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1 Definition

The Zeta function was first introduced by Euler and is defined by

ζ(s) =

∞
∑

n=1

1

ns
. (1)

The series is convergent when s is a complex number with <(s) > 1. Some
special values of ζ(s) are well known, for example the values ζ(2) = π2/6,
ζ(4) = π4/90, were obtained by Euler.

In 1859, Riemann had the idea to define ζ(s) for all complex number s by
analytic continuation. This continuation is very important in number theory
and plays a central role in the study of the distribution of prime numbers.
Several techniques permit to extend the domain of definition of the Zeta function
(the continuation is independant of the technique used because of uniqueness
of analytic continuation). One can for example start from the Zeta alternating
series (also called the Dirichlet eta function)

η(s) ≡
∞
∑

n=1

(−1)n−1

ns
,

defining an analytic function for <(s) > 0. When the complex number s satisfy
<(s) > 1, we have

η(s) =

∞
∑

n=1

1

ns
−

∞
∑

n=1

2

(2n)s
= ζ(s) −

2

2s
ζ(s).

In other words, we have

ζ(s) =
η(s)

1 − 21−s
, <(s) > 1. (2)

Since η(s) is defined for <(s) > 0, this identity (2) permits to define the Zeta
function for all complex number s with positive real part, except for s = 1 for
which we have a pole.

The extension of the Zeta function to the domain <(s) ≤ 0 can also be done
(a different technique should be used).

1This pages are from //numbers.computation.free.fr/Constants/constants.html
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2 The behaviour of ζ(s) near s = 1

Starting from the formula

1

ns
= s

∫ ∞

n

dt

ts+1
= s

∞
∑

k=n

∫ k+1

k

dt

ts+1
,

a reordering of the summations gives, for <(s) > 1,

ζ(s) = s
∑

n≥1

∑

k≥n

∫ k+1

k

dt

ts+1
= s

∑

k≥1





∑

n≤k

∫ k+1

k

dt

ts+1



 = s
∑

k≥1

k

∫ k+1

k

dt

ts+1
.

The last summation writes in the form

ζ(s) = s

∫ ∞

1

[t]

ts+1
dt =

s

s − 1
− s

∫ ∞

1

{t}

ts+1
dt, (3)

where [t] denotes the integer part of t and {t} = t− [t] its fractional part. Notice
that the formula (3) is an alternative way to obtain the analytic continuation
of ζ(s) in the half plane <(s) > 0.

When s = 1, the last integral in (3) is equal to

∫ ∞

1

{t}

t2
dt = lim

N→∞

N
∑

n=1

∫ n+1

n

t − n

t2
dt = lim

N→∞

∫ N

1

dt

t
−

N
∑

n=1

1

n + 1
= 1 − γ,

where γ is the Euler constant.
Finally, formula (3) yields the following asymptotic expansion

ζ(s) =
1

s − 1
+ γ + o(1), (s → 1). (4)

This expansion yields interesting results if one computes the expansion ob-
tained by (2) :

ζ(s) =
η(s)

1 − 21−s
=

η(1) + (s − 1)η′(1)

(s − 1) log(2) − (s − 1)2 log2(2)/2
+ o(1)

=
η(1)

log(2)(s − 1)
+

(

η′(1)

log(2)
+

η(1)

2

)

+ o(1).

By comparison with (4), we obtain η(1)/ log(2) = 1 and η′(1)/ log(2)+η(1)/2 =
γ. In other words, we have obtained the classical result

η(1) =

∞
∑

n=1

(−1)n−1

n
= log(2)

and the relation η′(1) = log(2)(γ − η(1)/2) yields the beautiful series

∞
∑

n=1

(−1)n log(n)

n
= log(2)

(

γ −
log(2)

2

)

.
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Generalized Euler constants

The expansion (4) can be continued by writing

ζ(s) =
1

s − 1
+

∞
∑

n=0

(−1)n

n!
γn(s − 1)n.

The constants γn can be proved to satisfy

γn = lim
m→∞

m
∑

k=1

logn k

k
−

logn+1 m

n + 1
.

