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The Laplacian of the inverse distance

1. Poisson’s Equation

Consider the laws of electrostatics in cgs units,

~∇· ~E = 4πρ , ~∇× ~E = 0 , (1)

where ~E is the electric field vector and ρ is the local charge density. Since ~∇× ~E = 0,
it follows that ~E can be expressed as the gradient of a scalar function. Thus, we define
the electric potential as

~E = −∇Φ . (2)

Note that ~∇× ~E = −~∇× ~∇Φ = 0, since the curl of the gradient of any well-behaved
scalar function is zero. Combining eqs. (1) and (2) yields

~∇· ~E = −~∇·∇Φ = −~∇
2Φ = 4πρ .

That is,
~∇

2Φ = −4πρ . (3)

This is Poisson’s equation (or the inhomogeneous Laplace equation).
Consider a point charge located at the position ~r0. Then, we can write

ρ(~r) = qδ3(~r − ~r0) .

The delta function representation of a point charge indicates that no charge exists any-
where other than at the position ~r0. Moreover, the total charge contained in the point
charge is

∫

V

ρ(~r)d3r = q

∫

V

δ3(~r − ~r0) = q , (4)

where d3r is the infinitesimal three-dimensional volume element and V is any finite volume
that contains the point ~r0.

Given a point charge located at the position ~r0, the corresponding electric field is
given by Coulomb’s law (in cgs units),

~E(~r) =
q(~r − ~r0)

|~r − ~r0|3
= −q~∇

(

1

|~r − ~r0|

)

.

From this, we can obtain the potential from eq. (2),

Φ(~r) =
q

|~r − ~r0|
.
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2. The Laplacian of the inverse distance

The inverse distance between the vectors ~r and ~r0 is given by the function,

d(~r) =
1

|~r − ~r0|
.

Here, ~r0 is a fixed location (such as the position of a point charge) and ~r is the location
of the observer. We shall compute the Laplacian of the inverse distance

~∇
2d(~r) = ~∇

2

(

1

|~r − ~r0|

)

,

where ~∇2 involves derivatives with respect to ~r, with ~r0 held fixed. It is convenient to
define a new variable ~R ≡ ~r − ~r0. Then, it follows that ~∇2

R
= ~∇2

r
, where the subscript

indicates the variable employed by the corresponding derivatives.1 Thus, we evaluate

~∇
2

(

1

R

)

=
1

R2

∂

∂R

{

R2
∂

∂R

(

1

R

)}

=
1

R2

∂

∂R

(

−1
)

= 0 ,

where we have performed the computation in spherical coordinates, where

~∇
2
R
=

1

R2

∂

∂R

(

R2
∂

∂R

)

+
1

R2 sin2 θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

R2 sin2 θ

∂2

∂φ2
.

Of course, the angular derivatives vanish when applied to a radial function. Thus, we
have apparently derived the result,

~∇
2

(

1

|~r − ~r0|

)

= 0 . (5)

However, eq. (5) cannot be strictly true. After all, in section 1, we saw that a point
charge produces an electric potential

Φ(~r) =
q

|~r − ~r0|
,

and Poisson’s equation implies that ~∇2Φ = 4πρ 6= 0. Indeed, using the results of
section 1, given a point charge located at ~r0,

~∇
2Φ(~r) = q~∇2

(

1

|~r − ~r0|

)

= −4πρ(~r) = −4πqδ3(~r − ~r0) ,

which yields

~∇
2

(

1

|~r − ~r0|

)

= −4πδ3(~r − ~r0) . (6)

1It is standard practice to write ~∇
2 ≡ ~∇

2
r
. That is, if no subscript appears, one assumes that

derivatives are to be computed with respect to ~r.
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Comparing eqs. (5) and (6), we see that our previous derivation is correct for all values
of ~r 6= ~r0. However for ~r = ~r0, the inverse distance is singular, and hence the explicit
computation of the Laplacian given above eq. (5) is suspect.

