Physics 116A Winter 2011

Three-Dimensional Rotations as Products of Simpler Rotations

1. The most general 3 X 3 rotation matrix

In a class handout entitled, Three-Dimensional Proper and Improper Rotation Ma-
trices, I derived the following general form for a 3 x 3 matrix representation of a proper
rotation by an angle # in a counterclockwise direction about a fixed rotation axis parallel
to the unit vector v = (nqy, na, n3),

cos ) + ni(1 — cosf) ning(l — cosf) —ngsinf  nyng(l —cos @) + nysin
R(7,0) = | nina(1 — cosf) + nzsiné cos 0 + n3(1 — cosh) nanz(1 — cosf) — ny sin @
ning(l —cosf) —ngsin®  nong(l —cos@) + ny sind cos + n3(1 — cosh)

(1)
which is called the angle-and-azis parameterization of a three-dimensional rotation. In
deriving eq. (1), we showed in the class handout cited above that

R(f,0) = PR(k,0)P", (2)
where P is given by
nsny —Mng
T Ea R e B
P= 372 m ny | - (3)

—\/n? 4+ n3 0 ns

The general rotation matrix R(7,6) given in eq. (1) satisfies the following two rela-
tions:

[R('ﬁ’v 9)]_1 = R('ﬁ’v _9) = R(_ﬁv ‘9) ) (4>
R(#, 27 — 6) = R(—#,6), (5)

which implies that any proper three-dimensional rotation can be described by a counter-
clockwise rotation by 6 about an arbitrary axis 7o, where 0 < 6 < 7. The angle 6 can be
obtained from the trace of R(n, @),

cosf =1 (Tr R—1) and sinf=(1—-cos’0)/?=1/3-Tr R)(1+Tr R). (6)



In this convention for the range of the angle 6, the overall sign of fi is meaningful for
0 < 0 < 7. In this case, we showed in the class handout cited above that

1
n = Ry — Roz, Ris — R31, Roy — Ria |, TrR+#-1,3.
\/(3—Tr R+ Tr R)( 32 23, 1113 31, 121 12) r R #
(7)

In the case of § = 7 (which corresponds to Tr R = —1), eq. (5) implies that
R(ﬁ> 7T) = R(_'ﬁﬂ 7T) ) (8)

which means that R(7,7) and R(—n, ) represent the same rotation. In this case, one
can use eq. (1) to derive

n = (61\/ (14 Ru), 62\/%(1 + Ray), 63\/%(1 +Rgs)) ; if TrR=-1, (9)

where the individual signs ¢; = £1 are determined up to an overall sign via

Ry o,
€€ = , for fixed i # j, R;; # —1, R;; #* —1. 10

The ambiguity of the overall sign of 71 is not significant in light of eq. (8). Finally, in the
case of §# = 0 (which corresponds to Tr R = 3), R(7,0) = I is the 3 x 3 identity matrix,
which is independent of the direction of 7.

2. R(n,0) expressed as a product of simpler rotation matrices

In this section, we shall demonstrate that it is possible to express a general rotation
matrix R(n, ) as a product of simpler rotations. This will provide further geometrical
insights into the properties of rotations. First, it will be convenient to express the unit
vector 7y in spherical coordinates,

7. = (sin 6, cos ¢, , sin b, sin ¢,, , cosb,,) , (11)

where 6, is the polar angle and ¢, is the azimuthal angle that describe the direction of
the unit vector nn. Noting that

coS ¢y, —sin ¢, 0 cos 6, 0 sin 6,
R(k,¢,) = | sin ¢, cos ¢, 0], R(7,6,) = 0 1 0
0 0 1 —sin b, 0 cos b,

one can identify the matrix P given in eq. (3) as:

cosf,cosp, —sing, sinfcosao,
P = R(k,¢,)R(j,0,) = | cosb,sin ¢, cos¢, sinfsing, | . (12)
—siné, 0 cos b,
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Let us introduce the unit vector in the azimuthal direction,

@ = (—sin¢,, cosd,, 0).

