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Three-Dimensional Rotations as Products of Simpler Rotations

1. The most general 3 × 3 rotation matrix

In a class handout entitled, Three-Dimensional Proper and Improper Rotation Ma-

trices, I derived the following general form for a 3 × 3 matrix representation of a proper
rotation by an angle θ in a counterclockwise direction about a fixed rotation axis parallel
to the unit vector n̂ = (n1, n2, n3),

R(n̂, θ) =





cos θ + n2

1
(1 − cos θ) n1n2(1 − cos θ) − n3 sin θ n1n3(1 − cos θ) + n2 sin θ

n1n2(1 − cos θ) + n3 sin θ cos θ + n2

2
(1 − cos θ) n2n3(1 − cos θ) − n1 sin θ

n1n3(1 − cos θ) − n2 sin θ n2n3(1 − cos θ) + n1 sin θ cos θ + n2

3
(1 − cos θ)





(1)
which is called the angle-and-axis parameterization of a three-dimensional rotation. In
deriving eq. (1), we showed in the class handout cited above that

R(n̂, θ) = PR(k, θ)P−1 , (2)

where P is given by

P =



















n3n1
√

n2

1
+ n2

2

−n2
√

n2

1
+ n2

2

n1

n3n2
√

n2

1
+ n2

2

n1
√

n2

1
+ n2

2

n2

−
√

n2

1
+ n2

2
0 n3



















. (3)

The general rotation matrix R(n̂, θ) given in eq. (1) satisfies the following two rela-
tions:

[R(n̂, θ)]−1 = R(n̂,−θ) = R(−n̂, θ) , (4)

R(n̂, 2π − θ) = R(−n̂, θ) , (5)

which implies that any proper three-dimensional rotation can be described by a counter-
clockwise rotation by θ about an arbitrary axis n̂, where 0 ≤ θ ≤ π. The angle θ can be
obtained from the trace of R(n̂, θ),

cos θ = 1

2
(Tr R − 1) and sin θ = (1 − cos2 θ)1/2 = 1

2

√

(3 − Tr R)(1 + Tr R) . (6)

1



In this convention for the range of the angle θ, the overall sign of n̂ is meaningful for
0 < θ < π. In this case, we showed in the class handout cited above that

n̂ =
1

√

(3 − Tr R)(1 + Tr R)

(

R32 − R23 , R13 − R31 , R21 − R12

)

, Tr R 6= −1 , 3 .

(7)
In the case of θ = π (which corresponds to TrR = −1), eq. (5) implies that

R(n̂, π) = R(−n̂, π) , (8)

which means that R(n̂, π) and R(−n̂, π) represent the same rotation. In this case, one
can use eq. (1) to derive

n̂ =

(

ǫ1

√

1

2
(1 + R11) , ǫ2

√

1

2
(1 + R22) , ǫ3

√

1

2
(1 + R33)

)

, if Tr R = −1 , (9)

where the individual signs ǫi = ±1 are determined up to an overall sign via

ǫiǫj =
Rij

√

(1 + Rii)(1 + Rjj)
, for fixed i 6= j , Rii 6= −1 , Rjj 6= −1 . (10)

The ambiguity of the overall sign of n̂ is not significant in light of eq. (8). Finally, in the
case of θ = 0 (which corresponds to Tr R = 3), R(n̂, 0) = I is the 3 × 3 identity matrix,
which is independent of the direction of n̂.

2. R(n̂, θ) expressed as a product of simpler rotation matrices

In this section, we shall demonstrate that it is possible to express a general rotation
matrix R(n̂, θ) as a product of simpler rotations. This will provide further geometrical
insights into the properties of rotations. First, it will be convenient to express the unit
vector n̂ in spherical coordinates,

n̂ = (sin θn cos φn , sin θn sin φn , cos θn) , (11)

where θn is the polar angle and φn is the azimuthal angle that describe the direction of
the unit vector n̂. Noting that

R(k, φn) =





cos φn − sin φn 0
sin φn cos φn 0

0 0 1



 , R(j, θn) =





cos θn 0 sin θn

0 1 0
− sin θn 0 cos θn



 ,

one can identify the matrix P given in eq. (3) as:

P = R(k, φn)R(j, θn) =





cos θn cos φn − sin φn sin θ cos φn

cos θn sin φn cos φn sin θ sin φn

− sin θn 0 cos θn



 . (12)
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Let us introduce the unit vector in the azimuthal direction,

ϕ̂ = (− sin φn , cos φn , 0) .