We can confirm the mathematical correctness of eq. (6) as follows. Again, it is con-

venient to work with the variable ~R, in which case, we have

~∇
2

(

1

R

)

= −4πδ3(~R) , (7)

where R ≡ | ~R|. Let us integrate ~∇2(1/R) over any volume V that contains the origin.
We can divide up this volume into two pieces V = Va + Vb, where Va is a solid sphere of
radius a whose center is the origin and Vb is the remaining part of the volume Then,

∫

V

~∇
2

(

1

R

)

d3R =

∫

Va

~∇
2

(

1

R

)

d3R +

∫

Vb

~∇
2

(

1

R

)

d3R =

∫

Va

~∇
2

(

1

R

)

d3R ,

since ~∇2(1/R) = 0 at all points in Vb since the latter excludes the origin. Using the
divergence theorem of vector calculus,

∫

Va

~∇
2

(

1

R

)

d3R =

∫

Va

~∇· ~∇

(

1

R

)

d3R =

∮

Sa

~∇

(

1

R

)

·R̂ ds ,

where Sa is the closed spherical surface of radius a which constitutes the boundary of Va.
In particular, the outward normal to Sa is the unit radial vector R̂. The infinitesimal
surface element is ds = a2dΩ, where dΩ = sin θdθdφ is the usual differential solid angle
element. Using

~∇

(

1

R

)

∣

∣

∣

∣

∣

R=a

= R̂
∂

∂R

(

1

R

)

∣

∣

∣

∣

∣

R=a

= −
1

a2
R̂ ,

it follows that
∫

V

~∇
2

(

1

R

)

d3R = −

∮

SA

R̂·R̂
1

a2
a2dΩ = −

∮

SA

dΩ = −4π .

That is, we have shown that

~∇
2

(

1

R

)

= 0 for R 6= 0 and

∫

V

~∇
2

(

1

R

)

d3R = −4π ,

for any volume V that contains the origin. The only “function” that satisfies these
relations is

~∇
2

(

1

R

)

= −4πδ3(~R) ,

since δ3(~R) = 0 for any ~R 6= 0 and
∫

V

δ3(~R) d3R = 1 ,

for any volume V that contains the origin. Thus, we have confirmed the validity of
eq. (7). More generally, we have established the result,

~∇
2

(

1

|~r − ~r0|

)

= −4πδ3(~r − ~r0) (8)
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3. Solutions to Poisson’s Equation

We wish to solve Poisson’s equation, eq. (3), given a known charge distribution ρ(~r)
that is nonzero over some finite volume of space, subject to boundary conditions (typically
taken to be Dirichlet, in which Φ is specified over some closed surface or Neumann where
~E = −~∇Φ is specified over some closed surface). The solution will take the form,

Φ(~r) = Φp(~r) + Φc(~r) , (9)

where Φp(~r) is a particular solution to the Poisson equation and Φc(~r) is the (comple-

mentary) solution to the Laplace equation, ~∇2Φc(~r) = 0. In defining the particular
solution, we shall impose the condition that

lim
r→∞

Φp(~r) = 0 , (10)

which can be viewed as a boundary condition that states that Φp(~r) vanishes on the
surface of a sphere of radius r in the limit of r → ∞. Then

Φp(~r) =

∫

ρ(~r ′)

|~r − ~r ′|
d3r′ , (11)

where the integration is taken over all of three-dimensional space. To prove that Φp(~r)
satisfies Poisson’s equation subject to eq. (10), we first note that as r → ∞, we have
|~r − ~r

′| = r[1 +O(1/r)] so that

lim
r→∞

Φp(~r) = lim
r→∞

∫

ρ(~r ′)

|~r − ~r ′|
d3r′ = lim

r→∞

1

r

∫

ρ(~r ′)d3r′+O

(

1

r2

)

= lim
r→∞

q

r
+O

(

1

r2

)

= 0 ,

(12)
where we have used eq. (4), under the assumption that the charge distribution is restricted
to a finite region of space. Next, we compute the Laplacian of Φp(~r),

~∇
2Φp(~r) = ~∇

2

∫

ρ(~r ′)

|~r − ~r ′|
d3r′ =

∫

ρ(~r ′)~∇2

(

1

|~r − ~r ′|

)

d3r′

= −4π

∫

ρ(~r ′)δ3(~r − ~r
′)d3r′ = −4πρ(~r) , (13)

where we have used eq. (8). Note that ~∇2 involves derivatives with respect to ~r, so
that in applying the Laplacian, the variable ~r ′ (which is a dummy integration variable)
is treated as being fixed. Thus, we have verified that Φp(~r) is a solution to Poisson’s
equation.

