue for choosing eq. (12) to define
the principal value of the arctangent and eq. (75) to define the principal value of
the arccotangent. This has the benefit of ensuring that eq. (85) is satisfied so that
Arccot(0) is unambiguously defined. But, it will lead to corrections to the relation
Arccot z = Arctan(1/z) for a certain range of complex numbers that lie on the branch
cuts. In particular, with the definitions of Arctan z and Arccot z given by eqs. (12)
and (85), we immediately find from eq. (84) that

z

7T+Arctan<1>, ifRez=0and 0<Im z< 1,
Arccot z =

1
Arctan <—) , otherwise,
z

excluding the branch points z = 4i where Arctan z and Arccot z both diverge.
Likewise, with the definitions of Arctan z and Arccot z given by egs. (12) and (85),

the expression for Arctanz+ Arccot z [given in egs. (22) and (79)] will also be modified
on the branch cuts,

%w, for Re 2 > 0,
i for Re 2 =0, and Im 2 > —1
Arctan z + Arccot z = %w, or e ) and i = ’ (86)
—5T, for Re 2 < 0,
—%w, for Re 2z =0, and Im z < —1.

A similar set of issues arise in the definitions of the principal values of the in-
verse hyperbolic tangent and cotangent functions. It is most convenient to define
these functions in terms of the corresponding principal values of the arctangent and
arccotangent functions following eqs. (53) and (54),

Arctanh z = iArctan(—iz), Arccoth z = iArccot(—iz) .

As a practical matter, I usually employ the Mathematica 8 definitions, as this is a
program that I use most often in my research.

% CAUTION!!

The principal value of the arccotangent is given in terms the principal value of
the arctangent,

Arccot z = Arctan (l) , (87)

z

for both the Mathematica 8 definition [eq. (13)] or the alternative definition presented
in eq. (75). However, many books define the principal value of the arccotangent
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differently via the relation,

Arccot z = m — Arctan z . (88)

This relation should be compared with the corresponding relations, eqs. (22) and
(79), which are satisfied with the definitions of the principal value of the arccotangent
introduced in egs. (13) and (75), respectively. Eq. (88) is adopted by the Maple 14
computer algebra system, which is one of the main competitors to Mathematica.
The main motivation for eq. (88) is that the principal interval for real values x is

0 < Arccotz <,

instead of the interval quoted in eq. (20). One advantage of this latter definition
is that the real-valued arccotangent function, Arccot x, is continuous at x = 0, in
contrast to eq. (87) which exhibits a discontinuity at z = 0. Note that if one adopts
eq. (88) as the the definition of the principal value of the arccotangent, then the
branch cuts of Arccot z are the same as those of Arctan z, namely eq. (14). The
disadvantages of the definition given in eq. (88) are discussed in refs. 4 and 5.
Which convention does your calculator and/or your favorite mathematics software
use? Try evaluating Arccot(—1). In the convention of eq. (13) or eq. (75), we have
1 3

Arccot(—1) = —3m, whereas in the convention of eq. (88), we have Arccot(—1) = 7.

APPENDIX B: Derivation of eq. (22)

To derive eq. (22), we will make use of the computations provided in Appendix A.
Start from eq. (79), which is based on the definitions of the principal values of the
arctangent and arccotangent given in eqs. (74) and (75), respectively. We then use
egs. (83) and (84) which allow us to translate between the definitions of eqs. (74)
and (75) and the Mathematica 8 definitions of the principal values of the arctangent
and arccotangent given in eqgs. (12) and (13), respectively. Eqs. (83) and (84) imply
that the result for Arctan z + Arccot z does not change if Re z # 0. For the case of
Re z = 0, Arctan z + Arccot z changes from %71‘ to —%w if0<Imz<lorlmz< —1.
This is precisely what is exhibited in eq. (22).

