
Physics 116C Solutions to the Practice Final Exam Fall 2011
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Consider the differential equation

x3y′′ + x(x+ 1)y′ − y = 0 (1)

(a) Explain why the method of Frobenius method fails for this problem.

The method of Frobenius fails because it works only for Fuchsian equations, of the type

z2u′′ + p(z)zu′ + q(z)u = 0 , (2)

where p(z) and q(z) are non-singular as z → 0. This is clearly not the case for (1).

(b) Make an inspired guess, and assume that a solution to eq. (1) exists of the form

y(x) =

∞
∑

n=0

cn
xn

(3)

Determine the coefficients cn. Then sum the series and identify y(x) as a well known function.

Inserting the series (3) into equation (1) we have:

∞
∑

n=0

cn(−n− 1)(−n)x−n+1 +
∞
∑

n=0

cn(−n)(x−n+1 + x−n)−
∞
∑

n=0

cnx
−n = 0 , (4)

which we can rewrite as:

∞
∑

n=0

{[(n+ 2)(n + 1)− (n+ 1)]cn+1 − (n+ 1)cn}x−n = 0 . (5)

or equivalently,

∞
∑

n=0

(n+ 1)x−n [(n+ 1)cn+1 − cn] = 0 . (6)

Consequently,

cn+1 =
cn

n+ 1
, for n = 0, 1, 2, 3, . . . . (7)

The solution to this equation is:

cn =
cn−1

n
=

cn−2

n(n− 1)
= · · · = c0

n!
. (8)

Hence, the solution to (1) is

y(x) = c0

∞
∑

n=0

x−n

n!
= c0 e

1/x (9)
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Consider the Sturm-Liouville problem:

x2y′′ + xy′ + λy = 0 (10)

subject to the boundary conditions: y(1) = y(b) = 0, where b > 1.

(a) Eq. (10) is an Euler differential equation that can be solved exactly. Find all the eigenvalues
λ and the corresponding eigenfunctions yλ(x).

The equation can be solves with a change of variables x = ez

x
∂y

∂x
=

dy

dz
, x2

∂2y

∂x2
=

d2y

dz2
− dy

dz
, (11)

y′′(z)− y′(z) + y′(z) + λy(z) = 0 =⇒ y′′ + λy = 0 =⇒ y(z) = A cos
√
λz +B sin

√
λz (12)

In terms of the variable z = lnx, the boundary conditions become y(z = 0) = 0 and y(z = ln b) = 0:

y(z = 0) = 0 =⇒ A = 0, y(z = ln b) = 0 =⇒
√
λ =

πn

ln b
, for n = 1, 2, 3, . . . (13)

The eigenvalues are λn = π2n2/ ln2 b and the unnormalized eigenfunctions are yλ(x) = sin (πn lnx/ ln b).

(b) Rewrite eq. (10) in Sturm-Liouville form:

d

dx
[A(x)y′] + [λB(x) +C(x)]y = 0. (14)

Then, using a theorem proven in class (whose proof you need not repeat here), write down the
orthogonality relation satisfied by the eigenfunctions found in part (a).

For eq. (10) to be written in Sturm-Liouville form, it has to be written in the form

d

dx
[A(x)y′] + [λB(x) + C(x)]y = A(x)y′′ +A′(x)y′ + [λB(x) + C(x)]y = 0, (15)

that is, the y′ factor must be the derivative of the y′′ one. This is achieved by dividing by x:

xy′′ + y′ +
λ

x
y = 0 =⇒ A(x) = x , B(x) =

1

x
, C(x) = 0 (16)

Then, because of Sturm-Liouville’s theorem, λ acquires a discrete number of eigenvalues which are
positive and the eigenfunctions relative to different λ eigenvalues are orthonormal

∫ b

1
B(x)yλ(x)yλ′(x)dx = 0 for λ 6= λ′ . (17)

That is,

∫ b

1
sin

(

πn
lnx

ln b

)

sin

(

πm
lnx

ln b

)

dx

x
= 0 for n 6= m (18)

(c) Determine the normalization constant of the eigenfunctions such that the result given in
part (b) is an orthonormality relation.