Inserting n1 = − sin φn and n2 = cos φn into eq. (1) then yields:

R(ϕ̂, θn) =





cos θn + sin2φn(1 − cos θn) − sin φn cos φn(1 − cos θn) sin θn cos φn

− sin φn cos φn(1 − cos θn) cos θn + cos2φn(1 − cos θn) sin θn sin φn

− sin θn cos φn − sin θn sin φn cos θn





= R(k, φn)R(j, θn)R(k,−φn) = PR(k,−φn) , (13)

after using eq. (12) in the final step. Eqs. (4) and (13) then imply that

P = R(ϕ̂, θn)R(k, φn) , (14)

One can now use eqs. (4), (2) and (14) to obtain:

R(n̂, θ) = PR(k, θ)P−1 = R(ϕ̂, θn)R(k, φn)R(k, θ)R(k,−φn)R(ϕ̂,−θn) . (15)

Since rotations about a fixed axis commute, it follows that

R(k, φn)R(k, θ)R(k,−φn) = R(k, φn)R(k,−φn)R(k, θ) = R(k, θ) ,

since R(k, φn)R(k,−φn) = R(k, φn)[R(k, φn)]
−1 = I. Hence, eq. (15) yields:

R(n̂, θ) = R(ϕ̂, θn)R(k, θ)R(ϕ̂,−θn) (16)

The geometrical interpretation of eq. (16) is clear. Consider R(n̂, θ)~v for any vector ~v.
This is equivalent to R(ϕ̂, θn)R(k, θ)R(ϕ̂,−θn)~v. The effect of R(ϕ̂,−θn) is to rotate the
axis of rotation n̂ to k (which lies along the z-axis). Then, R(k, θ) performs the rotation
by θ about the z-axis. Finally, R(ϕ̂, θn) rotates k back to the original rotation axis n̂.1

One can derive one more interesting relation by combining the results of eqs. (12),
(14) and (16):

R(n̂, θ) = R(k, φn)R(j, θn)R(k,−φn)R(k, θ)R(k, φn)R(j,−θn)R(k,−φn)

= R(k, φn)R(j, θn)R(k, θ)R(j,−θn)R(k,−φn) .

That is, a rotation by an angle θ about a fixed axis n̂ (with polar and azimuthal angles
θn and φn) is equivalent to a sequence of rotations about a fixed z and a fixed y-axis. In
fact, one can do slightly better. One can prove that an arbitrary rotation can be written
as:

R(n̂, θ) = R(k, α)R(j, β)R(k, γ) ,

where α, β and γ are called the Euler angles. Details of the Euler angle representation
of R(n̂, θ) will be presented in Section 3.

1Using eq. (13), one can easily verify that R(ϕ̂,−θn)n̂ = k and R(ϕ̂, θn)k = n̂.
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3. Euler angle representation of R(n̂, θ)

An arbitrary rotation matrix can can be written as:

R(n̂, θ) = R(k, α)R(j, β)R(k, γ) , (17)

where α, β and γ are called the Euler angles. The ranges of the Euler angles are:
0 ≤ α, γ < 2π and 0 ≤ β ≤ π. We shall prove these statements “by construction.”
That is, we shall explicitly derive the relations between the Euler angles and the angles
θ, θn and φn that characterize the rotation R(n̂, θ) [where θn and φn are the polar and
azimuthal angle that define the axis of rotation n̂ as specified in eq. (11)]. These relations
can be obtained by multiplying out the three matrices on the right-hand side of eq. (17)
to obtain

R(n̂, θ) =





cos α cos β cos γ − sin α sin γ − cos α cos β sin γ − sin α cos γ cos α sin β
sin α cos β cos γ + cos α sin γ − sin α cos β sin γ + cos α cos γ sin α sin β

− sin β cos γ sin β sin γ cos β



 .

