Here is a collection of practice problems suitable for the first midterm exam.

1. Evaluate the following limits:

(a)
$$\lim_{x\to 0} \left(\frac{1+x}{x} - \frac{1}{\sin x}\right)$$
,

(b)
$$\lim_{n\to\infty} \sqrt{n^2 + 3n} - n$$
,

(c)
$$\lim_{x \to \infty} \frac{\ln x}{\sqrt{x}}$$
.

2. Find the radius of convergence of the following three series:

(a)
$$\sum_{n=1}^{\infty} \frac{x^n}{\ln(n+1)}$$

(b)
$$\sum_{n=0}^{\infty} \frac{(n!)^2 x^n}{(2n)!}$$

(a)
$$\sum_{n=1}^{\infty} \frac{x^n}{\ln(n+1)}$$
, (b) $\sum_{n=0}^{\infty} \frac{(n!)^2 x^n}{(2n)!}$, (c) $\sum_{n=0}^{\infty} \frac{n^2 (x-5)^n}{5^n (n^2+1)}$.

3. Determine whether the following series is absolutely convergent, conditionally convergent, or divergent:

$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n^2 - n} \,.$$

If this series is convergent, determine its sum.

4. Determine whether the following series are absolutely convergent, conditionally convergent or divergent.

(a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{n+1}$$
, (b) $\sum_{n=1}^{\infty} \frac{(-1)^n}{2^{\ln n}}$, (c) $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$.

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{2^{\ln n}}$$

(c)
$$\sum_{n=2}^{\infty} \frac{1}{n \ln n}$$

5. What is the *behavior* of the function:

$$f(x) = -1 + \frac{1}{x^2} \left[\frac{1}{(1+x^2)^{3/2}} - \frac{1}{(1+x^2)^{5/2}} \right],$$

as $x \to 0$? (Obtaining the limit as $x \to 0$ is not sufficient.)

6. Evaluate $f(x) = \ln \sqrt{(1+x)/(1-x)} - \tan x$ at x = 0.0015 without a calculator. Determine the numerical accuracy of your result. Is your calculator a useful tool for this problem? (Try it!)

- 7. For each expression find all possible values and express your result both in the form x + iy and in polar form $re^{i\theta}$, where θ is the principal value of the argument.
 - (a) $i^{77} + i^{202}$
- (b) $\frac{3+i}{2+i}$ (c) $\sqrt{-2+2i\sqrt{3}}$
- (d) $\left(\frac{1+i}{1-i}\right)^4$ (e) $\sqrt[4]{16}$
- 8. Let z = 1 i. Express each of the following in the form of x + iy. For any multi-valued function, you should indicate all possible values of the result.
 - (a) $\cos(1/z)$
- (b) z^z
- (c) $\tan(z-1)$

(d) Ln z

- (e) $\arg z$
- 9. Solve for all possible values of the real numbers x and y in the following equations:
 - (a) x + iy = y + ix.
 - (b) $\frac{x+iy}{x-iy} = -i.$
- 10. Find the disk of convergence of the following complex power series:

 - (a) $\sum_{n=0}^{\infty} \frac{(n!)^2}{(2n)!} z^n$, (b) $\sum_{n=1}^{\infty} \frac{z^{2n}}{(2n+1)!}$.
- 11. Evaluate the integral

$$\int_0^{\pi} \sin 3x \cos 4x \, dx \, .$$

- HINT: Rewrite the trigonometric functions in exponential form.
- 12. Evaluate the following quantities:
 - (a) $(-1)^i$
 - (b) Im $[ix + \sqrt{1-x^2}]^{-1}$, where x is a real number and |x| < 1
 - (c) $arg(e^{x+iy})$, where x and y are real numbers
- Be sure to indicate all possible values if the quantity in question is multi-valued. Simplify your expressions as much as possible.