Inserting ny = — sin ¢,, and ny = cos ¢,, into eq. (1) then yields:
cos 0, + sin?¢, (1 — cosf,)  —sin e, cos ¢,(1 —cosh,) sinb, cos o,
R(¢,0,) = | —sing, cos @, (1 —cosb,) cosb, + cos’p,(1 —cosh,) sinb,sina¢,
— sin 6, cos ¢, —sin @, sin ¢, cos 6,
= R(k,¢,)R(j,0,)R(k,—¢,) = PR(k,—¢,), (13)
after using eq. (12) in the final step. Eqs. (4) and (13) then imply that
P = R(p,0n)R(k, ¢n) , (14)

One can now use egs. (4), (2) and (14) to obtain:
R(7,0) = PR(k,0)P~" = R(@, 0,) R(k, ) R(K, 0) R(k, —dn) R(P, —0n) - (15)
Since rotations about a fixed axis commute, it follows that
R(k, ¢,)R(k,0)R(k, —dn) = R(k, ) R(k, —¢,)R(k,0) = R(k,0),
since R(k, ¢n)R(k, —én) = R(k, 6n)[R(k, 6,)]"* = L. Hence, eq. (15) yields:

R(7,0) = R(p,0n)R(k, 0) R(P, —0n) (16)

(&,
The geometrical interpretation of eq. (16) is clear. Consider R(7,0)¥ for any vector .
This is equivalent to R(p, 6,,)R(k,0)R(p, —0,)U. The effect of R(go, —0,,) is to rotate the
axis of rotation 7 to k (which lies along the z-axis). Then, R(k,#) performs the rotation
by 6 about the z-axis. Finally, R({,0,,) rotates k back to the original rotation axis f.!
One can derive one more interesting relation by combining the results of egs. (12),
(14) and (16):

R(n,0) = R(k, ¢n)R(3, 0n) R(k, —¢n) (K, ) (k, on)R(3, —0n) R(K, —¢n)

That is, a rotation by an angle § about a fixed axis 7o (with polar and azimuthal angles
0, and ¢,) is equivalent to a sequence of rotations about a fixed z and a fixed y-axis. In
fact, one can do slightly better. One can prove that an arbitrary rotation can be written
as:

R(7,0) = R(k,a)R(5, 5)R(k,7),

where «, 3 and ~ are called the Fuler angles. Details of the Euler angle representation
of R(n,0) will be presented in Section 3.

1Using eq. (13), one can easily verify that R(@, —0,)h = k and R(p,0,)k = n.
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3. Euler angle representation of R(n, )

An arbitrary rotation matrix can can be written as:
R(n,0) = R(k, ) R(j, 3)R(k,7), (17)

where «, § and v are called the Euler angles. The ranges of the Euler angles are:
0 <a,v<2rand 0 < B < w. We shall prove these statements “by construction.”
That is, we shall explicitly derive the relations between the Euler angles and the angles
6, 0, and ¢, that characterize the rotation R(7, ) [where 6,, and ¢,, are the polar and
azimuthal angle that define the axis of rotation 7 as specified in eq. (11)]. These relations
can be obtained by multiplying out the three matrices on the right-hand side of eq. (17)
to obtain

cosacos fcosy —sinasiny —cosacos3siny —sinacosy  cosasin (3
R(n,0) = | sinacos fcosy + cosasiny —sinacosFsiny + cosacosy  sinasinf
— sin 3 cos 7y sin (3 sin 7y cos 3
(18)

One can now make use of the results of Section 1 to obtain 8 and n in terms of the Euler
angles «, [ and . For example, cos @ is obtained from eq. (6). Simple algebra yields:

cos ) = cos®(8/2) cos(y + a) — sin®*(3/2) (19)

where I have used cos?(3/2) = 1(1+ cos ) and sin®(3/2) = (1 — cos ). Thus, we have
determined € mod 7, consistent with our convention that 0 < 6 < 7 [cf. eq. (6) and the
text preceding this equation]. One can also rewrite eq. (19) in a slightly more convenient
form,

cosf = —1 + 2cos*(8/2) cos® (v + ). (20)