These formula generalize the Euler constant definition (corresponding to the case
n = 0) and for that reason, the constants γn are often called the generalized
Euler constants. They were also called Stieljes constants as they were studied
by Stieljes. General informations about these constants can be found on Eric
Weissten’s world of mathematics site.

3 More on the analytic continuation of zeta

We have seen two different ways to extend the analytic continuation of ζ(s) to
the domain <(s) > 0 (see (2) and (3)). In fact, the Riemann Zeta function can
be analytically continued to the whole complex plane. A possible way (see [2]
for example) to obtain this fundamental property is to generalize the approach
of (3) by using Euler-Maclaurin sum formula applied to the function f(x) = x−s

with order q, which yields

ζ(s) =
1

s − 1
+

1

2
+

q
∑

r=2

Br

r!
s(s + 1) · · · (s + r − 2)

−
1

q!
s(s + 1) · · · (s + q − 1)

∫ +∞

1

Bq({x})x
−s−q dx, (5)

where the Br are the Bernoulli numbers and Bq({x}) the Bernoulli polynomials
evaluated at the fractionnal value {x} = x − [x]. The integral does not only
converge for <(s) > 1, but also for <(s) > 1 − q. Thus formula (5) provides
the analytic continuation of ζ(s) to the half plane <(s) > 1− q. Since q can be
choosen arbitrarily large, we conclude that ζ(s) is analytic in the whole complex
plane with a simple pole at s = 1.

Formula (5) also permits to easily obtain values of ζ(s) at some special
points. For example, when s = 0, only the two first terms of the formula do not
vanish, which yields

ζ(0) =
1

2
.

When s = −k with k a positive integer, choosing q = k + 1 in formula (5) leads
to

ζ(−k) = −
1

k + 1
+

1

2
−

q
∑

r=2

Br

r!
k(k − 1) · · · (k − r + 2)
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= −
1

k + 1

q
∑

r=0

(

k + 1

r

)

Br = −
Bk+1(1)

k + 1
= −

Bk+1

k + 1
.

We have used the fact that the Bernoulli numbers Bk vanish when k is odd
except for k = 1 for which B1 = −1/2, and the representation of Bernoulli
polynomials in terms of Bernoulli numbers. We conclude that ζ(s) vanishes for
even negative integers (the corresponding zeros are called the “trivial zeros” of
ζ(s)) and that for positive integers m,

ζ(−2m + 1) = −
B2m

2m
. (6)

4 The functional equation

One of the most striking property of the zeta function, discovered by Riemann
himself, is the functional equation :

ζ(s) = χ(s)ζ(1 − s), χ(s) = 2sπs−1 sin
(πs

2

)

Γ(1 − s). (7)

The Γ(s) function is the Euler function.
From the continuation of ζ(s) in the half plane <(s) > 0, notice that the

functional equation is another way to obtain the analytic continuation of ζ(s)
to the whole complex plane.

The complement formula of the Gamma function (see The Gamma function
Γ(x)) entails the formula

χ(s)χ(1 − s) = 1,

which gives a symetry of the functional equation with respect to the line <(s) =
1/2.

A proof of the functional equation

The functional equation (7) is fascinating and mathematicians afforded numer-
ous different proofs of it. Riemann himself gave several methods ; later, math-
ematicians like Hardy, Siegel and others, enriched the list of proofs (see for
example [4], where seven different methods are presented). We present here
briefly one proof of the functional equation, extracted from [2] where we will see
that the functional equation is strongly related to Fourier series. The starting
point is formula (5) applied with q = 2

ζ(s) =
1

s − 1
+

1

2
+

B2

2
s −

s(s + 1)(s + 2)

6

∫ +∞

1

B3({x})x
−s−3 dx. (8)

The formula is valid for <(s) > −2. The Bernoulli polynomial B3(x) = x(x −

1/2)(x − 1) has a factor x, thus the integral
∫ 1

0
B3(x)x−s−3 is convergent for
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<(s) < −1. The value of this integral is easily obtained thanks to repeted
integration by part, and plugging it into (8) leads to the simple relation

ζ(s) = −
s(s + 1)(s + 2)

6

∫ +∞

0

B3({x})x
−s−3 dx (−2 < <(s) < −1). (9)

We now use the Fourier series

B3({x}) = 12
∞
∑

n=1

sin(2nπx)

(2nπ)3

and plug it into (9), which gives

ζ(s) = −2s(s + 1)(s + 2)

∞
∑

n=1

1

(2nπ)3

∫ ∞

0

sin(2nπx)

xs+3
dx, (−2 < <(s) < −1).

