
Physics 116A Additional practice problems III Winter 2011

Here is a collection of practice problems covering material from Chapters 3 and 10 of
Boas and homework sets 8–10. Along with the first two practice problem sets, this
may help you in preparing for the final exam.

1. One of the eigenvalues of the matrix A is λ = 0. Prove that A−1 does not exist.

2. Find the eigenvalues and eigenvectors of

M =





3 2 4
2 0 2
4 2 3



 .

Is M diagonalizable?

3. Determine whether the following matrices are diagonalizable. If diagonalizable,
indicate whether it is possible to diagonalize the matrix with a unitary similarity
transformation.

(a) A =





1 1 0
0 1 0
0 0 2



 , (b) A =





1 −4 2
−4 1 −2

2 −2 −2



 .

4. Eq. (11.27) on p. 154 of Boas is imprecisely worded. The correct statement is that
a matrix has real eigenvalues and can be diagonalized by an orthogonal similarity
transformation transformation if and only if it is a real symmetric matrix. (Boas
omitted the qualification that the symmetric matrix must be real.) To see that it is
important to be precise, consider the following complex symmetric matrix,

A =

(

1 i

i −1

)

.

(a) Determine the eigenvalues and eigenvectors of A.

(b) How many linearly independent eigenvectors of A exist?

(c) Is A diagonalizable?

5. Suppose that U is a n × n matrix whose columns comprise an orthonormal set of
column vectors. Prove that U is a unitary matrix. Moreover, show that the rows of
U must also comprise an orthonormal set of row vectors. (HINT: In this problem,
orthonormality must be defined with respect to a complex vector space.)
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6. Let A be a complex n × n matrix. Prove that the eigenvalues of AA† are real and
non-negative.

HINT: Let ~w = A†
~v, where ~v is an eigenvector of AA†. Investigate the con-

sequence of the fact that the inner product 〈~w , ~w〉 is non-negative in a complex
Euclidean space.

7. A linear transformation A is represented by the matrix:

A =





1 −4 2
−4 1 −2

2 −2 −2



 ,

with respect to the standard basis B = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Consider a new
basis, B′ = {(2,−2, 1), (1, 1, 0), (−1, 1, 4)}, where the components of the basis vectors
of B′ are given with respect to the standard basis B.

(a) What are the components of the basis vectors of B when expressed relative to
the basis B′?

(b) Determine the matrix representation of A relative to the basis B′.

8. Consider the matrix

M =

(

0 b

0 a

)

,

where a and b are arbitrary complex numbers.

(a) Compute the eigenvalues of M .

(b) Find a matrix C such that C−1MC is diagonal.

(c) Compute eM .

HINT: Denote D = C−1MC where D is the diagonal matrix obtained in part (b).
Show that

eM = eCDC−1

= CeDC−1 . (1)

Employing the results of parts (a) and (b), first evaluate eD and then use eq. (1) to
compute eM .

(d) Verify that det(eM) = eTrM .

9. If A is a diagonalizable matrix, prove that

eTrA = det eA .

HINT: First prove this result for a diagonal matrix. Then, try to prove the more
general result by diagonalizing A. This result is true for any matrix A, but if A is
not diagonalizable, a more sophisticated technique is required.

2



10. A projection operator is a linear transformation P that satisfies: P 2 = P .

(a) Suppose that P 6= I (where I is the identity operator). Prove that P−1 does
not exist.

(b) Prove that the only possible eigenvalues of P are λ = 0 and λ = 1.

11. Consider the matrices:

G =





0 0 1
0 −1 0
1 0 0



 , K =





0 0 1
−1 0 0

0 −1 0



 .

(a) Show that these are rotation matrices. Are the corresponding rotations proper
or improper?

(b) Describe precisely the nature of the rotations produced when G and K act on
a vector.

(c) Do the rotations represented by G and K commute? Compare the rotations
produced by GK and KG.

12. Consider tensors that live in n-dimensional Euclidean space.

(a) How many independent components does a symmetric second-rank tensor, Sij ,
possess?