Indeed, Φp(~r) is the unique solution to Poisson’s equation, which is valid at all points
in space, subject to eq. (10). More general boundary value problems would involve solving
Poisson’s equation in a restricted region of space, V . In this case, we must specify the
boundary conditions on the closed surface S of V . The solution is then given by:

Φ(~r) = Φc(~r) +

∫

V

ρ(~r ′)

|~r − ~r ′|
d3r′ , (14)

where Φc(~r) is a solution to Laplace’s equation, which is chosen such that the boundary
conditions are satisfied when applied to the complete solution to the problem, Φ(~r).
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4. The inverse Laplacian and the Green function

Consider the solution to Poisson’s equation, which is valid at all points in space,
subject to eq. (10),

~∇
2Φ(~r) = −4πρ(~r) , (15)

where ρ(~r) is nonzero only over some finite region in space. In fact, this last assumption is
stronger than is necessary. It is sufficient to assume that ρ(~r) → 0 as r → ∞ fast enough
such that the volume integral of ρ(~r) over all space converges. Then, as discussed in
Section 3, the solution to Poisson’s equation is unique. That is, the solution to Poisson’s
equation is given by eq. (14) with Φc(~r) = 0. Equivalently, Φ(~r) = Φp(~r), where Φp(~r)
is given by eq. (11).

Under the stated conditions above, it is tempting to derive the solution to Poisson’s
equation by introducing the inverse Laplacian, ~∇−2. Operating with the inverse Lapla-
cian on eq. (15) yields,

~∇
−2~∇

2Φ(~r) = −4π~∇−2ρ(~r) .

Clearly, one should define ~∇−2~∇2 to be the identity operator, in which case we would
conclude that

Φ(~r) = −4π~∇−2ρ(~r) . (16)

Comparing this with Φ(~r) = Φp(~r), where Φp(~r) is given by eq. (11), it follows that we
should identify

~∇
−2ρ(~r) = −

1

4π

∫

ρ(~r ′)

|~r − ~r ′|
d3r′ (17)

Plugging eq. (17) back into eq. (16) yields

Φ(~r) =

∫

ρ(~r ′)

|~r − ~r ′|
d3r′ , (18)

as expected.
The definition of the inverse Laplacian given in eq. (17) shows that this operator acts

nonlocally. That is, the value of ~∇−2ρ(~r) at the point ~r depends on ρ(~r ′) evaluated at
all points in space. This should not be surprising to you. After all, the antiderivative of
calculus is an integral! More importantly, the definition of the inverse Laplacian requires
an assumption about the space of functions on which it acts. In the present case, we have
required that the space of functions should only include twice differentiable functions that
vanish sufficiently fast at infinity. To check that the definition of the inverse Laplacian
given in eq. (17) is sensible, we perform the following two computations:

~∇
2~∇

−2ρ(~r) = −
1

4π
~∇

2

∫

ρ(~r ′)

|~r − ~r ′|
d3r′ = −

1

4π

∫

ρ(~r ′)~∇2

(

1

|~r − ~r ′|

)

d3r′

=

∫

ρ(~r ′)δ3(~r − ~r
′)d3r′ = ρ(~r) ,
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and

~∇
−2
[

~∇
2ρ(~r)

]

= −
1

4π

∫

~∇′ 2ρ(~r ′)

|~r − ~r ′|
d3r′ = −

1

4π

∫

ρ(~r ′)~∇′ 2

(

1

|~r − ~r ′|

)

d3r′

=

∫

ρ(~r ′)δ3(~r − ~r
′)d3r′ = ρ(~r) , (19)

where ~∇′ 2 is the Laplacian that involves derivatives with respect to ~r ′. Note that in
deriving eq. (19) we integrated by parts twice, and in each case we dropped the surface

term at infinity (which is valid since ρ and ~∇ρ vanish at infinity by assumption). Thus,
we have shown that eq. (17), subject to restrictions on ρ(~r) at infinity, satisfies

~∇
2~∇

−2ρ(~r) = ~∇
−2~∇

2ρ(~r) = ρ(~r) ,

which confirms that both ~∇
2~∇

−2 and ~∇
2~∇

−2 are equivalent to the identity operator.
The inverse Laplacian can also be used to determine the Green function of Poisson’s

equation. First we assume that the potential vanishes sufficiently fast at infinity, as
discussed below eq. (10). We define the Green function G(~r,~r ′) to be the solution of

~∇
2G(~r,~r ′) = −4πδ3(~r − ~r

′) . (20)

The factor of −4π is conventional (although not the convention adopted by Boas). Then,

G(~r,~r ′) = −4π~∇−2δ3(~r − ~r
′) =

∫

δ3(~r ′′ − ~r ′)

|~r − ~r ′′|
d3r′′ =

1

|~r − ~r ′|
. (21)