We omit the justification of term-by-term integration, which can be found in [2].
The latest formula rewrites as

ζ(s) = −2s(s + 1)(s + 2)

∞
∑

n=1

1

(2nπ)1−s

∫ ∞

0

sin(y)

ys+3
dy, (−2 < <(s) < −1).

The integral
∫ ∞

0
sin(y)y−s−3 dy is classic and its value is Γ(−s − 2) sin(π(−s −

2)/2) (see [2] for example), thus

ζ(s) = 2s(s + 1)(s + 2)Γ(−s − 2) sin
π(s + 2)

2

1

(2π)1−s

∞
∑

n=1

1

n1−s
,

= 2sπs−1Γ(1 − s) sin
πs

2
ζ(1 − s) (−2 < <(s) < −1).

This is the functional equation, proved for complex values of s in the strip −2 <
<(s) < −1, and it is valid in the whole complex plane by analytic continuation.

5 Values of ζ(s) at positive integers

The functional equation (7) together with identity (6) yields the other identity,
valid for positive integers m

ζ(2m) =
4m(−1)m−1B2mπ2m

2(2m)!
(10)

Notice that this famous formula can be obtained independantly of the functional
equation (from Fourier series of Bernoulli polynomials for example) and permits
with (6) to check that the functional equation is fulfilled for even positive integers
values of s. This formula applied with the first values of m give the famous
special values

ζ(2) =
π2

6
, ζ(4) =

π4

90
, ζ(6) =

π6

945
, ζ(8) =

π8

9450
.
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Values of ζ(s) at odd positive integers

No equivalent formula of ζ(m) are known for odd positive values of m, and it
is strongly expected that they do not exist. Numerical experiments show for
example that if ζ(3) have the form π3p/q, then the denominator q has a very
large number of digits.

The first historical result obtained on values of ζ(s) at odd positive integers
is due to Apery who proved in 1978 that ζ(3) is irrational (for that reason,
ζ(3) is now sometimes called the Apery constant). It is not known if ζ(3) is
transcendantal. Apery’s proof for ζ(3) does not generalize for ζ(5), ζ(7), . . .,
and it is not known if any of these constants are irrational or not. However, in
2000, Rivoal (see [3]) stated that an infinity of the values ζ(2m + 1) for positive
integer m are irrational (without precising which of those values are irrational).
Extending the method of Rivoal, other more precise results have been found.
The most striking is due to Zudilin (see [5]) who proved that one of the numbers
ζ(5), ζ(7), ζ(9), ζ(11) is irrational. Other results like “for every odd integer b,
one of the numbers ζ(b + 2), ζ(b + 4), . . ., ζ(8b− 3), ζ(8b− 1) is irrational” can
be found in [6] for example.

6 Relation with series of primes

Let pn denote the n-th prime number (p1 = 2, p2 = 3, p3 = 5, . . .). We have

N
∏

i=1

(

1 +
1

ps
i

+
1

p2s
i

+ · · ·

)

= 1 +
1

ns
1

+
1

ns
2

+ · · ·

where n1, n2, . . . are those integers none of whose prime factors exceed P = pN .
Since all integers up to P are of this form, it follows that

∣

∣

∣

∣

∣

ζ(s) −

N
∏

i=1

(

1 −
1

ps
i

)−1
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

ζ(s) − 1 −
1

ns
1

−
1

ns
2

− · · ·

∣

∣

∣

∣

≤
1

(P + 1)<(s)
+

1

(P + 2)<(s)
+· · ·

Letting N → ∞, we finally obtain the beautiful Euler’s product

ζ(s) =
∏

p prime

1

1 − p−s
.

