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Three-Dimensional Proper and Improper Rotation Matrices

1. Proper and improper rotation matrices

A real orthogonal matrix R is a matrix whose elements are real numbers and satisfies
R−1 = RT (or equivalently, RRT = I, where I is the 3 × 3 identity matrix). Taking
the determinant of the equation RRT = I and using the fact that det(RT) = det R, it
follows that (det R)2 = 1, which implies that either detR = 1 or detR = −1.

A real orthogonal matrix with detR = 1 provides a matrix representation of a proper
rotation. The most general rotation matrix represents a counterclockwise rotation by
an angle θ about a fixed axis that lies along the unit vector n̂. The rotation matrix
operates on vectors to produce rotated vectors, while the coordinate axes are held
fixed. In typical parlance, a rotation refers to a proper rotation. Thus, in the following
sections of these notes we will often omit the adjective proper when referring to a
proper rotation.

A real orthogonal matrix with detR = −1 provides a matrix representation of an
improper rotation. To perform an improper rotation requires mirrors. That is, the
most general improper rotation matrix is a product of a proper rotation by an angle
θ about some axis n̂ and a mirror reflection through a plane that passes through the
origin and is perpendicular to n̂.

In these notes, we shall explore the matrix representations of three-dimensional
proper and improper rotations. By determining the most general form for a three-
dimensional proper and improper rotation matrix, we can then examine any 3 × 3
orthogonal matrix and determine the rotation and/or reflection it produces as an op-
erator acting on vectors. If the matrix is a proper rotation, then the axis of rotation
and angle of rotation can be determined. If the matrix is an improper rotation, then
the reflection plane and the rotation, if any, about the normal to that plane can be
determined.

2. Properties of the 3 × 3 rotation matrix

A rotation in the x–y plane by an angle θ measured counterclockwise from the
positive x-axis is represented by the 2 × 2 real orthogonal matrix with determinant
equal to 1,

(

cos θ − sin θ
sin θ cos θ

)

.

If we consider this rotation as occurring in three-dimensional space, then it can be
described as a counterclockwise rotation by an angle θ about the z-axis. The matrix
representation of this three-dimensional rotation is given by the 3× 3 real orthogonal
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matrix with determinant equal to 1 [cf. eq. (7.18) on p. 129 of Boas],

R(k, θ) ≡





cos θ − sin θ 0
sin θ cos θ 0
0 0 1



 , (1)

where the axis of rotation and the angle of rotation are specified as arguments of R.
The most general three-dimensional rotation, denoted by R(n̂, θ), can be specified

by an axis of rotation, n̂, and a rotation angle θ.1 Conventionally, a positive rotation
angle corresponds to a counterclockwise rotation. The direction of the axis is deter-
mined by the right hand rule. Namely, curl the fingers of your right hand around
the axis of rotation, where your fingers point in the θ direction. Then, your thumb
points perpendicular to the plane of rotation in the direction of n̂. In general, rotation
matrices do not commute under multiplication. However, if both rotations are taken
with respect to the same fixed axis, then

R(n̂, θ1)R(n̂, θ2) = R(n̂, θ1 + θ2) . (2)

Simple geometric considerations will convince you that the following relations are
satisfied:

R(n̂, θ + 2πk) = R(n̂, θ) , k = 0,±1 ± 2 . . . , (3)

[R(n̂, θ)]−1 = R(n̂,−θ) = R(−n̂, θ) . (4)

Combining these two results, it follows that

R(n̂, 2π − θ) = R(−n̂, θ) , (5)

which implies that any three-dimensional rotation can be described by a counterclock-
wise rotation by an angle θ about an arbitrary axis n̂, where 0 ≤ θ ≤ π. However, if
we substitute θ = π in eq. (5), we conclude that

R(n̂, π) = R(−n̂, π) , (6)

which means that for the special case of θ = π, R(n̂, π) and R(−n̂, π) represent the
same rotation. In particular, note that

[R(n̂, π)]2 = I . (7)

Indeed for any choice of n̂, the R(n̂, π) are the only non-trivial rotation matrices whose
square is equal to the identity operator. Finally, if θ = 0 then R(n̂, 0) = I is the identity
operator (sometimes called the trivial rotation), independently of the direction of n̂.

1There is an alternative convention for the range of possible angles θ and rotation axes n̂. We say
that n̂ = (n1, n2, n3) > 0 if the first nonzero component of n̂ is positive. That is n3 > 0 if n1 = n2 = 0,
n2 > 0 if n1 = 0, and n1 > 0 otherwise. Then, all possible rotation matrices R(n̂, θ) correspond to
n̂ > 0 and 0 ≤ θ < 2π. However, we will not employ this convention in these notes.
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To learn more about the properties of a general three-dimensional rotation, consider
the matrix representation R(n̂, θ) with respect to the standard basis Bs = {i , j , k}.
We can define a new coordinate system in which the unit vector n̂ points in the
direction of the new z-axis; the corresponding new basis will be denoted by B′. The
matrix representation of the rotation with respect to B′ is then given by R(k, θ). Using
the formalism developed in the class handout, Vector coordinates, matrix elements and

changes of basis, there exists an invertible matrix P such that

R(n̂, θ) = PR(k, θ)P−1 , (8)

where R(k, θ) is given by eq. (1). In Section 3, we will determine the matrix P , in
which case eq. (14) provides an explicit form for the most general three-dimensional
rotation. However, the mere existence of the matrix P in eq. (8) is sufficient to provide
a simple algorithm for determining the rotation axis n̂ (up to an overall sign) and the
rotation angle θ that characterize a general three-dimensional rotation matrix.

