
Physics 116A Practice Final Exam Winter 2011

1. Consider the function F (x) =
x

1 − x − 2x2
.

(a) Use the method of partial fractions to express F (x) in terms of a sum (or
difference) of two simpler terms. [HINT: factor the denominator.]

(b) Express F (x) as a power series about x = 0,

F (x) =

∞
∑

n=0

anxn . (1)

This is most easily done by separately expanding the two terms obtained in part (a)
and then combining the two sums. Determine a closed-form expression for an as a
function of n. Write out the first seven values of an (for n = 0, 1, 2, . . . , 6).

(c) What is the radius of convergence of the series obtained in eq. (1)?

2. Evaluate the following integral:

∫

∞

−∞

e−t 2

cos(2xt) dt (2)

in two different ways.

(a) Before we attempt to integrate eq. (2), consider a related integral,

∫

∞

−∞

e−t 2

e2ct dt = ec2
∫

∞

−∞

e−(t−c)2 dt . (3)

By a change of variables, u = t − c, evaluate the integral on the right-hand side
of eq. (3). Use this result to evaluate the integral given eq. (2) by first writing
cos(2xt) = Re e2ixt. Then, you may choose c = ix, assuming that your result for
eq. (3) is still valid for a purely imaginary c.

(b) Expand cos(2xt) in a Taylor series about x = 0. Integrate term by term, and
sum the resulting series. Can you reproduce the answer obtained in part (a)?

HINT: Using the duplication formula for the gamma function, given on p. 545 of
Boas, show that

Γ(n + 1
2
)

Γ(2n + 1)
=

√
π

22nn!
.

Use this result to simplify the series obtained at the end of part (b). You should then
be able to sum the series in closed form.



3. A complex number x + iy can be represented by the 2 × 2 matrix

(

x −y

y x

)

, (4)

where x and y are real numbers. Verify that this is a sensible representation by
answering the following questions.

(a) Show that the matrix representation of (x + iy)(a + ib) is equal to

(

x −y

y x

) (

a −b

b a

)

.

To show this, you should express the product (x + iy)(a + ib) in the form of X + iY

and show that the matrix product above, when evaluated, is consistent with the form
given by eq. (4).

(b) Show that the matrix representation of the complex number
1

x + iy
is correctly

given by the inverse of eq. (4).

(c) How is the determinant of the matrix given in eq. (4) related to the corre-
sponding complex number, x + iy?

4. Consider the following interesting series of numbers:

0, 1, 1, 3, 5, 11, 21, . . . (5)

This series has been generated by the following rules. First, we define

x0 = 0 and x1 = 1 . (6)

Then for all positive integers n = 1, 2, 3, . . . ,

xn+1 = xn + 2xn−1 . (7)

Starting with x0 = 0 and x1 = 1, we can derive the values for x2, x3, x4, . . . sequen-
tially. For example, setting n = 1 in eq. (7) yields x2 = x1 + 2x0 = 1. Next we can
determine x3 = x2 + 2x1 = 3 followed by x4 = x3 + 2x2 = 5, etc. However, this is
a very inefficient way of computing xn for some large value of n (as it would take n

separate computations).
Matrix methods can help us derive a simple rule for directly determining an arbi-

trary term xn in the series. Consider the matrix equation:

(

xn+1

xn

)

=

(

1 2
1 0

) (

xn

xn−1

)

. (8)

(a) Show that this matrix equation is equivalent to the rule given in eq. (7).



(b) Defining the matrix:

M ≡

(

1 2
1 0

)

,

which appears in eq. (8), prove that for any non-negative integer n:
(

xn+1

xn

)

= Mn

(

1
0

)

. (9)

HINT: Verify eq. (9) for n = 0 and n = 1. Then iterate the process using eq. (8).

(c) Compute Mn (for arbitrary n) by first diagonalizing the matrix M and raising
the resulting diagonal matrix to the nth power. Once you have obtained an expression
for Mn, use eq. (9) to write an explicit formula for xn as a function of n. Check that
your formula reproduces the series given in eq. (5).

5. We have learned two methods in this class for computing the inverse of a matrix.
One method involves row reduction and the second method involves the transpose of
the cofactor matrix. Consider the matrix

M =





4 0 −1
−2 1 2

2 0 1



 . (10)

(a) Using one of the two methods mentioned above, compute M−1. Check your
result by computing MM−1.

(b) Here is a third method for computing M−1. Diagonalize M and take the
inverse of the diagonalizing equation. Then solve for M−1 (your formula should
involve the inverse of a diagonal matrix, which can be obtained by inspection). Apply
this technique to the matrix M given by eq. (10). Verify that the result obtained for
M−1 by this method is correct.

(c) Here is a fourth method for computing M−1. By the Cayley-Hamilton theorem,
M solves its own characteristic equation. Compute the characteristic equation for the
matrix M given by eq. (10). Multiply this equation by M−1, and show that M−1 can
be expressed in terms of M2, M and the identity matrix. Use this result to evaluate
M−1, and compare with the results of parts (a) and (b).

6. A totally antisymmetric third-rank Cartesian tensor Bijk is defined by the property
that Bijk changes sign if any two of its indices are interchanged.

(a) If i, j, and k can assume the values 1, 2 or 3, determine the number of non-zero
components of Bijk. How many components of Bijk vanish? You may assume that
the component B123 is nonzero.

(b) Show that Bijk is proportional to the Levi-Civita tensor ǫijk. What is the
constant of proportionality?