2



We have to calculate

∫ b

1
sin2

(

πn
lnx

ln b

)

dx

x
=

ln b

πn

∫ πn

0
sin2 y dy = 1

2 ln b , (19)

after changing variables to y = πn lnx/ ln b. Hence, the orthonormal eigenfunctions are

√

2

ln b
sin

(

πn
lnx

ln b

)

, for n = 1, 2, 3, . . . (20)

3

Water at 100o is flowing though a long cylindrical pipe of radius 1 rapidly enough so that we may
assume that the temperature is 100o at all points. At t = 0, the water is turned off and the surface
of the pipe is maintained at 40o from then on (neglect the wall thickness of the pipe). Find the
temperature distribution in the water as a function of r and t.

We solve the heat flow equation in 2 dimensions:

∇2u =
1

α2

∂

∂t
u (21)

The usual separation of variables u = F (x, y)T (t) = R(r)Θ(θ)T (t) gives

∇2F

F
=

1

α2

T ′

T
= −k2 =⇒ T (t) = e−k2α2t (22)

r

R
(rR′)′ + k2r2 = −Θ′′

Θ
= n2 =⇒ Θ(θ) = e±inθ , R(r) = Jn(kr) (23)

Our solution is then

u(r, θ, t) = AnJn(kr)e
±inθe−k2α2t (24)

and it has to satisfy the initial and boundary conditions u(r, θ, t = 0) = 100 , u(1, θ, t > 0) = 40.
As there is no θ-dependence in these conditions, the solution will be θ-independent, that is, n = 0.
Then,

u = J0(kr)e
−k2α2t (25)

To satisfy the boundary conditions, let us add a constant term: the new function still satisfy the
heat flow equation because of its linearity:

u = J0(kr)e
−k2α2t + 40 (26)

Then

u(r = 1, t) = 40 = 40 + J0(k)e
−k2α2t =⇒ J0(k)e

−k2α2t = 0 for all values of t , (27)

which implies that J0(k) = 0. That is, k = km is a zero for the Bessel function J0(x), where m is a
positive integer. Thus,

u(r, t) = 40 +
∞
∑

m=1

AmJ0(kmr)e−k2
m
α2t (28)

3



Now we must satisfy the initial condition

u(r, t = 0) = 100 = 40 +

∞
∑

m=1

AmJ0(kmr) =⇒
∞
∑

m=1

AmJ0(kmr) = 60 . (29)

We can solve for the Am by multiplying both sides of the above equation by rJ0(knr) and integrating
from r = 0 to r = 1 using the orthogonality relation,

∫ 1

0
rJ0(knr)J0(kmr)dr = 1

2 [J1(kn)]
2δnm . (30)

It follows that1

1
2 [J1(kn)]

2An = 60

∫ 1

0
rJ0(knr)dr =

60

kn
rJ1(knr)

∣

∣

∣

∣

∣

1

0

=
60

kn
J1(kn) . (31)

Hence,

An =
120

knJ1(kn)
. (32)

Inserting this result into (28) yields the final result,

u(r, t) = 40 + 120

∞
∑

m=1

J0(kmr)

kmJ1(km)
e−k2

m
α2t . (33)

4

The electric potential φ(~r), due to an electric charge density ρ(~r) is given by

φ(~r) =

∫

ρ(~r ′)

|~r − ~r ′|dV
′ (34)

Consider the charge distribution:

ρ(r′, θ′, φ′) =

{

ρ0 cos θ
′, for 0 ≤ r′ < R,

0, for r′ > R,
(35)

where θ′ is measured with respect to a fixed z-axis, R is a fixed radius, and ρ0 is a constant.

(a) Evaluate φ(r) assuming that r points along the z-axis, for all r > R.

We use the identity

1

|~r − ~r ′| =
∞
∑

ℓ=0

r′ℓ

rℓ+1
Pℓ(cos γ) , r > r′. (36)

1The indefinite integral can be performed by setting p = 1 in the recursion relation given in eq. (15.1) on p. 592 of
Boas and then integrating both sides of the equation.
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where γ is the angle between ~r and ~r ′. Taking ~r to lie the z axis, i.e. ~r = rk̂, we note that θ′ = 0
which yields γ = θ′. Hence,