Thus, the inverse Laplacian provides a very quick derivation of the Green function. The
interpretation of the Green function is clear—it is the potential that arises due to the
presence of a point charge located at ~r ′. The utility of the Green function is that it can
be used to construct the potential for an arbitrary charge density via

Φ(~r) =

∫

G(~r,~r ′)ρ(~r ′)d3r′ , (22)

since eq. (22) implies that Φ(~r) satisfies the Poisson equation, i.e.,

~∇
2Φ(~r) =

∫

ρ(~r)~∇2G(~r,~r ′) = −4π

∫

ρ(~r)δ3(~r − ~r
′) = −4πρ(~r) .

Another interpretation of the Green function can be ascertained from eq. (21). The
Dirac delta function is the function space analog of the Kronecker delta δij . Thus,
the Dirac delta function is an infinite dimensional matrix corresponding to the identity
matrix, where δ3(~r − ~r ′) are the matrix elements of this infinite dimensional matrix.
Apart from the overall factor of −4π (which is a matter of convention), G(~r,~r ′) are the
matrix elements of the infinite dimensional matrix that represents the inverse Laplacian.

In more general boundary value problems, one must solve Poisson’s equation in a
restricted region of space, V . In this case, we must specify the boundary conditions
on the closed surface S of V . The corresponding Green function is still a solution to
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eq. (20), but it now must also satisfy the relevant boundary conditions. Thus, in analogy
to eq. (14), the Green function takes the form

G(~r,~r ′) = F (~r,~r ′) +
1

|~r − ~r ′|
, (23)

where F (~r,~r ′) is a solution to Laplace’s equation that is adjusted in order that G(~r,~r ′)
satisfy the relevant boundary conditions. In this case, eq. (22) yields

Φ(~r) =

∫

V

G(~r,~r ′)ρ(~r ′)d3r′ =

∫

V

F (~r,~r ′)ρ(~r ′)d3r′ +

∫

V

ρ(~r ′)

|~r − ~r ′|
d3r′ .

Comparing with eq. (14), we identify

Φc(~r) =

∫

V

F (~r,~r ′)ρ(~r ′)d3r′ .

The inverse Laplacian was defined in eq. (17) under the assumption that it acts
on functions (defined at all points in space) that vanish sufficiently fast at infinity. In
contrast, if the functions are defined only in a restricted region of space V , then the inverse
Laplacian is ill-defined unless one imposes boundary conditions on the closed surface S
of V . This can be understood as follows. If we solve Laplace’s equation inside V , we
find non-trivial solutions, denoted by Φc(~r) in eq. (9). That is, the Laplacian possesses
an eigenfunction Φc(~r) with corresponding eigenvalue equal to zero. This immediately

implies that ~∇−2 is ill-defined; otherwise one would obtain eq. (17) instead of the correct
result given in eq. (14).2 This means that eq. (16) does not determine Φ(~r) uniquely. This
is not surprising, as we have not yet specified the boundary conditions on S. However,
once we specify these conditions, Φ(~r) is uniquely determined. This means that the

definition of ~∇−2 [which generalizes eq. (17)] becomes well-defined. This is not surprising,
since we know that the form of the Green function depends in detail on the boundary
conditions that are applied, which determines F (~r,~r ′) as indicated in eq. (23).

5. An application of the inverse Laplacian

In this section, we provide an interesting application of the inverse Laplacian in
proving the Helmholtz decomposition of a vector field ~V (~r) that exists in all of space.

We assume that ~V (~r) vanishes sufficiently fast as r → ∞. The Helmholtz theorem states
that the following decomposition is unique,

~V = ~Vtr + ~Vlong , where ~∇·~Vtr = 0 and ~∇× ~Vlong = 0 . (24)

Any vector ~Vtr that satisfies ~∇·~Vtr = 0 is called solenoidal or transverse. Any vector
~Vlong that satisfies ~∇× ~Vlong = 0 is called irrotational or longitudinal.3

2Consider the analogous case of a finite dimensional operator and its matrix representationM . If M
has a zero eigenvalue, then its determinant vanishes (since detM is the product of its eigenvalues), in
which case M−1 is ill-defined.

