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The generalized Stirling series

In these notes, a generalization of the asymptotic Stirling series for the logarithm of the
Gamma function is derived. This generalization is then used to examine the behavior
of I'(z 4 1y) as |y| — oc.

1. Derivation of the generalized Stirling series

We begin with the full asymptotic Stirling series for the logarithm of the Gamma
function,*
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where the Bs, are the Bernoulli numbers, which are defined in the class handout
entitled, Taylor Series Expansions, and N is any positive integer. Eq. (1) is valid for
complex numbers z such that |Arg z| < 7 (i.e. we exclude the origin of the complex
plane and the negative real axis) as |z| — co. Under the same assumptions, we shall
derive the corresponding asymptotic expansion for I'(z + x), where z is any fixed real
finite number. First we note that for any real number x,?
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Hence, it follows that
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Our strategy now is to expand about x = 0. Note that:
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!The logarithms on the right hand side of eq. (1) correspond to their principal values. Consequently,
LnT(z) is a single-valued function of the complex variable z, which is defined for all complex z
excluding the non-positive integers (where I'(z) is singular). However, argLnT'(z) as defined by
eq. (1) does not in general lie within the principal interval (between —m and m). Hence, LnT'(z)
can differ from the principal value of the logarithm of the complex Gamma function by an integer
multiple of 27i that depends on the value of z. For more details, see Chapter 9, Section 6 of Henri
Cohen, Number Theory, Volume II: Analytic and Modern Tools (Springer Science, New York, 2007);
in particular, problem 35 of Chapter 9, op. cit., is illuminating.

2If z is real (either positive, negative or zero) and |Arg z| < m, then it is easy to verify that
|Arg z 4+ Arg(1 + Z)| < 7, in which case eq. (2) holds with no correction term [cf. eq. (54) of the class
handout entitled, The complex logarithm, exponential and power functions).
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In obtaining the above result, we used the definition of the binomial coefficient. Namely,
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Inserting egs. (4) and (5) into eq. (3) yields:
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where all terms of O(1/|z|*V) or higher are neglected. After an appropriate relabeling
of the summation index, one can rewrite the first two sums above as:
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In the double sum of eq. (6), we define a new summation variable, p = 2k +n — 1.
Then,
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after using the well known property of the binomial coefficient,
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We now interchange the order of the summation in eq. (8) to obtain:

— — 3 (p+1
ﬁ:QNZ:% (—=1)"Bayy, (2k+n —2 " 2§:1 (—1)p+! [2%” w p—1
22+ )\ )T Sy S 0k(2k 1) \2k-2)



where [1(p + 1)] denotes the the largest integer less than or equal to £(p + 1). Since

By,11 =0for p=1,2,3,..., one can re-express the sum above as:
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after replacing 2k — k and summing over the new summation variable k. One can
massage the above sum further by noting that:
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Using the results of eqs. (7) and (9), we can rewrite eq. (6) as:
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The expression within the braces above can be written in a more compact form by
recalling that By = 1 and B; = —1. Then, eq. (10) yields
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The Bernoulli polynomials B, (x) [for n = 0,1,2,3,...] are nth-order polynomials in z
defined by
By(z) = <Z> Bz"*
k=0
For example, By(z) = 1, Bi(z) = x — 3, By(x) = 2® — x + §, ete. Three notable

properties of the Bernoulli polynomials are

(i) B.(0) = B,, (ii) B,(1) =(=1)"B,, (iii) By (

N[

) = <2n1_1 - 1) B,. (12)

Thus, eq. (11) can be written more compactly in the following form, sometimes called



the generalized Stirling series,®
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which is valid as |z] — oo for any fixed real number = and |Arg z| < 7.
As a check, by setting x = 0 in eq. (13) and using eq. (12) and Ba,41 = 0 for

n=1,23,..., we recover eq. (1). Likewise, if we set x = 1 in eq. (13), we obtain
By, 1 1
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which is the expected result in light of I'(z 4 1) = zI'(2). That is, taking the logarithm
of the latter expression,