(18)
One can now make use of the results of Section 1 to obtain θ and n̂ in terms of the Euler
angles α, β and γ. For example, cos θ is obtained from eq. (6). Simple algebra yields:

cos θ = cos2(β/2) cos(γ + α) − sin2(β/2) (19)

where I have used cos2(β/2) = 1

2
(1 + cosβ) and sin2(β/2) = 1

2
(1− cos β). Thus, we have

determined θ mod π, consistent with our convention that 0 ≤ θ ≤ π [cf. eq. (6) and the
text preceding this equation]. One can also rewrite eq. (19) in a slightly more convenient
form,

cos θ = −1 + 2 cos2(β/2) cos2 1

2
(γ + α) . (20)

We examine separately the cases for which sin θ = 0. First, cos β = cos(γ + α) = 1
implies that θ = 0 and R(n̂, θ) = I. In this case, the axis of rotation, n̂, is undefined.
Second, if θ = π then cos θ = −1 and n̂ is determined up to an overall sign (which is
not physical). Eq. (20) then implies that cos2(β/2) cos2 1

2
(γ + α) = 0, or equivalently

(1 + cosβ) [1 + cos(γ + α)] = 0, which yields two possible subcases,

(i) cos β = −1 and/or (ii) cos(γ + α) = −1 .

In subcase (i), if cos β = −1, then eqs. (9) and (10) yield

R(n̂, π) =





− cos(γ − α) sin(γ − α) 0
sin(γ − α) cos(γ − α) 0

0 0 −1



 ,

where
n̂ = ±

(

sin 1

2
(γ − α) , cos 1

2
(γ − α) , 0

)

.
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In subcase (ii), if cos(γ + α) = −1, then

cos γ + cos α = 2 cos 1

2
(γ − α) cos 1

2
(γ + α) = 0 ,

sin γ − sin α = 2 sin 1

2
(γ − α) cos 1

2
(γ + α) = 0 ,

since cos2 1

2
(γ + α) = 1

2
[1 + cos(γ + α)] = 0. Thus, eqs. (9) and (10) yield

R(n̂, π) =





− cos β − 2 sin2α sin2(β/2) sin(2α) sin2(β/2) cos α sin β
sin(2α) sin2(β/2) −1 + 2 sin2α sin2(β/2) sin α sin β

cos α sin β sin α sin β cos β



 ,

where
n̂ = ±

(

sin(β/2) cosα , sin(β/2) sinα , cos(β/2)
)

.

Finally, we consider the generic case where sin θ 6= 0. Using eqs. (7) and (18),

R32 − R23 = 2 sin β sin 1

2
(γ − α) cos 1

2
(γ + α) ,

R13 − R31 = 2 sin β cos 1

2
(γ − α) cos 1

2
(γ + α) ,

R21 − R12 = 2 cos2(β/2) sin(γ + α) .

In normalizing the unit vector n̂, it is convenient to write sin β = 2 sin(β/2) cos(β/2) and
sin(γ + α) = 2 sin 1

2
(γ + α) cos 1

2
(γ + α). Then, we compute:

[

(R32 − R23)
2 + (R13 − R31)

2 + (R12 − R21)
2
]

1/2

= 4
∣

∣cos 1

2
(γ + α) cos(β/2)

∣

∣

√

sin2(β/2) + cos2(β/2) sin2 1

2
(γ + α) . (21)

Hence,2

n̂ =
ǫ

√

sin2(β/2) + cos2(β/2) sin2 1

2
(γ + α)

×
(

sin(β/2) sin 1

2
(γ − α) , sin(β/2) cos 1

2
(γ − α) , cos(β/2) sin 1

2
(γ + α)

)

,

(22)

where ǫ = ±1 according to the following sign,

ǫ ≡ sgn
{

cos 1

2
(γ + α) cos(β/2)

}

, sin θ 6= 0 . (23)

Remarkably, eq. (22) reduces to the correct results obtained above in the two subcases
corresponding to θ = π, where cos(β/2) = 0 and/or cos 1

2
(γ + α) = 0, respectively. Note

that in the latter two subcases, ǫ as defined in eq. (23) is indeterminate. This is consistent

2One can can also determine n̂ up to an overall sign starting from eq. (18) by employing the relation
R(n̂, θ)n̂ = n̂. The sign of n̂ sin θ can then be determined from eq. (7).
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with the fact that the sign of n̂ is indeterminate when θ = π. Finally, one can easily
verify that when θ = 0 [corresponding to cosβ = cos(γ + α) = 1], the direction of n̂ is
indeterminate and hence arbitrary.