To determine the rotation angle θ, we note that the properties of the trace imply
that Tr(PRP−1) = Tr(P−1PR) = TrR, since one can cyclically permute the matrices
within the trace without modifying its value. Hence, it immediately follows from eq. (8)
that

Tr R(n̂, θ) = Tr R(k, θ) = 2 cos θ + 1 , (9)

after taking the trace of eq. (1). By convention, 0 ≤ θ ≤ π, which implies that sin θ ≥ 0.
Hence, the rotation angle is uniquely determined by eq. (9) To identify n̂, we observe
that any vector that is parallel to the axis of rotation is unaffected by the rotation
itself. This last statement can be expressed as an eigenvalue equation,

R(n̂, θ)n̂ = n̂ . (10)

Thus, n̂ is an eigenvector of R(n̂, θ) corresponding to the eigenvalue 1. In particular,
the eigenvalue 1 is unique for any θ 6= 0, in which case n̂ can be determined up to an
overall sign by computing the eigenvalues and the normalized eigenvectors ofR(n̂, θ). A
simple proof of this result is given in Appendix A. Here, we shall establish this assertion
by noting that the eigenvalues of any matrix are invariant with respect to a similarity
transformation. Using eq. (8), it follows that the eigenvalues of R(n̂, θ) are identical to
the eigenvalues of R(k, θ). The latter can be obtained from the characteristic equation,

(1− λ)
[

(cos θ − λ)2 + sin2 θ
]

= 0 ,

which simplifies to:
(1− λ)(λ2 − 2λ cos θ + 1) = 0 ,

after using sin2 θ + cos2 θ = 1. Solving the quadratic equation, λ2 − 2λ cos θ + 1 = 0,
yields:

λ = cos θ ±
√
cos2 θ − 1 = cos θ ± i

√
1− cos2 θ = cos θ ± i sin θ = e±iθ . (11)
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It follows that the three eigenvalues of R(k, θ) are given by,

λ1 = 1 , λ2 = eiθ , λ3 = e−iθ , for 0 ≤ θ ≤ π .

There are three distinct cases:

Case 1: θ = 0 λ1 = λ2 = λ3 = 1 , R(n̂, 0) = I ,

Case 2: θ = π λ1 = 1 , λ2 = λ3 = −1 , R(n̂, π) ,

Case 3: 0 < θ < π λ1 = 1, λ2 = eiθ , λ3 = e−iθ , R(n̂, θ) ,

where the corresponding rotation matrix is indicated for each of the three cases. Indeed,
for θ 6= 0 the eigenvalue 1 is unique. Moreover, the other two eigenvalues are complex
conjugates of each other, whose real part is equal to cos θ, which uniquely fixes the
rotation angle in the convention where 0 ≤ θ ≤ π. Case 1 corresponds to the identity
(i.e. no rotation) and Case 2 corresponds to a 180◦ rotation about the axis n̂. In
Case 2, the interpretation of the the doubly degenerate eigenvalue −1 is clear. Namely,
the corresponding two linearly independent eigenvectors span the plane that passes
through the origin and is perpendicular to n̂. In particular, the two doubly degenerate
eigenvectors (along with any linear combination ~v of these eigenvectors that lies in the
plane perpendicular to n̂) are inverted by the 180◦ rotation and hence must satisfy
R(n̂, π)~v = −~v.

Since n̂ is a real vector of unit length, it is determined only up to an overall sign
by eq. (10) when its corresponding eigenvalue 1 is unique. This sign ambiguity is
immaterial in Case 2 in light of eq. (6). The sign ambiguity in Case 3 cannot be
resolved without further analysis. To make further progress, in Section 3 we shall
obtain the general expression for the three dimensional rotation matrix R(n̂, θ).

3. An explicit formula for the matrix elements of a general 3 × 3 rotation

matrix

In this section, the matrix elements of R(n̂, θ) will be denoted by Rij . Since R(n̂, θ)
describes a rotation by an angle θ about an axis n̂, the formula for Rij that we seek
depends on the angle θ and on the coordinates of n̂ = (n1 , n2 , n3) with respect to a
fixed Cartesian coordinate system. Note that since n̂ is a unit vector, it follows that:

n2

1 + n2

2 + n2

3 = 1 . (12)

Suppose we are given a rotation matrix R(n̂, θ) and are asked to determine the axis
of rotation n̂ and the rotation angle θ. The matrix R(n̂, θ) is specified with respect to
the standard basis Bs = {i , j , k}. We shall rotate to a new orthonormal basis,

B′ = {i′ , j ′ , k′} ,

in which new positive z-axis points in the direction of n̂. That is,

k′ = n̂ ≡ (n1, n2, n3) , where n2

1 + n2

2 + n2

3 = 1 .
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The new positive y-axis can be chosen to lie along

j ′ =

(

−n2
√

n2
1 + n2

2

,
n1

√

n2
1 + n2

2

, 0

)

,

since by construction, j ′ is a unit vector orthogonal to k′. We complete the new
right-handed coordinate system by choosing:

i′ = j ′×k′ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

i j k

−n2
√

n2
1 + n2

2

n1
√

n2
1 + n2

2

0

n1 n2 n3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

(

n3n1
√

n2
1 + n2

2

,
n3n2

√

n2
1 + n2

2

, −
√

n2
1 + n2

2

)

.

Following the class handout entitled, Vector coordinates, matrix elements and changes

of basis, we determine the matrix P whose matrix elements are defined by

b′j =
n
∑

i=1

Pijêi ,

where the êi are the basis vectors of Bs and the b′j are the basis vectors of B′. The
columns of P are the coefficients of the expansion of the new basis vectors in terms of
the old basis vectors. Thus,

P =



















n3n1
√

n2
1 + n2

2

−n2
√

n2
1 + n2

2

n1

n3n2
√

n2
1 + n2

2

n1
√

n2
1 + n2

2

n2

−
√

n2
1 + n2

2 0 n3



















. (13)

The inverse P−1 is easily computed since the columns of P are orthonormal, which
implies that P is an orthogonal matrix,2 i.e. P−1 = PT.