Euler’s product makes the Riemann zeta function interesting in the theory of
prime numbers. Combining this identity with properties of ζ(s) gives interesting
information about the series of primes. The most famous result of this kind is
due to Hadamard and De La Vallée Poussin, who independantly proved in 1896
that

π(x) ∼
x

log(x)
,

where π(x) denote the number of primes not exceeding x. This result is known
as the prime number theorem.
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7 The Riemann hypothesis

It was conjectured by Riemann that all the non trivial complex zeros s of ζ(s)
lie on the critical line <(s) = 1/2. This conjecture is known as the Riemann
hypothesis has never been proved or disproved. It is undoubtely the most cel-
ebrated problem in mathematics, not only because it has gone unsolved for so
long (more than one century) but also because it has some important conse-
quences in the distribution of primes.

7.1 Consequences of the Riemann hypothesis

The most important consequence of the Riemann hypothesis lies in the estima-
tion of π(x), the number of primes not exceeding x. If Riemann hypothesis is
true, then we have

π(x) =

∫ x

2

dt

log(t)
+ O(x1/2 log x), (11)

whereas the error bound on the approximation of π(x) by
∫ x

2 dt/ log(t) obtained
without the Riemann hypothesis is

π(x) =

∫ x

2

dt

log(t)
+ O

(

x exp

(

−
A(log x)3/5

(log log x)1/5

))

. (12)

Estimate (11) is much better than (12) because it states that the order of ap-
proximation of π(x) by

∫ x

2 dt/ log(t) is better than

O(x1/2+ε) whereas the second one is worst than O(x1−ε) for all ε > 0. In
fact, the quality of the approximation is directly related to the “size” of the
free zero region near the line <(s) = 1. The estimate (12) have been obtained
in 1958 when Vinogradov and Korobov enlarged the known free zero region of
ζ(s) near <(s) = 1.

Among the most famous other consequences of the Riemann hypothesis
(RH), we have :

• The Lindelöf hypothesis : if the RH is true, then when the positive real
number t goes to infinity, we have ζ(1/2 + it) = O(tε) for all ε > 0 when
t → ∞. The best estimate known today without the Riemann hypothesis
is ζ(1/2 + it) = O(tA+ε) with A = 139/858 = 0.162004 . . . (Kolesnik).

• The Möbius function mean value estimate : if the RH is true, then M(x) =
O(x1/2+ε) for all ε > 0, where M(x) =

∑

n≤x µ(n) with µ(n) the Möbius

function, defined by µ(n) = (−1)k if n is the product of k distinct primes,
and µ(n) = 0 if n can be divided by the square of some prime.

• Bounds on the values of Zeta on the vertical line σ = 1 . Under the RH
one has

ζ(1 + it) = O(log log t),
1

ζ(1 + it)
= O(log log t).
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Without the RH, the best bound known today are ζ(1+it) = O(log t/ log log t)
and 1/ζ(1 + it) = O(log t/ log log t).

7.2 Attempts to prove the RH

Numerous mathematicians tried to prove or disprove the RH. Thousands of
(wrong) proofs have been afforded for more than one century. On the other
hand, some results are known about the zeros of the Zeta-function, the most
classical are discussed in Distribution of the zeros of the Riemann Zeta function.

Another approach consists in numerical computations, which could disprove
the Riemann hypothesis by exhibiting a zero off the critical line. For example,
it has been numerically checked that the first 1012 zeros are on the critical line.
In addition to the pure RH verification, Odlyzko in [1] computed statitics on the
distribution of zeros, that could orientate possible proofs. More about numerical
computations on the zeros of zeta is discussed in Numerical computations about
the zeros of the zeta function.

In 2000, Clay Mathematics Institute offered a one million dollars prize for
proof of the Riemann hypothesis. Interestingly, disproof of the Riemann hy-
pothesis (e.g., by using a computer to actually find a zero off the critical line),
does not earn the one million dollars award.
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