3The terminology transverse and longitudinal implicit in eq. (24) arises from the study of vector

waves of the form ~V (~r, t) = ~E0e
i~k·~r−iωt. Then, ~∇·~Vtr = 0 implies that ~k·~Vtr = 0, which means that

~Vtr is transverse to the direction of the wave (which propagates along ~k). Likewise, ~∇ × ~Vlong = 0

implies that ~k×~Vlong = 0, which means that ~Vlong is longitudinal, i.e. parallel to the direction of the
wave.
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To prove that the decomposition given in eq. (24) exists, we can directly construct
~Vtr and ~Vlong with the help of the inverse Laplacian. I claim that

~Vlong = ~∇~∇
−2(~∇·~V ) . (25)

First, observe that ~Vlong = ~∇ψ, where ψ ≡ ~∇−2(~∇·~V ). Thus ~∇×~Vlong = ~∇×~∇ψ = 0,

as required. Next, we use eqs. (24) and (25) to determine ~Vtr,

~Vtr = ~V − ~Vlong = ~V − ~∇~∇
−2(~∇·~V ) . (26)

We now check that

~∇·~Vtr = ~∇·

[

~V − ~∇~∇
−2(~∇·~V )

]

= ~∇·~V − ~∇
2~∇

−2(~∇·~V ) = ~∇·~V − ~∇·~V = 0 ,

as required. This completes the proof that the Helmholtz decomposition exists.
Using the definition of the inverse Laplacian given by eq. (17), it follows from eq. (25)

that

~Vlong(~r) = −
1

4π
~∇

∫

~∇′
·~V (~r ′)

|~r − ~r ′|
d3r′ ,

where the integral is taken over all space. We can also determine ~Vtr from eq. (26)

~Vtr(~r) = ~V (~r)− ~Vlong(~r) = ~V (~r) +
1

4π
~∇

∫

~∇′
·~V (~r ′)

|~r − ~r ′|
d3r′ . (27)

In the Appendix [cf. eq. (39)], we demonstrate that an equivalent expression for ~Vtr is
given by:

~Vtr = −~∇× ~∇
−2(~∇× ~V ) . (28)

which implies that an equivalent form to eq. (27) is given by:

~Vtr(~r) =
1

4π
~∇×

∫

~∇′
× ~V (~r ′)

|~r − ~r
′|

d3r′ . (29)

Hence, the Helmholtz decomposition of a vector field, defined over all space, is unique
and is given by

~V = ~∇~∇
−2(~∇·~V )− ~∇× ~∇

−2(~∇× ~V ) ,

or equivalently by:

~V (~r) = −
1

4π
~∇

∫

~∇
′
·~V (~r ′)

|~r − ~r ′|
d3r′ +

1

4π
~∇×

∫

~∇
′
× ~V (~r ′)

|~r − ~r ′|
d3r′ , (30)

where the integration is taken over all space. It should be emphasized that eq. (30) is an

identity for any vector field ~V (~r) which vanishes sufficiently fast at infinity.
Another version of the Helmholtz decomposition states that under the same conditions

as indicated above, ~V (~r) can be rewritten in the form:

~V (~r) = −~∇Φ(~r) + ~∇× ~A(~r) .
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Using eq. (30), we can read off the functions Φ(~r) and ~A(~r),

Φ(~r) =
1

4π

∫

~∇′
·~V (~r ′)

|~r − ~r ′|
d3r′ , ~A(~r) =

1

4π

∫

~∇′
× ~V (~r ′)

|~r − ~r ′|
d3r′ .

For example, if ~V (~r) = ~E(~r) is the electrostatic field, then ~∇× ~E = 0 so that ~A(~r) = 0.

Using ~∇· ~E = 4πρ, the above result for Φ(~r) reduces to eq. (18) as expected.

APPENDIX: Proof of eq. (28)

In this appendix, I provide additional details to the discussion of the Helmholtz
decomposition, ~V = ~Vtr + ~Vlong [cf. eq. (24)]. In Section 5, we showed that

~Vlong = ~∇~∇
−2(~∇·~V ) , ~Vtr = ~V − ~Vlong . (31)

Here, I will derive an alternative expression for ~Vtr,

~Vtr = −~∇× ~∇
−2(~∇× ~V ) . (32)

To derive this result, we need to establish two identities. First, for any vector function
~A(~r) that vanishes sufficiently fast at infinity,

~∇× ~∇
−2( ~A) = ~∇

−2(~∇× ~A) . (33)

To prove this result, we employ the definition of the inverse Laplacian given in eq. (17),
which yields4