According to eq. (14) of the class handout, Vector coordinates, matrix elements and

changes of basis,
[R]B′ = P−1 [R]Bs

P . (14)

where [R]Bs
is the matrix R with respect to the standard basis, and [R]B′ is the matrix

R with respect to the new basis (in which n̂ points along the new positive z-axis). In
particular,

[R]B = R(n̂, θ) , [R]B′ = R(k, θ) =





cos θ − sin θ 0
sin θ cos θ 0
0 0 1



 .

2In fact, P can be expressed as the product of two simple rotation matrices as shown in Appendix B.
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Hence, eq. (14) yields
R(n̂, θ) = PR(k, θ)P−1 , (15)

where P is given by eq. (13) and P−1 = PT. Eq. (15) is a special case of a more general
result [cf. eq. (67)], which is derived in Appendix B.

For ease of notation, we define

N12 ≡
√

n2
1 + n2

2 . (16)

Note that N2
12 + n2

3 = 1, since n̂ is a unit vector. Writing out the matrices in eq. (15),

R(n̂, θ) =





n3n1/N12 −n2/N12 n1

n3n2/N12 n1/N12 n2

−N12 0 n3









cos θ − sin θ 0
sin θ cos θ 0
0 0 1









n3n1/N12 n3n2/N12 −N12

−n2/N12 n1/N12 0
n1 n2 n3





=













n3n1/N12 −n2/N12 n1

n3n2/N12 n1/N12 n2

−N12 0 n3

























n3n1 cos θ+n2 sin θ
N12

n3n2 cos θ−n1 sin θ
N12

−N12 cos θ

n3n1 sin θ−n2 cos θ
N12

n3n2 sin θ+n1 cos θ
N12

−N12 sin θ

n1 n2 n3













.

Using N2
12 = n2

1 + n2
2 and n2

3 = 1−N2
12, the final matrix multiplication then yields the

desired result:

R(n̂, θ) =





cos θ + n2
1(1− cos θ) n1n2(1− cos θ)− n3 sin θ n1n3(1− cos θ) + n2 sin θ

n1n2(1− cos θ) + n3 sin θ cos θ + n2
2(1− cos θ) n2n3(1− cos θ)− n1 sin θ

n1n3(1− cos θ)− n2 sin θ n2n3(1− cos θ) + n1 sin θ cos θ + n2
3(1− cos θ)





(17)
Eq. (17) is called the Rodriguez formula for the 3× 3 rotation matrix R(n̂, θ).

One can easily check that eqs. (3) and (4) are satisfied. In particular, as indicated
by eq. (5), the rotations R(n̂, π) and R(−n̂, π) represent the same rotation,

Rij(n̂, π) =





2n2
1 − 1 2n1n2 2n1n3

2n1n2 2n2
2 − 1 2n2n3

2n1n3 2n2n3 2n2
3 − 1



 = 2ninj − δij , (18)

where the Kronecker delta δij is defined to be the matrix elements of the identity,

δij =

{

1 , if i = j ,

0 , if i 6= j .
(19)

Finally, as expected, Rij(n̂, 0) = δij , independently of the direction of n̂. I leave it as
an exercise to the reader to verify explicitly that R = R(n̂, θ) given in eq. (17) satisfies
the conditions RRT = I and det R = +1.
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4. Determining the rotation axis and the rotation angle

Given a general three-dimensional rotation matrix, R(n̂, θ), we can determine the
angle of rotation θ and the axis of rotation n̂. Using eq. (17), the trace of R(n̂, θ) is
given by:

Tr R(n̂, θ) = 1 + 2 cos θ (20)

which coincides with our previous result obtained in eq. (9). Thus eq. (20) yields,

cos θ = 1

2
(Tr R− 1) and sin θ = (1− cos2 θ)1/2 = 1

2

√

(3− Tr R)(1 + Tr R)

(21)
where sin θ ≥ 0 is a consequence of our convention for the range of the rotation angle,
0 ≤ θ ≤ π. If sin θ 6= 0, then we can immediately use eqs. (17) and (21) to obtain

n̂ =
1

√

(3− Tr R)(1 + Tr R)

(

R32 −R23 , R13 −R31 , R21 −R12

)

, Tr R 6= −1 , 3 .

(22)
The overall sign of n̂ is fixed by eq. (4) due to our convention in which sin θ ≥ 0. If
sin θ = 0, then eq. (17) implies that Rij = Rji, in which case n̂ cannot be determined
from eq. (22). In this case, eq. (20) determines whether cos θ = +1 or cos θ = −1. If
cos θ = +1, then Rij = δij and the axis n̂ is undefined. If cos θ = −1, then eq. (18)
determines the direction of n̂ up to an overall sign. That is,

n̂ is undetermined if θ = 0 ,

n̂ =

(

ǫ1

√

1

2
(1 +R11) , ǫ2

√

1

2
(1 +R22) , ǫ3

√

1

2
(1 +R33)

)

, if θ = π , (23)

where the individual signs ǫi = ±1 are determined up to an overall sign via3

ǫiǫj =
Rij

√

(1 +Rii)(1 +Rjj)
, for fixed i 6= j , Rii 6= −1 , Rjj 6= −1 . (24)

The ambiguity of the overall sign of n̂ sign is not significant in this case, since R(n̂, π)
and R(−n̂, π) represent the same rotation [cf. eq. (6)].

One slightly inconvenient feature of the above analysis is that the case of θ = π
(or equivalently, Tr R = −1) requires a separate treatment in order to determine n̂.
Moreover, for values of θ very close to π, the numerator and denominator of eq. (22)
are very small, so that a very precise numerical evaluation of both the numerator and
denominator is required to accurately determine the direction of n̂. Thus, we briefly
mention another approach for determining n̂ which avoids these problems.

