- 1. Consider the function $F(x) = \frac{x}{1 x 2x^2}$.
- (a) Use the method of partial fractions to express F(x) in terms of a sum (or difference) of two simpler terms. [HINT: factor the denominator.]
 - (b) Express F(x) as a power series about x = 0,

$$F(x) = \sum_{n=0}^{\infty} a_n x^n \,. \tag{1}$$

This is most easily done by separately expanding the two terms obtained in part (a) and then combining the two sums. Determine a closed-form expression for a_n as a function of n. Write out the first seven values of a_n (for n = 0, 1, 2, ..., 6).

- (c) What is the radius of convergence of the series obtained in eq. (1)?
- 2. Evaluate the following integral:

$$\int_{-\infty}^{\infty} e^{-t^2} \cos(2xt) dt \tag{2}$$

in two different ways.

(a) Before we attempt to integrate eq. (2), consider a related integral,

$$\int_{-\infty}^{\infty} e^{-t^2} e^{2ct} dt = e^{c^2} \int_{-\infty}^{\infty} e^{-(t-c)^2} dt.$$
 (3)

By a change of variables, u = t - c, evaluate the integral on the right-hand side of eq. (3). Use this result to evaluate the integral given eq. (2) by first writing $\cos(2xt) = \text{Re } e^{2ixt}$. Then, you may choose c = ix, assuming that your result for eq. (3) is still valid for a purely imaginary c.

(b) Expand $\cos(2xt)$ in a Taylor series about x = 0. Integrate term by term, and sum the resulting series. Can you reproduce the answer obtained in part (a)?

HINT: Using the duplication formula for the gamma function, given on p. 545 of Boas, show that

$$\frac{\Gamma(n+\frac{1}{2})}{\Gamma(2n+1)} = \frac{\sqrt{\pi}}{2^{2n}n!}.$$

Use this result to simplify the series obtained at the end of part (b). You should then be able to sum the series in closed form.

3. A complex number x + iy can be represented by the 2×2 matrix

$$\begin{pmatrix} x & -y \\ y & x \end{pmatrix} , \tag{4}$$

where x and y are real numbers. Verify that this is a sensible representation by answering the following questions.

(a) Show that the matrix representation of (x+iy)(a+ib) is equal to

$$\begin{pmatrix} x & -y \\ y & x \end{pmatrix} \begin{pmatrix} a & -b \\ b & a \end{pmatrix}.$$

To show this, you should express the product (x + iy)(a + ib) in the form of X + iY and show that the matrix product above, when evaluated, is consistent with the form given by eq. (4).

- (b) Show that the matrix representation of the complex number $\frac{1}{x+iy}$ is correctly given by the inverse of eq. (4).
- (c) How is the determinant of the matrix given in eq. (4) related to the corresponding complex number, x + iy?
 - 4. Consider the following interesting series of numbers:

$$0, 1, 1, 3, 5, 11, 21, \dots$$
 (5)

This series has been generated by the following rules. First, we define

$$x_0 = 0$$
 and $x_1 = 1$. (6)

Then for all positive integers $n = 1, 2, 3, \ldots$,

$$x_{n+1} = x_n + 2x_{n-1} \,. (7)$$

Starting with $x_0 = 0$ and $x_1 = 1$, we can derive the values for x_2, x_3, x_4, \ldots sequentially. For example, setting n = 1 in eq. (7) yields $x_2 = x_1 + 2x_0 = 1$. Next we can determine $x_3 = x_2 + 2x_1 = 3$ followed by $x_4 = x_3 + 2x_2 = 5$, etc. However, this is a very inefficient way of computing x_n for some large value of n (as it would take n separate computations).

Matrix methods can help us derive a simple rule for directly determining an arbitrary term x_n in the series. Consider the matrix equation:

$$\begin{pmatrix} x_{n+1} \\ x_n \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_n \\ x_{n-1} \end{pmatrix} . \tag{8}$$

(a) Show that this matrix equation is equivalent to the rule given in eq. (7).

(b) Defining the matrix:

$$M \equiv \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix} \,,$$

which appears in eq. (8), prove that for any non-negative integer n:

HINT: Verify eq. (9) for n = 0 and n = 1. Then iterate the process using eq. (8).

- (c) Compute M^n (for arbitrary n) by first diagonalizing the matrix M and raising the resulting diagonal matrix to the nth power. Once you have obtained an expression for M^n , use eq. (9) to write an explicit formula for x_n as a function of n. Check that your formula reproduces the series given in eq. (5).
- 5. We have learned two methods in this class for computing the inverse of a matrix. One method involves row reduction and the second method involves the transpose of the cofactor matrix. Consider the matrix

$$M = \begin{pmatrix} 4 & 0 & -1 \\ -2 & 1 & 2 \\ 2 & 0 & 1 \end{pmatrix} . \tag{10}$$

- (a) Using one of the two methods mentioned above, compute M^{-1} . Check your result by computing MM^{-1} .
- (b) Here is a third method for computing M^{-1} . Diagonalize M and take the inverse of the diagonalizing equation. Then solve for M^{-1} (your formula should involve the inverse of a diagonal matrix, which can be obtained by inspection). Apply this technique to the matrix M given by eq. (10). Verify that the result obtained for M^{-1} by this method is correct.
- (c) Here is a fourth method for computing M^{-1} . By the Cayley-Hamilton theorem, M solves its own characteristic equation. Compute the characteristic equation for the matrix M given by eq. (10). Multiply this equation by M^{-1} , and show that M^{-1} can be expressed in terms of M^2 , M and the identity matrix. Use this result to evaluate M^{-1} , and compare with the results of parts (a) and (b).
- 6. A totally antisymmetric third-rank Cartesian tensor B_{ijk} is defined by the property that B_{ijk} changes sign if any two of its indices are interchanged.
- (a) If i, j, and k can assume the values 1, 2 or 3, determine the number of non-zero components of B_{ijk} . How many components of B_{ijk} vanish? You may assume that the component B_{123} is nonzero.
- (b) Show that B_{ijk} is proportional to the Levi-Civita tensor ϵ_{ijk} . What is the constant of proportionality?