APPENDIX C: Proof that Re (+iz + v/22—1) > 0

It is convenient to define:

1 1
v=1dz+V1—22, = — iz 4+ V1 —22.
vz 41— 22

In this Appendix, we shall prove that:

Rev >0, and Re (1) >0. (89)

v
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Using the fact that Re (+iz) = FIm z for any complex number z,

Rev=—-Im z+ |1 — 22|1/2 cos [%Arg(l — 22)} ; (90)
1

Re <—> =Im 2z + |1 — 22|"% cos [%Arg(l — zz)} . (91)
v

One can now prove that

1
Rev >0, and Re (;) >0, (92)

for any finite complex number z by considering separately the cases of Im z < 0,
Im z = 0 and Im z > 0. The case of Im z = 0 is the simplest, since in this case
Re v = 0 for |z]| < 1 and Re v > 0 for |z| > 1 (since the principal value of the
square root of a positive number is always positive). In the case of Im z # 0, we
first note that that —m < Arg(1 — 2?) < 7 implies that cos [3Arg(1 — 2%)] > 0. Thus
if Im z < 0, then it immediately follows from eq. (90) that Re v > 0. Likewise, if
Im z > 0, then it immediately follows from eq. (91) that Re (1/v) > 0. However, the
sign of the real part of any complex number z is the same as the sign of the real part
of 1/z, since
I z—ay
r4iy a2y’
Hence, it follows that both Re v > 0 and Re (1/v) > 0, and eq. (89) is proven.

APPENDIX D: Derivation of eq. (68)
We begin with the definitions given in eqs. (39) and (66),
tArccos z = Ln (z + ZM) : (94)
Arccosh z = In (z + \/m\/m> , (95)

where the principal values of the square root functions are employed following the
notation of eq. (32). Our first task is to relate vz + 1v/z — 1 to V22 — 1. Of course,

14We caution the reader that some authors employ different choices for the definitions of the
principal values of arccosz and arccosh z and their branch cuts. The most common alternative
definitions are:

Arccosh z = i Arccos z = Ln(z + V22 — 1), (93)

which differ from the definitions, eqs. (94) and (95), employed by Mathematica 8 and these notes.
In particular, with the alternative definitions given by eq. (93), Arccos z now possesses the same
set of branch cuts as Arccosh z given by eq. (70), in contrast to eq. (42). Moreover, Arccos z no
longer satisfies eq. (38) if either (Re z)(Im z) < 0 or if [Re 2| > 1 and Im z = 0 [cf. eq. (99)]. Other
disadvantages of the alternative definitions of Arccosz and Arccosh z are discussed in ref. 4.
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these two quantities are equal for all real numbers z > 1. But, as these quantities are
principal values of the square roots of complex numbers, one must be more careful in
the general case. We shall make use of egs. (13) and (77) of the class handout enti-
tled, The complex logarithm, exponential and power functions, in which the following
formula is obtained:

1 1 . .
2129 = 62Ln(zlzz) _ 62(Ln z1+Ln zo0+27iNy) _ \/Z\/g 67TZN+ ’

where
-1, if Arg z; + Arg 20 > 7,
N, = 0, if —7m < Arg z; + Arg 2o <,
1, if Arg z; +Arg 2o < —7.
That is,

Vazm = ez z, e ==%1, (96)

where the choice of sign is determined by:

+1, if —m <Arg 21 +Arg 2o <,
E =
-1, otherwise.

Thus, we must determine in which interval the quantity Arg(z 4+ 1) + Arg(z — 1)
lies as a function of z. The special cases of z = 41 must be treated separately, since
Arg0 is not defined. By plotting the complex points z + 1 and z — 1 in the complex
plane, one can easily show that for z # +1,

(Tm 2 >0 and Re z >0,
or

—rT<Arg (z+1)+Arg (z—1) <, if {Imz=0 and Rez> —1,
or

(Im 2 <0 and Rez>0.