In this alternate approach, we define the matrix

S = R +RT + (1− Tr R)I . (25)

3If Rii = −1, where i is a fixed index, then ni = 0, in which case the corresponding ǫi is irrelevant.
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Then, eq. (17) yields Sjk = 2(1− cos θ)njnk = (3− Tr R)njnk. Hence,
4

njnk =
Sjk

3− Tr R
, Tr R 6= 3 (26)

Note that for θ close to π (which corresponds to Tr R ≃ −1), neither the numerator
nor the denominator of eq. (26) is particularly small, and the direction of n̂ can be
determined numerically without significant roundoff error. To determine n̂ up to an
overall sign, we simply set j = k in eq. (26), which fixes the value of n2

j . If sin θ 6= 0,
the overall sign of n̂ is determined by eq. (22). If sin θ = 0 then there are two cases.
For θ = 0 (corresponding to the identity rotation), S = 0 and the rotation axis n̂ is
undefined. For θ = π, the ambiguity in the overall sign of n̂ is immaterial, in light of
eq. (6).

In summary, eqs. (21), (22) and (23) provide a simple algorithm for determining
the rotation axis n̂ and the rotation angle θ for any rotation matrix R(n̂, θ) 6= I.

5. Boas, p. 161, problem 3.11–54 revisited

Boas poses the following question in problem 3.11–54 on p. 161. Show that the
matrix,

R =
1

2





1
√
2 −1√

2 0
√
2

1 −
√
2 −1



 , (27)

is orthogonal and find the rotation it produces as an operator acting on vectors. De-
termine the rotation axis and the angle of rotation.

After checking that RRT = I and detR = 1, we can deduce the rotation angle θ
and the rotation axis n̂ as follows. First, n̂ is identified as the normalized eigenvector
of R(n̂, θ) corresponding to the eigenvalue +1. The overall sign of n̂ is fixed by making
some conventional choice. In order to determine θ, Boas proposes the following proce-
dure. Noting that the matrix R provides the matrix elements of the rotation operator
with respect to the standard basis Bs, we can define a new basis such that n̂ points
along the new y-axis. Then, the matrix elements of the rotation operator with respect
to this new basis has a simple form and θ can be determined by inspection. Two con-
crete examples of this procedure are provided on p. 156 of Boas. A detailed solution
to the above problem following the procedure of Boas can be found in Section 5 of the
class handout entitled, Vector coordinates, matrix elements and changes of basis.

Indeed, we employed a variant of this procedure in these notes to derive the explicit
form for R(n̂, θ) obtained in eq. (17). However, once we have this general form, we
can make use of the results of Section 4 to determine θ and n̂ almost by inspection.
In particular, we can use eqs. (21) and (22) to determine the rotation angle θ and the
rotation axis n̂. Since eq. (27) yields Tr R = 0, it follows from eq. (21) that

cos θ = −1

2
, sin θ = 1

2

√
3 ,

4Eq. (25) yields TrS = 3− Tr R. One can then use eq. (26) to verify that n̂ is a unit vector.
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which implies that θ = 120◦. Next, we employ eq. (22) to obtain the axis of rotation,

n̂ = − 1√
3

[√
2 i + j

]

. (28)

In the solution to this problem given in Section 5 of the class handout cited above, we
initially obtained n̂ = 1√

3

[√
2 i + j

]

and θ = 240◦, which corresponds to the convention

defined in footnote 1 where 0 ≤ θ < 2π and n̂ > 0. This is in contrast to eq. (28)
which is based on the convention adopted in these notes where 0 ≤ θ ≤ π. Of course,
both choices yield the same rotation matrix, in light of eq. (5).

6. Properties of the 3 × 3 improper rotation matrix

An improper rotation matrix is an orthogonal matrix, R, such that det R = −1.
The most general three-dimensional improper rotation, denoted by R(n̂, θ) consists of
a product of a proper rotation matrix, R(n̂, θ), and a mirror reflection through a plane
normal to the unit vector n̂, which we denote by R(n̂). In particular, the reflection
plane passes through the origin and is perpendicular to n̂. In equations,

R(n̂, θ) ≡ R(n̂, θ)R(n̂) = R(n̂)R(n̂, θ) . (29)

Note that the improper rotation defined in eq. (29) does not depend on the order
in which the proper rotation and reflection are applied. The matrix R(n̂) is called
a reflection matrix, since it is a representation of a mirror reflection through a fixed
plane. In particular,

R(n̂) = R(−n̂) = R(n̂, 0) , (30)

after using R(n̂, 0) = I. Thus, the overall sign of n̂ for a reflection matrix has
no physical meaning. Note that all reflection matrices are orthogonal matrices with
detR(n̂) = −1, with the property that:

[R(n̂)]2 = I , (31)

or equivalently,
[R(n̂)]−1 = R(n̂) . (32)

In general, the product of a two proper and/or improper rotation matrices is not
commutative. However, if n̂ is the same for both matrices, then eq. (2) implies that:5

R(n̂, θ1)R(n̂, θ2) = R(n̂, θ1)R(n̂, θ2) = R(n̂, θ1 + θ2) , (33)

R(n̂, θ1)R(n̂, θ2) = R(n̂, θ1)R(n̂, θ2) = R(n̂, θ1 + θ2) , (34)

5Since det[R(n̂, θ1)R(n̂, θ2)] = det R(n̂, θ1) det R(n̂, θ2) = −1, it follows that R(n̂, θ1)R(n̂, θ2)
must be an improper rotation matrix. Likewise, R(n̂, θ1)R(n̂, θ2) must be a proper rotation matrix.
Eqs. (33) and (34) are consistent with these expectations.
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after making use of eqs. (29) and (31).
The properties of the improper rotation matrices mirror those of the proper rotation

matrices given in eqs. (3)–(7). Indeed the properties of the latter combined with
eqs. (30) and (32) yield:

R(n̂, θ + 2πk) = R(n̂, θ) , k = 0,±1 ± 2 . . . , (35)

[R(n̂, θ)]−1 = R(n̂,−θ) = R(−n̂, θ) . (36)

Combining these two results, it follows that

R(n̂, 2π − θ) = R(−n̂, θ) . (37)

We shall adopt the convention (employed in Section 2) in which the angle θ is defined
to lie in the interval 0 ≤ θ ≤ π. In this convention, the overall sign of n̂ is meaningful
when 0 < θ < π.