(b) How many independent components does an antisymmetric second-rank ten-
sor, Aij, possess?

13. A product of Levi-Civita ǫ symbols can be expressed in terms of products of
Kronecker deltas.

(a) Show that the following determinantal identity is satisfied:

ǫijkǫℓmn =

∣

∣

∣

∣

∣

∣

δiℓ δim δin

δjℓ δjm δjn

δkℓ δkm δkn

∣

∣

∣

∣

∣

∣

.

HINT: You may find eq. (5.5) on p. 509 of Boas useful.

(b) Set k = ℓ in part (a) and sum the resulting expression from k = 1 to 3. Show
that the result coincides with eq. (5.8) on p. 510 of Boas.
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14. In three dimensional space, the components of the vector cross product (in rect-
angular coordinates) is defined as

(~b × ~c ) i =
3

∑

j=1

3
∑

k=1

ǫijkbjck ,

where ǫijk is the Levi-Civita symbol.

(a) Using the formula for the determinant given on p. 509 of Boas, prove that:

~a · (~b × ~c) =

∣

∣

∣

∣

∣

∣

a1 a2 a3

b1 b2 b3

c1 c2 c3

∣

∣

∣

∣

∣

∣

.

(b) Using the properties of the determinant, prove that

(i) ~a · (~b × ~c) = ~b · (~c × ~a) = ~c · (~a ×~b) ,

(ii) ~a · (~b × ~c) = (~a ×~b) · ~c , [interchange of the dot and cross] ,

(iii) ~a · (~b × ~c) = −~c · (~b × ~a) .

15. Using the methods of tensor algebra, one can express the vector cross and dot
products as:

(A × B)i = ǫijkAjBk , A·C = AiBi ,

Employ these methods in deriving the two vector identities below.

(a) Prove Lagrange’s identity:

(A × B)·(C × D) = (A·C)(B ·D) − (A·D)(B ·C) .

(b) Define (XY Z) ≡ X ·(Y × Z). Then, prove that:

(A × B) × (C × D) = (ABD)C − (ABC)D .

16. Suppose that Tαβ are the components of a second-rank tensor and Vβ are the
components of a vector. Assume that α and β can take on the values 1, 2 and 3.

(a) If TαβVβ = 0, for all vectors of a three-dimensional vector space, then prove
that the tensor Tαβ = 0 (i.e. all the components of the tensor vanish, which implies
that the tensor in question is the zero tensor).

(b) Suppose that TαβVβ = 0 holds for a particular non-zero vector. Can you still
conclude that Tαβ = 0? If no, then suppose TαβVβ = 0 holds for N different non-zero
vectors. What is the minimum value of N required in order to conclude that Tαβ = 0?
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BONUS PROBLEM (just for fun):

On the second midterm exam, I posed a question with three parts. In fact the original
question had six parts. See if you can complete the final three parts.

17. Consider the 3×3 matrix C = [cij ] whose matrix elements are given by cij = aibj ,
where the numbers a1, a2, a3 and b1, b2 and b3 are all nonzero numbers.

(a) What is the rank of C?

(b) Evaluate det C. [HINT: You should be able to deduce the correct result
without an explicit computation.]

(c) Consider the possible solutions to the following system of equations

C~v = 0 , (2)

where the matrix C is defined at the beginning of this problem. Determine the
maximal number of linearly independent vectors ~v that satisfy eq. (2).

(d) Based on the results of part (c), determine the eigenvalues of C.

HINT: To avoid some messy algebra, think carefully about what the results of part
(c) tell you about the eigenvalues of C. Then, using the value of TrC, you should be
able to determine all the eigenvalues of C.

(e) Assuming that C possesses at least one nonzero eigenvalue, is C diagonalizable?
Justify your answer.

(f) Determine the rank, determinant, eigenvalues and eigenvectors of an n × n

matrix C = [cij ], where cij = aibj . Assuming that C possesses at least one nonzero
eigenvalue, is C diagonalizable? What is the relation between the rank and the
number of linearly independent eigenvalues corresponding to the zero eigenvalues?
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