If the above conditions do not hold, then Arg(z + 1) + Arg(z — 1) lies outside the
range of the principal value of the argument function. Hence, we conclude that if
z1 =z+ 1 and z5 = z — 1 then if Im z # 0 then ¢ in eq. (96) is given by:

o +1, ifRez>0,Im2z#0 or Rez2=0,Im z >0,
"~ ]-1, ifRe2<0,Imz+#0 or Rez=0,Im 2 <0.

In the case of Im z = 0, we must exclude the points z = £1, in which case we also
have

o +1, ifImz=0 and Rez> —1 with Rez#1,
]-1, fImz=0 and Rez< —1.
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It follow that Arccoshz = Ln(z 4+ +/2? — 1), where the sign is identified with e above.
Noting that z — V22 — 1 = [z + V22 — 1|7}, where z + v/22 — 1 is real and negative

if and only if Im 2z = 0 and Re z < —1,'5 one finds after applying eq. (36) that:

2mi — Ln(z + V22 — 1), for Im z = 0 and Re z < —1,

Ln(z —vz*—1) =
n(z z ) {—Ln(z—i-m)a otherwise .

To complete this part of the analysis, we must consider separately the points z = +1.
At these two points, eq. (95) yields Arccosh(1) = 0 and Arccosh(—1) = Ln(—1) = mi.
Collecting all of the above results then yields:

Ln(z+v22-1), ifImz>0,Rez>0 or Imz2=0,Rez> -1
or Imz<0,Rez>0,
Arccoshz = —LIn(z++V22-1), ifImz>0,Rez<0 or Imz<0,Rez<0,

2mi — In(z + V22 — 1), if Im z=0,Re 2 < —1.
(97)
Note that the cases of z = +1 are each covered twice in eq. (97) but in both respective
cases the two results are consistent.
Our second task is to relate iv/1 — 22 to /22 — 1. To accomplish this, we first
note that for any non-zero complex number z, the principal value of the argument of
—z is given by:

(98)

Arg(—2) Argz — 7, if Argz >0,
rg(—z) =
s Argz + T, if Argz <0.

This result is easily checked by considering the locations of the complex numbers z
and —z in the complex plane. Hence, by making use of egs. (32) and (98) along with
i = ¢e™/2 it follows that:

iV1— 22 = /|22 - 1\62’T+Arglz ]—n\/z2 n==+l1,

where the sign 7 is determined by:

I EET if Arg(1—2%) <0,
TZV21, ifArg(1—22) >0,

assuming that z # &1. If we put z = x + 4y, then 1 — 22 = 1 — 22 + 3* — 2ixy, and

BLet w = 2+ V22 — 1, and assume that Im w = 0 and Re w # 0. That is, w is real and nonzero,
in which case Im w? = 0. But

0=1Im w? =Im {22’2—14—22’\/2’2—1} =Im (2zw — 1) = 2wlm z,

which confirms that Im z = 0, i.e. z must be real. If we require in addition that that Re w < 0,
then we also must have Re z < —1.
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we deduce that

positive , either if zy <0 or ify=0and |z| > 1,
Arg(1 — 2?%) is zZero eitherif z =0 or ify=0and |z| <1,
negative , if xy >0.

We exclude the points z = £1 (corresponding to y = 0 and z = +1) where Arg(1—2?)
is undefined. Treating these two points separately, eq. (94) yields Arccos(1) = 0 and
iArccos(—1) = Ln(—1) = mi. Collecting all of the above results then yields:

( Ln(z+ V22 —-1), iflImz>0,Rez>0 or Imz2<0,Rez<0
or Imz=0,|Rezl <1,
iArccosz = & —Ln(z+ V22 —1), ifImz>0,Rez<0 or Imz<0,Rez>0,

or Imz=0,Rez>1,

| 2mi — Ln(z + v2* — 1), ifImz=0,Rez<—1.

(99)
Note that the cases of z = +1 are each covered twice in eq. (99) but in both respective
cases the two results are consistent.
Comparing eqgs. (97) and (99) established eq. (68) and our proof is complete.
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