The matrix R(n̂, π) is special. Geometric considerations will convince you that

R(n̂, π) = R(n̂, π)R(n̂) = R(n̂)R(n̂, π) = −I . (38)

That is, R(n̂, π) represents an inversion, which is a linear operator that transforms all
vectors ~x → −~x. In particular, R(n̂, π) is independent of the unit vector n̂. Eq. (38)
is equivalent to the statement that an inversion is equivalent to a mirror reflection
through a plane that passes through the origin and is perpendicular to an arbitrary
unit vector n̂, followed by a proper rotation of 180◦ around the axis n̂. Sometimes,
R(n̂, π) is called a point reflection through the origin (to distinguish it from a reflection
through a plane). Just like a reflection matrix, the inversion matrix satisfies

[R(n̂, π)]2 = I . (39)

In general, any improper 3 × 3 rotation matrix R with the property that R 2 = I is a
representation of either an inversion or a reflection through a plane that passes through
the origin.

Given any proper 3 × 3 rotation matrix R(n̂, θ), the matrix −R(n̂, θ) has deter-
minant equal to −1 and therefore represents some improper rotation which can be
determined as follows:

−R(n̂, θ) = R(n̂, θ)R(n̂, π) = R(n̂, θ + π) = R(−n̂, π − θ) , (40)

after employing eqs. (38), (33) and (37). Two noteworthy consequences of eq. (40) are:

R(n̂, 1

2
π) = −R(−n̂, 1

2
π) , (41)

R(n̂) = R(n̂, 0) = −R(n̂, π) , (42)

after using eq. (6) in the second equation above.
To learn more about the properties of a general three-dimensional improper ro-

tation, consider the matrix representation R(n̂, θ) with respect to the standard basis

10



Bs = {i , j , k}. We can define a new coordinate system in which the unit normal to
the reflection plane n̂ points in the direction of the new z-axis; the corresponding new
basis will be denoted by B′. The matrix representation of the improper rotation with
respect to B′ is then given by

R(k, θ) = R(k, θ)R(k) =





cos θ − sin θ 0
sin θ cos θ 0
0 0 1









1 0 0
0 1 0
0 0 −1





=





cos θ − sin θ 0
sin θ cos θ 0
0 0 −1



 .

Using the formalism developed in the class handout, Vector coordinates, matrix el-

ements and changes of basis, there exists an invertible matrix P (which has been
explicitly obtained in Section 3) such that

R(n̂, θ) = PR(k, θ)P−1 . (43)

The rest of the analysis mirrors the discussion of Section 2. It immediately follows that

Tr R(n̂, θ) = Tr R(k, θ) = 2 cos θ − 1 , (44)

after taking the trace of eq. (43). By convention, 0 ≤ θ ≤ π, which implies that
sin θ ≥ 0. Hence, the rotation angle is uniquely determined by eq. (44) To identify
n̂ (up to an overall sign), we observe that any vector that is parallel to n̂ (which
points along the normal to the reflection plane) is inverted. This last statement can
be expressed as an eigenvalue equation,

R(n̂, θ)n̂ = −n̂ . (45)

Thus, n̂ is an eigenvector of R(n̂, θ) corresponding to the eigenvalue −1. In particular,
the eigenvalue −1 is unique for any θ 6= π, in which case n̂ can be determined up to an
overall sign by computing the eigenvalues and the normalized eigenvectors ofR(n̂, θ). A
simple proof of this result is given in Appendix A. Here, we shall establish this assertion
by noting that the eigenvalues of any matrix are invariant with respect to a similarity
transformation. Using eq. (43), it follows that the eigenvalues of R(n̂, θ) are identical to
the eigenvalues of R(k, θ). The latter can be obtained from the characteristic equation,

−(1 + λ)
[

(cos θ − λ)2 + sin2 θ
]

= 0 ,

which simplifies to:
(1 + λ)(λ2 − 2λ cos θ + 1) = 0 .

The solution to the quadratic equation, λ2 − 2λ cos θ+1 = 0, was given in eq. (11). It
follows that the three eigenvalues of R(k, θ) are given by,

λ1 = −1 , λ2 = eiθ , λ3 = e−iθ , for 0 ≤ θ ≤ π .

11



There are three distinct cases:

Case 1: θ = 0 λ1 = λ2 = λ3 = −1 , R(n̂, π) = −I ,

Case 2: θ = π λ1 = −1 , λ2 = λ3 = 1 , R(n̂, 0) ≡ R(n̂) ,

Case 3: 0 < θ < π λ1 = −1, λ2 = eiθ , λ3 = e−iθ , R(n̂, θ) ,

where the corresponding improper rotation matrix is indicated for each of the three
cases. Indeed, for θ 6= π, the eigenvalue −1 is unique. Moreover, the other two eigen-
values are complex conjugates of each other, whose real part is equal to cos θ, which
uniquely fixes the rotation angle in the convention where 0 ≤ θ ≤ π. Case 1 corre-
sponds to inversion and Case 2 corresponds to a mirror reflection through a plane that
passes through the origin and is perpendicular to n̂. In Case 2, the doubly degenerate
eigenvalue +1 is a consequence of the two linearly independent eigenvectors that span
the reflection plane. In particular, any linear combination ~v of these eigenvectors that
lies in the reflection plane is unaffected by the reflection and thus satisfies R(n̂)~v = ~v.
In contrast, the improper rotation matrices of Case 3 do not possess an eigenvalue of
+1, since the vectors that lie in the reflection plane transform non-trivially under the
proper rotation R(n̂, θ).

Since n̂ is a real vector of unit length, it is determined only up to an overall sign
by eq. (45) when its corresponding eigenvalue −1 is unique. This sign ambiguity
is immaterial in Case 2 in light of eq. (30). The sign ambiguity in Case 3 cannot be
resolved without further analysis. To make further progress, in Section 7 we shall obtain
the general expression for the three dimensional improper rotation matrix R(n̂, θ).