We examine separately the cases for which sinf = 0. First, cos § = cos(y + «) = 1
implies that 8 = 0 and R(7n,6) = I. In this case, the axis of rotation, 7fi, is undefined.
Second, if # = 7 then cosf = —1 and 7 is determined up to an overall sign (which is
not physical). Eq. (20) then implies that cos?(3/2)cos® 2(y + a) = 0, or equivalently
(14 cos3) [1 + cos(y + a)] = 0, which yields two possible subcases,

(i) cosf=—1 and/or (ii) cos(y+a)=—1.
In subcase (i), if cos § = —1, then egs. (9) and (10) yield
—cos(y —a) sin(y — a) 0
R(n,m) = sin(y —«)  cos(y — «) 0],
0 0 —1

where

fl=x(sini(y—a), cosz(y—a), 0).



In subcase (ii), if cos(y + a) = —1, then

a)cos; (v+a)=0,

(v+a)=0,

(v

cosy + cosa = 2 cos —
(v — a) cos

B o=
B o =

siny — sina = 2sin

[1 4 cos(y + a)] = 0. Thus, egs. (9) and (10) yield

since cos® 1(y + o) = 2

—cos 3 — 2sin*asin?(3/2) sin(2a) sin?(3/2) cos asin (3
R(f,m) = sin(2a) sin?(3/2) —1+ 2sin®asin?(3/2) sinasing |,
cos asin 3 sin o sin 3 cos 3

where
fo = % (sin(8/2) cosa, sin(3/2) sinar, cos(3/2)).
Finally, we consider the generic case where sinf # 0. Using egs. (7) and (18),
Rz — Ry = 2sin fBsin (v — ) cos 3 (7 + o),
Ri3 — Ry = 2sinfcos 3 (v — a) cos 3(y + a)
Rgy — Ryy = 2cos*(8/2) sin(y + ) .

In normalizing the unit vector 7, it is convenient to write sin 3 = 2sin(3/2) cos(/3/2) and
sin(y + ) = 2sin (v + «) cos 5(y + a). Then, we compute:

[(R32 - R23)2 + (Ri3 — R31)2 + (R — R21)2] 1/2

=4 |cos 3 (v + a) cos(8/2)| \/sin2(5/2) + cos?(8/2) sin® L (v + ). (21)

Hence,?

€

\/sin2(/6/2) + cos?(3/2) sin® L (v + a)

n =

X (sin(ﬁ/Q) sin 2 (y — ), sin(8/2) cos 5(y — a) , cos(3/2) sin £ (v + a)) :
(22)

where € = +1 according to the following sign,
e = sgn{cos $(v + @) cos(8/2) }, sinf # 0. (23)

Remarkably, eq. (22) reduces to the correct results obtained above in the two subcases
corresponding to § = 7, where cos(3/2) = 0 and/or cos (v + a) = 0, respectively. Note
that in the latter two subcases, € as defined in eq. (23) is indeterminate. This is consistent

20ne can can also determine 7 up to an overall sign starting from eq. (18) by employing the relation
R(f,0)7 = 7. The sign of A sin @ can then be determined from eq. (7).
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with the fact that the sign of 7 is indeterminate when # = 7. Finally, one can easily
verify that when 6 = 0 [corresponding to cos 3 = cos(y + «) = 1], the direction of 7 is
indeterminate and hence arbitrary.