−4π~∇× ~∇
−2( ~A) = ~∇×

∫

~A(~r ′)

|~r − ~r
′|
d3r′ = −

∫

~A(~r ′)× ~∇

(

1

|~r − ~r
′|

)

d3r′ . (35)

Noting that

~∇

(

1

|~r − ~r ′|

)

= −~∇
′

(

1

|~r − ~r ′|

)

, (36)

it follows that

~∇×

∫

~A(~r ′)

|~r − ~r
′|
d3r′ =

∫

~A(~r ′)× ~∇
′

(

1

|~r − ~r
′|

)

d3r′ ,

To evaluate this last integral, we make use of the identity

~∇
′
×

(

~A(~r ′)

|~r − ~r ′|

)

=
1

|~r − ~r ′|
~∇

′
× ~A(~r ′)− ~A(~r ′)× ~∇

′

(

1

|~r − ~r ′|

)

,

4In obtaining eq. (35), we have used

~∇×

(

ψ ~B

)

= ψ~∇× ~B − ~B × ~∇ψ . (34)

In the application to eq. (35), ψ ≡ 1/|~r − ~r ′| and ~B ≡ ~A(~r ′). Since the latter is independent of ~r, it

follows that ~∇× ~B = 0.
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so that
∫

~A(~r ′)× ~∇
′

(

1

|~r − ~r ′|

)

d3r′ =

∫

~∇′
× ~A(~r ′)

|~r − ~r ′|
d3r′ −

∫

~∇
′
×

(

~A(~r ′)

|~r − ~r ′|

)

d3r′ .

We can convert the last integral to a surface integral evaluated at the surface at infinity
(denoted by S∞ below) using the analog of the divergence theorem for the curl:

∫

~∇
′
×

(

~A(~r ′)

|~r − ~r
′|

)

d3r′ =

∮

S∞

r̂′
× ~A(~r ′)

|~r − ~r
′|

r′ 2dΩ .

Assuming that ~A(~r ′) vanishes fast enough at infinity, the surface integral vanishes. In
this case,

∫

~A(~r ′)× ~∇
′

(

1

|~r − ~r ′|

)

d3r′ =

∫

~∇′
× ~A(~r ′)

|~r − ~r ′|
d3r′ .

What we have just done here is integrated by parts and dropped the surface terms, which
vanish under the stated conditions. Hence,

−4π~∇× ~∇
−2( ~A) =

∫

~∇′
× ~A(~r ′)

|~r − ~r ′|
d3r′ = −4π~∇−2(~∇× ~A) ,

after again using the definition of the inverse Laplacian given in eq. (17). Thus, we have
verified eq. (33) as promised.

Second, for any scalar function ψ(~r) that vanishes sufficiently fast at infinity,

~∇~∇
−2(ψ) = ~∇

−2(~∇ψ) . (37)

This result can also be proven using eq. (36) and an integration by parts,5

−4π~∇~∇
−2(ψ) = ~∇

∫

ψ(~r)

|~r − ~r ′|
d3r′ =

∫

~∇′ψ

|~r − ~r ′|
d3r′ = −4π~∇−2(~∇ψ) ,

which confirms eq. (37). For completeness, we note a third identity, not needed in the
computations of this Appendix, which can be proven by a similar technique,

~∇· ~∇
−2( ~A) = ~∇

−2(~∇· ~A) . (38)

With the two identities eqs. (33) and (37) in hand, we can now verify eq. (32):6

~Vtr = −~∇× ~∇
−2(~∇× ~V ) = −~∇

−2
[

~∇× (~∇× ~V )
]

= ~∇
−2
[

~∇
2~V − ~∇(~∇·~V )

]

= ~V − ~∇
−2
[

~∇(~∇·~V )
]

= ~V − ~∇~∇
−2(~∇·~V ) = ~V − ~Vlong , (39)

after using eq. (33) at step 2 and eq. (37) at the penultimate step. Thus, eq. (28) is
confirmed.

5The key step here is the identity ~∇(φψ) = φ~∇ψ + ψ~∇φ, where φ = 1/(|~r − ~r ′|), and the analog of
the divergence theorem for the gradient,

∫

~∇

(

ψ(~r ′)

|~r − ~r ′|

)

d3r′ =

∫

S∞

ψ(~r ′)r̂′

|~r − ~r ′|
r2dΩ ,

which vanishes if ψ(~r ′) vanishes sufficiently fast at infinity.
6In this derivation, we have employed the vector identity, ~∇× (~∇× ~V ) = ~∇(~∇·~V )− ~∇2~V .
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