One can rewrite the above results as follows. First, use eq. (20) to obtain:

sin(θ/2) =
√

sin2(β/2) + cos2(β/2) cos2 1

2
(γ + α) ,

cos(θ/2) = ǫ cos(β/2) cos 1

2
(γ + α) , (24)

where we have used cos2(θ/2) = 1

2
(1+cos θ) and sin2(θ/2) = 1

2
(1−cos θ). Since 0 ≤ θ ≤ π,

it follows that 0 ≤ sin(θ/2) , cos(θ/2) ≤ 1. Hence, the factor of ǫ defined by eq. (23)
is required in eq. (24) to ensure that cos(θ/2) is non-negative. In the mathematics
literature, it is common to define the following vector consisting of four-components,
q = (q0 , q1 , q2 , q3), called a quaternion, as follows:

q =

(

cos(θ/2) , n̂ sin(θ/2)

)

, (25)

where the components of n̂ sin(θ/2) comprise the last three components of the quaternion
q and

q0 = ǫ cos(β/2) cos 1

2
(γ + α) , q1 = ǫ sin(β/2) sin 1

2
(γ − α) ,

q2 = ǫ sin(β/2) cos 1

2
(γ − α) , q3 = ǫ cos(β/2) sin 1

2
(γ + α) . (26)

In the convention of 0 ≤ θ ≤ π, we have q0 ≥ 0.3 Quaternions are especially valuable for
representing rotations in computer graphics software.

If one expresses n̂ in terms of a polar angle θn and azimuthal angle φn as in eq. (11),
then one can also write down expressions for θn and φn in terms of the Euler angles α, β
and γ. Comparing eqs. (11) and (22), it follows that:

tan θn =
(n2

1
+ n2

2
)1/2

n3

=
ǫ tan(β/2)

sin 1

2
(γ + α)

(27)

where we have noted that (n2

1
+ n2

2
)1/2 = sin(β/2) ≥ 0, since 0 ≤ β ≤ π, and the sign

ǫ = ±1 is defined by eq. (23). Similarly,

cos φn =
n1

(n2

1
+ n2

2
)

= ǫ sin 1

2
(γ − α) = ǫ cos 1

2
(π − γ + α) , (28)

sin φn =
n2

(n2

1
+ n2

2
)

= ǫ cos 1

2
(γ − α) = ǫ sin 1

2
(π − γ + α) , (29)

or equivalently

φn = 1

2
(ǫπ − γ + α) mod 2π (30)

3In comparing with other treatments in the mathematics literature, one should be careful to note
that the convention of q0 ≥ 0 is not universally adopted. Often, the quaternion q in eq. (25) will be
re-defined as ǫq in order to remove the factors of ǫ from eq. (26), in which case ǫq0 ≥ 0.
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Indeed, given that 0 ≤ α, γ < 2π and 0 ≤ β ≤ π, we see that θn is determined mod π
and φn is determine mod 2π as expected for a polar and azimuthal angle, respectively.

One can also solve for the Euler angles in terms of θ, θn and φn. First, we rewrite
eq. (20) as:

cos2(θ/2) = cos2(β/2) cos2 1

2
(γ + α) . (31)

Then, using eqs. (27) and (31), it follows that:

sin(β/2) = sin θn sin(θ/2) . (32)

Plugging this result back into eqs. (27) and (31) yields

ǫ sin 1

2
(γ + α) =

cos θn sin(θ/2)
√

1 − sin2 θn sin2(θ/2)
, (33)

ǫ cos 1

2
(γ + α) =

cos(θ/2)
√

1 − sin2 θn sin2(θ/2)
. (34)

Note that if β = π then eq. (32) yields θ = π and θn = π/2, in which case γ + α is inde-
terminate. This is consistent with the observation that ǫ is indeterminate if cos(β/2) = 0
[cf. eq. (23)].

We shall also make use of eqs. (28) and (29),

ǫ sin 1

2
(γ − α) = cos φn , (35)

ǫ cos 1

2
(γ − α) = sin φn , (36)

Finally, we employ eqs. (34) and (35) to obtain (assuming β 6= π):

sin φn−
cos(θ/2)

√

1 − sin2 θn sin2(θ/2)
= ǫ

[

cos 1

2
(γ − α) − cos 1

2
(γ + α)

]

= 2ǫ sin(γ/2) sin(α/2) .

Since 0 ≤ 1

2
γ, 1

2
α < π, it follows that sin(γ/2) sin(α/2) ≥ 0. Thus, we may conclude that

if γ 6= 0, α 6= 0 and β 6= π then

ǫ = sgn

{

sin φn − cos(θ/2)
√

1 − sin2 θn sin2(θ/2)

}

, (37)

If either γ = 0 or α = 0, then the argument of sgn in eq. (37) will vanish. In this case,
sin 1

2
(γ + α) ≥ 0, and we may use eq. (33) to conclude that ǫ = sgn {cos θn}, if θn 6= π/2.