One can rewrite the above results as follows. First, use eq. (20) to obtain:

sin(6/2) = \/sin2(ﬂ/2) + cos?(/2) cos® & (v + a)
cos(0/2) = ecos(f/2) cos (v + a) (24)

where we have used cos?(0/2) = 3(1+cos ) and sin*(0/2) = (1—cos ). Since 0 < 9 < T,
it follows that 0 < sin(0/2), cos(6/2) < 1. Hence, the factor of € defined by eq. (23)
is required in eq. (24) to ensure that cos(f/2) is non-negative. In the mathematics
literature, it is common to define the following vector consisting of four-components,
q=1(q, ¢, g2, q3), called a quaternion, as follows:

= (cos(9/2), ﬁsin(9/2)) , (25)

where the components of 71 sin(6/2) comprise the last three components of the quaternion
q and

qo = ecos(f/2) cos 5 (v + ) , ¢ = esin(f/2) sin 5
g = esin(/2) cos 3 (v — a) , g3 = ecos(8/2) sin § (v + ) . (26)

In the convention of 0 < # < 7, we have gy > 0.> Quaternions are especially valuable for
representing rotations in computer graphics software.

If one expresses 7¢ in terms of a polar angle 6,, and azimuthal angle ¢,, as in eq. (11),
then one can also write down expressions for #,, and ¢,, in terms of the Euler angles «,
and . Comparing egs. (11) and (22), it follows that:

(n? +n3)?  etan(5/2)
n3 Csinl(y+a)

tand, = (27)

where we have noted that (n? 4+ n2)Y/? = sin(3/2) > 0, since 0 < 3 < 7, and the sign
€ = %1 is defined by eq. (23). Similarly,

cosgbn:(n%nTln%):esin%(v—a):ecos%(ﬁ—7+a), (28)
6, = s = ccos} (7~ a) = s 7+ a), 29

or equivalently
On = %(67‘[‘ — 7+ «) mod 27 (30)

3In comparing with other treatments in the mathematics literature, one should be careful to note
that the convention of gy > 0 is not universally adopted. Often, the quaternion ¢ in eq. (25) will be
re-defined as eq in order to remove the factors of € from eq. (26), in which case ego > 0.
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Indeed, given that 0 < a,v < 27 and 0 < < 7, we see that 6, is determined mod 7
and ¢, is determine mod 27 as expected for a polar and azimuthal angle, respectively.
One can also solve for the Euler angles in terms of 6, 6, and ¢,,. First, we rewrite
eq. (20) as:
cos?(6/2) = cos*(8/2) cos® 1 (v + o) . (31)

Then, using egs. (27) and (31), it follows that:
sin((/2) = sin 6, sin(0/2) . (32)

Plugging this result back into eqs. (27) and (31) yields

o o) — cos 0, sin(0/2)
csing (v + ) V1 —sin?6,,sin?(0/2) ’ (33)
ccosi(v+a)= cos(6/2) (34)

V1 —sin?6, sin?(0/2)

Note that if § = 7w then eq. (32) yields § = 7 and 60,, = /2, in which case v + « is inde-
terminate. This is consistent with the observation that € is indeterminate if cos(3/2) = 0

[cf. eq. (23)].
We shall also make use of egs. (28) and (29),
esini (v —a) =cosg,, (35)
ecoss (y— @) =sing,, (36)

Finally, we employ egs. (34) and (35) to obtain (assuming 3 # 7):

cos(6/2)
V1 —sin?6,sin(0/2)

sin ¢,, — =€ [cos 5 (v — @) — cos § (v + a)] = 2esin(v/2) sin(r/2) .

Since 0 < 37, 3a < m, it follows that sin(v/2) sin(a/2) > 0. Thus, we may conclude that
if v# 0, a # 0 and 3 # 7 then

= sgn | sin ¢,, — cos(6/2)
€T { O \/1—sin29nsin2(9/2)} ’ (37)

If either v = 0 or a = 0, then the argument of sgn in eq. (37) will vanish. In this case,
sin1 (v 4+ a) > 0, and we may use eq. (33) to conclude that € = sgn {cos6,}, if 6, # 7/2.
The case of 0, = ¢, = m/2 must be separately considered and corresponds simply to
0 =60 and a« = v = 0, which yields € = 1. The sign of € is indeterminate if sinf = 0 as
noted below eq. (23).* The latter includes the case of 3 = 7, which implies that § = 7
and 6,, = 7/2, where v + « is indeterminate [cf. eq. (34)].