7. An explicit formula for the matrix elements of a general 3× 3 improper

rotation matrix

In this section, the matrix elements of R(n̂, θ) will be denoted by Rij. The formula
for Rij that we seek depends on the angle θ and on the coordinates of n̂ = (n1 , n2 , n3)
with respect to a fixed Cartesian coordinate system. The computation mirrors the one
given in Section 3. Namely, we compute:

R(n̂, θ) = PR(k, θ)P−1 , (46)

where P is given by eq. (13) and P−1 = PT. Writing out the matrices in eq. (46),

R(n̂, θ) =





n3n1/N12 −n2/N12 n1

n3n2/N12 n1/N12 n2

−N12 0 n3









cos θ − sin θ 0
sin θ cos θ 0
0 0 −1









n3n1/N12 n3n2/N12 −N12

−n2/N12 n1/N12 0
n1 n2 n3





=













n3n1/N12 −n2/N12 n1

n3n2/N12 n1/N12 n2

−N12 0 n3

























n3n1 cos θ+n2 sin θ
N12

n3n2 cos θ−n1 sin θ
N12

−N12 cos θ

n3n1 sin θ−n2 cos θ
N12

n3n2 sin θ+n1 cos θ
N12

−N12 sin θ

−n1 −n2 −n3













,
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where N12 is defined in eq. (16). Using N2
12 = n2

1 + n2
2 and n2

3 = 1 − N2
12, the final

matrix multiplication then yields the desired result:

R(n̂, θ) =





cos θ − n2
1(1 + cos θ) −n1n2(1 + cos θ)− n3 sin θ −n1n3(1 + cos θ) + n2 sin θ

−n1n2(1 + cos θ) + n3 sin θ cos θ − n2
2(1 + cos θ) −n2n3(1 + cos θ)− n1 sin θ

−n1n3(1 + cos θ)− n2 sin θ −n2n3(1 + cos θ) + n1 sin θ cos θ − n2
3(1 + cos θ)





(47)
One can easily check that eqs. (35) and (36) are satisfied. In particular, as indicated

by eq. (30), the improper rotations R(n̂, 0) and R(−n̂, 0) represent the same reflection
matrix,6

Rij(n̂, 0) ≡ Rij(n̂) =





1− 2n2
1 −2n1n2 −2n1n3

−2n1n2 1− 2n2
2 −2n2n3

−2n1n3 −2n2n3 1− 2n2
3



 = δij − 2ninj , (48)

where the Kronecker delta δij is defined in eq. (19). Finally, as expected,

Rij(n̂, π) = −δij ,

independently of the direction of n̂. I leave it as an exercise to the reader to verify

explicitly that R = R(n̂, θ) given in eq. (47) satisfies the conditions RR
T

= I and
det R = −1.

8. Determining the reflection plane and the rotation angle

A general three-dimensional improper rotation matrix, R(n̂, θ) = R(n̂, θ)R(n̂), is
the product of a reflection and a proper rotation. The reflection R(n̂) corresponds
to a mirror reflection through a plane perpendicular to n̂ that passes through the
origin. R(n̂, θ) represents a proper rotation by θ that is taken around the axis n̂ in
the counterclockwise direction.

To determine the angle of rotation θ, we compute the trace of R(n̂, θ). In particular,
using eq. (47) it follows that:

Tr R(n̂, θ) = 2 cos θ − 1 (49)

which coincides with our previous result obtained in eq. (44). By convention, 0 ≤ θ ≤ π,
which implies that sin θ ≥ 0. Thus, eq. (49) yields

cos θ = 1

2

(

Tr R + 1
)

and sin θ = (1− cos2 θ)1/2 = 1

2

√

(3 + Tr R)(1− Tr R)

(50)

6Indeed, eqs. (18) and (48) are consistent with eq. (42) as expected.
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If sin θ 6= 0, then we can immediately use eqs. (17) and (50) to obtain the unit normal
to the reflection plane,

n̂ =
1

√

(3 + Tr R)(1− Tr R)

(

R32 −R23 , R13 −R31 , R21 −R12

)

, Tr R 6= 1 , −3 .

(51)
The overall sign of n̂ is fixed by eq. (36) due to our convention in which sin θ ≥ 0. If
sin θ = 0, then eq. (47) implies that Rij = Rji, in which case n̂ cannot be determined
from eq. (22). In this case, eq. (49) determines whether cos θ = +1 or cos θ = −1. If
cos θ = −1, then Rij = −δij and the axis n̂ is undefined. If cos θ = 1, then eq. (48)
determines the direction of n̂ up to an overall sign. That is,

n̂ is undetermined if θ = π ,

n̂ =

(

ǫ1

√

1

2
(1− R11) , ǫ2

√

1

2
(1− R22) , ǫ3

√

1

2
(1−R33)

)

, if θ = 0 , (52)

where the individual signs ǫi = ±1 are determined up to an overall sign via7

ǫiǫj =
Rij

√

(1− Rii)(1− Rjj)
, for fixed i 6= j , Rii 6= 1 , Rjj 6= 1 . (53)

The ambiguity of the overall sign of n̂ sign is not significant, since R(n̂) and R(−n̂)
represent the same mirror reflection [cf. eq. (30)].

One can also determine the unit normal to the reflection plane n̂ by defining the
matrix,

S = R +R
T − (1 + TrR)I .

Then, eq. (47) yields Sjk = −2(1 + cos θ)njnk = −(3 + TrR)njnk. Hence,

njnk =
−Sjk

3 + TrR
, TrR 6= −3 . (54)

To determine n̂ up to an overall sign, we simply set j = k in eq. (54), which fixes the
value of n2

j . If sin θ 6= 0, the overall sign of n̂ is fixed by eq. (51). If sin θ = 0 then

there are two cases. For θ = π (corresponding to an inversion), S = 0 and the axis n̂
is undefined. For θ = 0, the ambiguity in the overall sign of n̂ is immaterial, in light
of eq. (30).