The case of θn = φn = π/2 must be separately considered and corresponds simply to
β = θ and α = γ = 0, which yields ǫ = 1. The sign of ǫ is indeterminate if sin θ = 0 as
noted below eq. (23).4 The latter includes the case of β = π, which implies that θ = π
and θn = π/2, where γ + α is indeterminate [cf. eq. (34)].

4In particular, if θ = 0 then θn and φn are not well-defined, whereas if θ = π then the signs of cos θn,
sin φn and cosφn are not well-defined [cf. eqs. (8) and (11)].
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There is an alternative strategy for determining the Euler angles in terms of θ, θn and
φn. Simply set the two matrix forms for R(n̂, θ), eqs. (1) and (18), equal to each other,
where n̂ is given by eq. (11). For example,

R33 = cos β = cos θ + cos2 θn(1 − cos θ) . (38)

where the matrix elements of R(n̂, θ) are denoted by Rij . It follows that

sin β = 2 sin(θ/2) sin θn

√

1 − sin2 θn sin2(θ/2) , (39)

which also can be derived from eq. (32). Next, we note that if sin β 6= 0, then

sin α =
R23

sin β
, cos α =

R13

sin β
, sin γ =

R32

sin β
, cos γ = − R31

sin β
.

Using eq. (1) yields (for sin β 6= 0):

sin α =
cos θn sin φn sin(θ/2) − cos φn cos(θ/2)

√

1 − sin2 θn sin2(θ/2)
, (40)

cos α =
cos θn cos φn sin(θ/2) + sin φn cos(θ/2)

√

1 − sin2 θn sin2(θ/2)
, (41)

sin γ =
cos θn sin φn sin(θ/2) + cosφn cos(θ/2)

√

1 − sin2 θn sin2(θ/2)
, (42)

cos γ =
− cos θn cos φn sin(θ/2) + sin φn cos(θ/2)

√

1 − sin2 θn sin2(θ/2)
. (43)

The cases for which sin β = 0 must be considered separately. Since 0 ≤ β ≤ π,
sin β = 0 implies that β = 0 or β = π. If β = 0 then eq. (38) yields either (i) θ = 0,
in which case R(n̂, θ) = I and cos β = cos(γ + α) = 1, or (ii) sin θn = 0, in which case
cos β = 1 and γ + α = θ mod π, with γ − α indeterminate. If β = π then eq. (38) yields
θn = π/2 and θ = π, in which case cos β = −1 and γ − α = π − 2φ mod 2π, with γ + α
indeterminate.

One can use eqs. (40)–(43) to rederive eqs. (33)–(36). For example, if γ 6= 0, α 6= 0
and sin β 6= 0, then we can employ a number of trigonometric identities to derive5

cos 1

2
(γ ± α) = cos(γ/2) cos(α/2) ∓ sin(γ/2) sin(α/2)

=
sin(γ/2) cos(γ/2) sin(α/2) cos(α/2) ∓ sin2(γ/2) sin2(α/2)

sin(γ/2) sin(α/2)

=
sin γ sin α ∓ (1 − cos γ)(1 − cos α)

2(1 − cos γ)1/2(1 − cos α)1/2
. (44)

5Since sin(α/2) and sin(γ/2) are positive, one can set sin(α/2) =
{

1

2
[1−cos(α/2)]

}1/2
and sin(γ/2) =

{

1

2
[1 − cos(γ/2)]

}1/2
by taking the positive square root in both cases, without ambiguity.
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and

sin 1

2
(γ ± α) = sin(γ/2) cos(α/2) ± cos(γ/2) sin(α/2)

=
sin(γ/2) sin(α/2) cos(α/2)

sin(α/2)
± sin(γ/2) cos(γ/2) sin(α/2)

sin(γ/2)

=
sin(γ/2) sinα

2 sin(α/2)
± sin γ sin(α/2)

2 sin(γ/2)

= 1

2
sin α

√

1 − cos γ

1 − cos α
± 1

2
sin γ

√

1 − cos α

1 − cos γ

=
sin α(1 − cos γ) ± sin γ(1 − cos α)

2(1 − cos α)1/2(1 − cos γ)1/2
. (45)