InT'(z4+1)=LnIl'(2) + Lnz, (15)

where Ln z is the principal value of the logarithm of z,* in which case eq. (14) imme-
diately follows from eq. (1). Finally, if we set x = —1 in eq. (13) and use the relation,
B,(—1) = B, + (—1)"n, we end up with:
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Indeed, eq. (16) matches the result obtained from eq. (1) after taking the logarithm of
r 1 = 1
I'z-1)= (2) and identifying Ln<1 - —) =—) —.
z—1 z — p2P

2. Application to the asymptotic expansion of I'(x + iy) as |y| — oo

In the solutions to the final exam, the following asymptotic expressions were derived:
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3The asymptotic expansion given by eq. (13) was first obtained by E.W. Barnes, The theory of
the gamma function, Messenger Math. 29 (1899) pp. 64-128. A more modern derivation is given
by Masanori Katsurada, Proc. Japan Acad. 74, Ser. A (1998) pp. 167-170, where the real number
x is restricted to be positive. However, this restriction is not required in the derivation presented
in these notes. Indeed, the generalized Stirling series given by eq. (13) can be shown to be valid for
any complex number x [cf. eq. (12) on p. 48 of Higher Transcendental Functions, Volume I, edited by
A. Erdélyi (McGraw-Hill Book Company, Inc., New York, 1953)].

“4In light of footnote 1, one can show that there is no correction term to eq. (15), corresponding to
some nonzero integer multiple of 27i.



where y is a real number. In particular, note that none of the three asymptotic re-
sults above possess correction terms of O(1/|y|?) for any positive power p. We can
understand this phenomenon as follows. Starting from eq. (13), we choose z = iy
where y is real. Recall that the principal value of the complex logarithm is given by
Lnz = Ln|z| + ¢ Arg z, from which it follows that Re Ln z = Ln |z|. Hence,

Ln |I'(z +iy)| = Re LnT'(x + iy) .

Thus, the asymptotic expansion of Ln |I'(z + iy)| as |y| — oo is given by

2N—-1

Ln [(z+iy)| = Re {(x +iy — 1) Ln(iy) — iy + 1 Ln(2r) + Z (1P B, (2) s (y%)} |

p(p + 1)(iy)?

p=1
(20)
Note that the terms in the sum with p odd are all pure imaginary. Moreover,
7 |yl ir if y >0
Arg(iy) = = = = Irsgn(y) = 20 ’ 21
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where sgn(y) is the sign of y. It then follows that
Ln(iy) = Lo |y| + simsgn(y) .

Hence, we can drop the odd p terms of the sum in eq. (20) and set p = 2k, which yields
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after using |y| = ysgn(y).
Using eq. (22), one can now understand why there are no O(1/|y|?) corrections to
egs. (17)—(19) for any positive integer power p. This is a result of the following property
of the Bernoulli polynomials:

Bgn+1(0) = B2n+1(%) = Bgn+1(1) = 0, forn = 1, 2, 3, ceey

which is a consequence of By, 1 = 0 for n = 1,2,3,..., and the properties listed in
eq. (12). Hence, it follows that

Bopi1(z) = z(z — 1)(z — $)pa(z), n=123,...,

for some polynomial p,(x) which is of order 2n — 2. For example, we have p;(x) = 1,

po(z) = —1—10(1 + 3x — 32?), etc. Thus, we conclude that for z = 0, z = % and r =1,

Ln|D(z +iy)| = (z — 1) Lnly| — inly| + LLn(2r),  as[y| — oo,

up to exponentially small corrections that are not visible to the asymptotic expansion
of Ln |I'(x 4 dy)|. Exponentiating the above result then yields

ID(x +iy)| = (2m) 2y 2 e 2™ | as|y| — oo, forz =0, 2 =1 and z = 1, (23)
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up to exponentially small corrections, which confirms the results of egs. (17)—(19). In
general, we have

1
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Note that x =0, x = % and x = 1 are the only real values of = for which Bay1(z) =0
for all values of k = 1,2,3,.... Thus, for any other real value of x, we expect O(1/y?")
corrections to eq. (23) for some positive integer power p, as indicated in eq. (24).