Finally, we shall derive an equation for the reflection plane, which passes through
the origin and is perpendicular to n̂. That is, the unit normal to the reflection plane,
n̂ = n1i+n2j+n2k = (n1, n2, n3), is a vector perpendicular to the reflection plane that
passes through the origin, i.e. the point (x0, y0, z0) = (0, 0, 0). Thus, using eq. (5.10)
on p. 109 of Boas, the equation of the reflection plane is given by:

n1x+ n2y + n3z = 0 (55)

7If Rii = 1, where i is a fixed index, then ni = 0, in which case the corresponding ǫi is irrelevant.
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Note that the equation for the reflection plane does not depend on the overall sign
of n̂. This makes sense, as both n̂ and −n̂ are perpendicular to the reflection plane.

The equation for the reflection plane can also be derived directly as follows. In the
case of θ = π, the unit normal to the reflection plane n̂ is undefined so we exclude
this case from further consideration. If θ 6= π, then the reflection plane corresponding
to the improper rotation R(n̂, θ) does not depend on θ. Thus, we can take θ = 0
and consider R(n̂) which represents a mirror reflection through the reflection plane.
Any vector ~v = (x, y, z) that lies in the reflection plane is an eigenvector of R(n̂) with
eigenvalue +1, as indicated at the end of Section 6. Thus, the equation of the reflection
plane is R(n̂)~v = ~v, which is explicitly given by [cf. eq. (48)]:





1− 2n2
1 −2n1n2 −2n1n3

−2n1n2 1− 2n2
2 −2n2n3

−2n1n3 2− n2n3 1− 2n2
3









x
y
z



 =





x
y
z



 . (56)

The matrix equation, eq. (56), is equivalent to:




n2
1 n1n2 n1n3

n1n2 n2
2 n2n3

n1n3 n2n3 n2
3









x
y
z



 = 0 . (57)

The matrix in eq. (57) is a special case of the matrix treated on problem 4 of the
second midterm exam, so we can simply use the results obtained in the exam solu-
tions. Applying two elementary row operations, the matrix equation, eq. (57), can be
transformed into reduced row echelon form,





n2
1 n1n2 n1n3

0 0 0
0 0 0









x
y
z



 = 0 .

The solution to this equation is all x, y and z that satisfy:

n1x+ n2y + n3z = 0 ,

which corresponds to the equation of the reflection plane. Thus, we have reproduced
eq. (55) as expected.

9. Summary: the most general 3 × 3 orthogonal matrix

Eqs. (17) and (47) provide explicit forms for the most general 3 × 3 orthogonal
matrix, R and R, with determinant +1 and −1, respectively. The matrix elements
of the most general proper and improper 3 × 3 rotation matrix can be written in an
elegant form using the Kronecker delta defined in eq. (19) and the Levi-Civita epsilon
symbol, which is defined as:

ǫijk =











+1 , if {i, j, k} is an even permutation of {1,2,3} ,
−1 , if {i, j, k} is an odd permutation of {1,2,3} ,
0 , otherwise.
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The matrix elements of the proper and improper rotation matrices given by eqs. (17)
and (47) can then be written as:

Rij(n̂, θ) = cos θ δij + (1− cos θ)ninj − sin θ ǫijknk , (58)

Rij(n̂, θ) = cos θ δij − (1 + cos θ)ninj − sin θ ǫijknk . (59)

I leave it as an exercise for the reader to check that eqs. (58) and (59) are indeed
equivalent to eqs. (17) and (47), respectively. Using the above forms for the proper and
improper rotation matrices, many of the general properties of these matrices derived
earlier in these notes can be quickly established. Remarkably, there is a very simple
and elegant derivation of eqs. (58) and (59) that makes use of the properties of tensor
algebra. This derivation will be provided in a separate class handout entitled, The
matrix elements of a 3× 3 orthogonal matrix—revisited.

Finally, we note that one can unify the formulae obtained for proper and improper
rotation matrices in these notes by incorporating a factor of the determinant in the
corresponding formulae. Thus, if R is a 3 × 3 orthogonal matrix, corresponding to
either a proper or improper rotation, then its matrix elements are given by:

Rij(n̂, θ) = cos θ δij + (ε− cos θ)ninj − sin θ ǫijknk , where ε ≡ detR .

The rotation angle θ, in a convention where 0 ≤ θ ≤ π, is obtained from:

cos θ = 1

2
(TrR − detR) , (60)

and the corresponding rotation axis n̂ (which can be identified with the unit normal
to the reflection plane if detR = −1) is obtained from:

n̂ =
1

√

(3− TrR detR)(1 + TrR detR)

(

R32 − R23 , R13 −R31 , R21 − R12

)

,

for TrR detR 6= −1 , 3 . (61)

The case of TrR detR = −1 corresponds to cos θ = −detR and

Rij = (2ninj − δij)detR ,

from which n̂ can be determined only up to an overall sign via,

ninj =
1

2
[δij + (detR)Rij] , for TrR detR = −1 .

The case of TrR detR = 3 corresponds to R = (detR)I and cos θ = detR. That is,

Rij = (detR)δij , for TrR detR = 3 ,

in which case n̂ is undefined.
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Appendix A: The eigenvalues of a 3 × 3 orthogonal matrix8

Given any matrix A, the eigenvalues are the solutions to the characteristic equation,

det (A− λI) = 0 . (62)

Suppose that A is an n×n real orthogonal matrix. The eigenvalue equation for A and
its complex conjugate transpose are given by:

Av = λv , vTA = λ vT .

Hence multiplying these two equations together yields

λ λ vTv = vTATAv = vTv , (63)

since an orthogonal matrix satisfies ATA = I. Since eigenvectors must be nonzero, it
follows that vTv 6= 0. Hence, eq. (63) yields |λ| = 1. Thus, the eigenvalues of a real
orthogonal matrix must be complex numbers of unit modulus. That is, λ = eiα for
some α in the interval 0 ≤ α < 2π.