We now use eqs. (40)–(43) to evaluate the above expressions. To evaluate the denomi-
nators of eqs. (44) and (45), we compute:

(1 − cos γ)(1 − cos α) = 1 − 2 sin φn cos(θ/2)
√

1 − sin2 θn sin2(θ/2)
+

sin2 φn cos2(θ/2) − cos2 θn cos2 φn sin2(θ/2)

1 − sin2 θn sin2(θ/2)

= sin2 φn − 2 sin φn cos(θ/2)
√

1 − sin2 θn sin2(θ/2)
+

cos2(θ/2)

1 − sin2 θn sin2(θ/2)

=

(

sin φn − cos(θ/2)
√

1 − sin2 θn sin2(θ/2)

)2

.

Hence,

(1 − cos γ)1/2(1 − cos α)1/2 = ǫ

(

sin φn − cos(θ/2)
√

1 − sin2 θn sin2(θ/2)

)

,

where ǫ = ±1 is the sign defined by eq. (37). Likewise we can employ eqs. (40)–(43) to
evaluate:

sin γ sin α − (1 − cos γ)(1 − cos α) =
2 cos(θ/2)

√

1 − sin2 θn sin2(θ/2)

[

sin φn − cos(θ/2)
√

1 − sin2 θn sin2(θ/2)

]

,

sin γ sin α + (1 − cos γ)(1 − cos α) = 2 sin φn

[

sin φn − cos(θ/2)
√

1 − sin2 θn sin2(θ/2)

]

,

sin α(1 − cos γ) + sin γ(1 − cos α) =
2 cos θn sin(θ/2)

√

1 − sin2 θn sin2(θ/2)

[

sin φn − cos(θ/2)
√

1 − sin2 θn sin2(θ/2)

]

,

sin α(1 − cos γ) + sin γ(1 − cos α) = 2 cosφn

[

sin φn − cos(θ/2)
√

1 − sin2 θn sin2(θ/2)

]

.

9



Inserting the above results into eqs. (44) and (45), it immediately follows that

cos 1

2
(γ + α) =

ǫ cos(θ/2)
√

1 − sin2 θn sin2(θ/2)
, cos 1

2
(γ − α) = ǫ sin φn , (46)

sin 1

2
(γ + α) =

ǫ cos θn sin(θ/2)
√

1 − sin2 θn sin2(θ/2)
, sin 1

2
(γ − α) = ǫ cos φn , (47)

where ǫ is given by eq. (37). We have derived eqs. (46) and (47) assuming that α 6= 0,
γ 6= 0 and sin β 6= 0. Since cos(β/2) is then strictly positive, eq. (23) implies that ǫ is
equal to the sign of cos 1

2
(γ + α), which is consistent with the expression for cos 1

2
(γ + α)

obtained above. Thus, we have confirmed the results of eqs. (33)–(36).
If α = 0 and/or γ = 0, then the derivation of eqs. (44) and (45) is not valid. Nev-

ertheless, eqs. (46) and (47) are still true if sin β 6= 0, as noted below eq. (37), with
ǫ = sgn(cos θn) for θn 6= π/2 and ǫ = +1 for θn = φn = π/2. If β = 0, then as noted
below eq. (43), either θ = 0 in which case n̂ is undefined, or θ 6= 0 and sin θn = 0 in
which case the azimuthal angle φn is undefined. Hence, β = 0 implies that γ −α is inde-
terminate. Finally, as indicated below eq. (34), γ +α is indeterminate in the exceptional
case of β = π (i.e., θ = π and θn = π/2).

EXAMPLE: Suppose α = γ = 150◦ and β = 90◦. Then cos 1

2
(γ + α) = −1

2

√
3, which

implies that ǫ = −1. Eqs. (20) and (22) then yield:

cos θ = −1

4
, n̂ = − 1√

5
(0 , 2 , 1) . (48)

The polar and azimuthal angles of n̂ [cf. eq. (11)] are then given by φn = −90◦ (mod 2π)
and tan θn = −2. The latter can also be deduced from eqs. (27) and (30).

Likewise, given eq. (48), one obtains cosβ = 0 (i.e. β = 90◦) from eq. (38), ǫ = −1
from eq. (37), γ = α from eqs. (35) and (36), and γ = α = 150◦ from eqs. (33) and
(34). One can verify these results explicitly by inserting the values of the corresponding
parameters into eqs. (1) and (18) and checking that the two matrix forms for R(n̂, θ)
coincide.
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