4In particular, if # = 0 then 6,, and ¢,, are not well-defined, whereas if § = 7 then the signs of cos @,
sin ¢, and cos ¢,, are not well-defined [cf. egs. (8) and (11)].
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There is an alternative strategy for determining the Euler angles in terms of 6, 6,, and
¢n. Simply set the two matrix forms for R(7, 0), eqs. (1) and (18), equal to each other,
where 7 is given by eq. (11). For example,

Rs3 = cos 8 = cos B + cos® 0, (1 — cos ). (38)

where the matrix elements of R(f,6) are denoted by R;;. It follows that

sin 3 = 2sin(0/2) sin Hn\/l — sin?@,, sin?*(0/2) , (39)
which also can be derived from eq. (32). Next, we note that if sin 3 # 0, then
sina = Has cos o = fis siny = Hsn cosy = — fa, .
sin 3’ sin 3’ sin 3’ sin 3

Using eq. (1) yields (for sin 8 # 0):

sing = &% 0, sin ¢, sin(0/2) — cos ¢, cos(0/2) | (40)
V/1 —sin?6,sin(0/2)

cosq = 50 0,, cos ¢, sin(0/2) + sin ¢,, cos(0/2) | (41)
V1 —sin?0,sin?(0/2)

cos 0, sin ¢, sin(6/2) + cos ¢, cos(6/2)
V1 —sin?6,sin?(0/2)

— cos 0, cos ¢, sin(0/2) + sin ¢,, cos(6/2)

V1 —sin?6,, sin?(0/2)

siny = : (42)

cosy = . (43)

The cases for which sin 3 = 0 must be considered separately. Since 0 < § < 7,
sin § = 0 implies that 3 = 0 or § = 7. If 8 = 0 then eq. (38) yields either (i) § = 0,
in which case R(n,0) = I and cos f = cos(y + a) = 1, or (ii) sinf, = 0, in which case
cos =1 and 7+ a = 0 mod 7, with 7 — o indeterminate. If § = 7w then eq. (38) yields
0, = m/2 and 6 = 7, in which case cos§ = —1 and v — a = ™ — 2¢ mod 27, with v + «
indeterminate.

One can use eqgs. (40)—(43) to rederive egs. (33)—(36). For example, if v # 0, o # 0
and sin 3 # 0, then we can employ a number of trigonometric identities to derive®

cos 1 (v & ) = cos(7/2) cos(ar/2) F sin(v/2) sin(ar/2)

sin(v/2) cos(v/2) sin(a/2) cos(a/2) F sin*(7y/2) sin?(a/2)
sin(~y/2) sin(a/2)
_ sinysina F (1 —cosvy)(1 — cosa)
2(1 — cosy)/2(1 — cos a)1/2

(44)

5Since sin(a/2) and sin(y/2) are positive, one can set sin(a/2) = {1[1—cos(a/2)] }1/2 and sin(y/2) =

{301 - cos(7/2)]}1/2 by taking the positive square root in both cases, without ambiguity.
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and
sin § (v + @) = sin(y/2) cos(a/2) + cos(7/2) sin(ar/2)

(
sin(7y/2) sin(a/2) cos(a/2) n sin(7y/2) cos(y/2) sin(a/2)
(

sin(a/2) sin(~y/2)
_ sin(y/2)sina | sin~ysin(a/2)
2sin(a/2) 2sin(vy/2)

~ldna 1—Cos7j:lsilqv 1 —cosa
2 V1-cosa 2 1 — cosvy
sin (1 — cosy) £ siny(1 — cos )

= . 4
2(1 — cos a)1/2(1 — cos )1/2 (45)

We now use egs. (40)—(43) to evaluate the above expressions. To evaluate the denomi-
nators of eqs. (44) and (45), we compute:

28in ¢, cos(0/2) N sin? ¢, cos?(6/2) — cos? B, cos? ¢, sin?(6/2)
V/1—sin? 6, sin?(4/2) 1 —sin? 0, sin?(0/2)

2sin ¢,, cos(6/2) cos®(0/2)
V1 —sin?6,sin?(0/2) 1-— sin? 6, sin(0/2)

— (sino, - cos(0/2) ’
! V1 —sin?6,sin(0/2)

(1 —cosy)(1—cosa) =1—

= sin® ¢,, —

Hence,

— 1/2¢1 _ 1/2 _ i — cos(0/2)
(1= cos)"/*(1 — cosa) <¢ VI —sin?0,50%(0/2) )

where € = +1 is the sign defined by eq. (37). Likewise we can employ eqs. (40)—(43) to
evaluate:

2cos(60/2)
V1 —sin?6,sin(0/2)

sinysina — (1 — cosvy)(1 — cosa) =

[sin¢n— cos(0/2) ] |

V1 —sin? 6, sin*(0/2)

sinysin o + (1 — cos ) (1 — cos @) = 2sin [Siw”_ V1 —sin? 6, sin?(0/2)
— s1m- v, Sin

cos(0/2) ] |

sina(l — cos7y) +siny(l — cosa) =

2 cos b, sin(0/2) §in g, — cos(0/2)
V1= sin26, sin?(6/2) " /1T —sin%6,sn’(0/2) |

sin (1 — cos7y) + sin~y(1 — cos ) = 2 cos ¢, [sin On —

cos(0/2)
V1 —sin®6,sin’(0/2) |
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Inserting the above results into eqs. (44) and (45), it immediately follows that

ecos(0/2) ) ,
) cosz (v —a) =esin ¢, , 46
/1 —sin?6,,sin?(0/2) 2 (1 2) ¢ (46)
ecos B, sin(0/2)
V1 —sin?6, sin?(6/2)

cosi(v+a)=

sin 3 (v + a) =

sin £ (v — @) = €cos ¢y, , (47)

where € is given by eq. (37). We have derived eqs. (46) and (47) assuming that a # 0,
v # 0 and sin 3 # 0. Since cos((/2) is then strictly positive, eq. (23) implies that € is
equal to the sign of cos 3 (v + «), which is consistent with the expression for cos $ (v + «)
obtained above. Thus, we have confirmed the results of egs. (33)—(36).

If « =0 and/or v = 0, then the derivation of egs. (44) and (45) is not valid. Nev-
ertheless, egs. (46) and (47) are still true if sin 3 # 0, as noted below eq. (37), with
e = sgn(cosB,) for 0, # 7/2 and € = +1 for 0, = ¢, = 7/2. If § = 0, then as noted
below eq. (43), either § = 0 in which case 7 is undefined, or # # 0 and sinf, = 0 in
which case the azimuthal angle ¢,, is undefined. Hence, § = 0 implies that v — « is inde-
terminate. Finally, as indicated below eq. (34), 7+ « is indeterminate in the exceptional
case of f =1 (i.e., 0 =7 and 0, = 7/2).

EXAMPLE: Suppose a = vy = 150° and 3 = 90°. Then cos 1 (v + a) = —$+/3, which
implies that e = —1. Eqgs. (20) and (22) then yield:

1 . 1
cos i n \/5(0,2,1). (48)
The polar and azimuthal angles of 7 [cf. eq. (11)] are then given by ¢,, = —90° (mod 27)
and tan 6, = —2. The latter can also be deduced from eqs. (27) and (30).

Likewise, given eq. (48), one obtains cos 5 = 0 (i.e. § = 90°) from eq. (38), e = —1
from eq. (37), v = « from egs. (35) and (36), and v = o = 150° from egs. (33) and
(34). One can verify these results explicitly by inserting the values of the corresponding
parameters into egs. (1) and (18) and checking that the two matrix forms for R(7,6)
coincide.
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