Consider the following product of matrices, where A satisfies ATA = I,

AT(I−A) = AT − I = −(I− A)T .

Taking the determinant of both sides of this equation, it follows that9

detA det(I−A) = (−1)ndet(I− A) , (64)

since for the n × n identity matrix, det(−I) = (−1)n. For a proper odd-dimensional
orthogonal matrix, we have detA = 1 and (−1)n = −1. Hence, eq. (64) yields10

det(I− A) = 0 , for any proper odd-dimensional orthogonal matrix A. (65)

Comparing with eq. (62), we conclude that λ = 1 is an eigenvalue of A.11 Since detA
is the product of its three eigenvalues and each eigenvalue is a complex number of unit
modulus, it follows that the eigenvalues of any proper 3 × 3 orthogonal matrix must
be 1, eiθ and e−iθ for some value of θ that lies in the interval 0 ≤ θ ≤ π.12

Next, we consider the following product of matrices, where A satisfies ATA = I,

AT(I+ A) = AT + I = (I+ A)T .

8A nice reference to the results of this appendix can be found in L. Mirsky, An Introduction to

Linear Algebra (Dover Publications, Inc., New York, 1982).
9Here, we make use of the well known properties of the determinant, namely det(AB) = detAdetB

and det(AT) = detA.
10Eq. (65) is also valid for any improper even-dimensional orthogonal matrix A since in this case

detA = −1 and (−1)n = 1.
11Of course, this is consistent with the result that the eigenvalues of a real orthogonal matrix are

of the form eiα for 0 ≤ α < 2π, since the eigenvalue 1 corresponds to α = 0.
12There is no loss of generality in restricting the interval of the angle to satisfy 0 ≤ θ ≤ π. In

particular, under θ → 2π − θ, the two eigenvalues eiθ and e−iθ are simply interchanged.
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Taking the determinant of both sides of this equation, it follows that

detA det(I+ A) = det(I+ A) , (66)

For any improper orthogonal matrix, we have detA = −1. Hence, eq. (66) yields

det(I+ A) = 0 , for any improper orthogonal matrix A.

Comparing with eq. (62), we conclude that λ = −1 is an eigenvalue of A. Since detA
is the product of its three eigenvalues and each eigenvalue is a complex number of
unit modulus, it follows that the eigenvalues of any improper 3× 3 orthogonal matrix
must be −1, eiθ and e−iθ for some value of θ that lies in the interval 0 ≤ θ ≤ π
(cf. footnote 12).

Appendix B: The matrix P expressed as a product of simpler rotation

matrices

The matrix P obtained in eq. (13) is a real orthogonal matrix with determinant
equal to 1. In particular, it is straightforward to check that

n̂ = Pk ,

which is not surprising since the matrix P was constructed so that the vector n̂,
which is represented by n̂ = (n1 , n2 , n3) with respect to the standard basis would
have coordinates (0 , 0 , 1) with respect to the basis B′ [cf. eq(10) in the class handout
entitled, Vector coordinates, matrix elements and changes of basis ].

We define the angles θ′ and φ′ to be the polar and azimuthal angles of the unit
vector n̂,

n̂ = (sin θ′ cosφ′ , sin θ′ sinφ′ , cos θ′) .

Then, the matrix P can be expressed as the product of two simple rotation matrices,

P = R(k, φ′)R(j, θ′) .

This is easily checked by performing the matrix multiplication indicated above.
Finally, we note that eq. (15) is a special case of a more general result,

R(n̂, θ) = PR(n̂′, θ)P−1 , where n̂ = P n̂′ , (67)

where P is a proper rotation matrix. To prove eq. (67), we first note that

Tr R(n̂, θ) = Tr
[

PR(n̂′, θ)P−1
]

= Tr R(n̂′, θ) , (68)

using the cyclicity of the trace. It follows from eq. (20) that the angle of rotation of
R(n̂, θ) and PR(n̂′, θ)P−1 must be the same. Next, we use R(n̂′, θ)n̂′ = n̂′ [cf. eq. (10)]
to determine the axis of rotation of PR(n̂′, θ)P−1. The eigenvalue equation,

PR(n̂′, θ)P−1(P n̂′) = PR(n̂′, θ)n̂′ = P n̂′ , (69)
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implies that P n̂′ is an eigenvector of PR(n̂′, θ)P−1 with eigenvalue +1. Thus, the
corresponding eigenvector P n̂′ is the axis of rotation of PR(n̂′, θ)P−1, up to an overall
sign that is not fixed by the eigenvalue equation.

The overall sign ambiguity is not relevant if sin θ = 0, which corresponds to two
possible cases. If θ = 0, then R(n̂, 0) = R(n̂′, 0) = I and eq. (67) is trivially satisfied.
If θ = π, then eq. (6) implies that both signs of the unit vector parallel to the axis of
rotation represent the same rotation. Thus, the ambiguity in the overall sign deter-
mination of n̂ is immaterial. If sin θ 6= 0 then one must determine the overall sign of
n̂ by another argument. To check that n̂ = P n̂′ provides the correct overall sign of
n̂, one can make an argument based on continuity. In the limit of n̂′ = n̂, it follows
that P = I, with an overall positive sign. But, one can continuously vary n̂ starting
from n̂′ until it points in the desired direction. The overall sign must therefore remain
positive, since the sign can take on only two discrete values (+ and −) and therefore
cannot change continuously from one sign to another. Hence, eq. (67) is confirmed.

Alternatively, for sin θ 6= 0, one can compute n̂ in terms of n̂′ directly from eq. (22).
This method is employed in Appendix C of the class handout entitled, The Matrix El-

ements of a 3 × 3 Orthogonal Matrix—Revisited, using the methods of tensor algebra.
As expected, one indeed finds that n̂ = P n̂′ and the proof of eq. (67) is complete.
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