φ(~r = rk̂) =

∞
∑

ℓ=0

∫

r′ℓ

rℓ+1
Pℓ(cos θ

′)ρ0 cos θ
′r′2dr′dΩ′ = ρ0

∞
∑

ℓ=0

∫ R

0

r′ℓ+2

rℓ+1
dr′2π

∫ 1

−1
Pℓ(x)P1(x)dx

=
4πρ0
3

∫ R

0

r′3

r2
dr′ =

πρ0R
4

3r2
(37)

(b) Assuming that φ(~r) → 0 as r → ∞, write down a general solution to Laplace’s equation for
φ(~r) in the region r > R. (In this region, there is no electric charge, so φ(~r) satisfies ~∇2φ = 0)
Use spherical co-ordinates (r, θ, φ); your answer should have the form of an expansion in spherical
harmonics (summed over ℓ and m). At this point, the expansion coefficients are undetermined.

Laplace’s equation in spherical coordinates is solved by separation of variables as usual and gives:

φ(~r) =

∞
∑

ℓ=0

ℓ
∑

m=ℓ

(aℓmrℓ + bℓmr−ℓ−1)Y m
ℓ (θ, φ) (38)

where the spherical harmonics, Y m
ℓ (θ, φ) ∝ Pm

ℓ (cos θ)e±imφ. Because we are looking for a solution
that goes to 0 at infinity, the coefficients aℓm = 0.

(c) Argue from the azimuthal symmetry of the problem that φ(r, θ, φ) must be independent of
φ. Conclude that the general solution for φ(r, θ, φ) has the form of an expansion over Legendre
polynomials (summed over ℓ).

The boundary conditions we have to satisfy are (35), where there is no φ dependence; then, also
our solution will have no φ-dependence, that is, we will have m = 0 in (38). This is because to find
the coefficients bℓm we use orthogonality relations of the Y m

ℓ . Then we will have a sum of terms
proportional to P 0

ℓ (cos θ) = Pℓ(cos θ).

(d) Now for the slick part. In part (a), you computed φ(~r) assuming that ~r points along the z-
axis, for all r > R. Using the expansion obtained in part (c), set θ = 0 and determine the expansion
coefficients by comparing like powers of r. Write down your final solution for φ(~r) , which is now
valid for all ~r such that r > R.

The solution for θ = 0 is writable as

φ(r, θ = 0) =

∞
∑

ℓ=0

bℓr
−ℓ−1Pℓ(1) =

∞
∑

ℓ=0

bℓr
−ℓ−1 (39)

From (37) we can read the coefficients bℓ:

bℓ = δℓ1 ·
πρ0R

4

3
(40)

Then our solution for any ~r (r > R) is

φ(~r) =
πρ0R

4 cos θ

3r2
. (41)
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Suppose it is known that 1% of the population have a certain kind of cancer. It is also known that
a test for this kind of cancer is positive in 99% of the people who have it but is also positive in 2%
of the people who do not have it. What is the probability that a person who tests positive has a
cancer of this type?

Bayes’ formula states that

P (B|A) = P (A ∩B)

P (A)
, (42)

where in Boas’ notation, A ∩B = AB and P(B|A) = PA(B). Likewise,

P (A|B) =
P (A ∩B)

P (B)
. (43)

Diving these two formulae, the common factor of P (A ∩B) cancels. Recalling that

P (B) = P (B|A)P (A) + P (B|Ac)P (Ac) , (44)

where the complement of A, denoted by Ac, consists of are all events not contained in A, it follows
that

P (A|B) =
P (B|A)P (A)

P (B)
=

P (B|A)P (A)

P (B|A)P (A) + P (B|Ac)P (Ac)
. (45)

Let A be the condition in which the patient has the cancer and B be the test being positive:
The requested probability is the probability of A given that B occurs,

P (A|B) =
P (B|A)P (A)

P (B)
=

P (B|A)P (A)

P (B|A)P (A) + P (B|Ac)P (Ac)
=

0.99 · 0.01
0.99 · 0.01 + 0.02 · 0.99 =

1

3
. (46)

That is, there is a 2/3 probability that the result of the test is a false positive.

6

Let x be a continuous random variable such that x is non-negative. The probability density is given
by

f(x) = c e−x/λ (47)

where λ is a positive constant.

(a) Determine the value of the constant c.

Probability has to be normalized to 1, so we have

1 =

∫

∞

0
p(x)dx = c

∫

∞

0
e−x/λdx = cλ =⇒ c =

1

λ
. (48)
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(b) Compute the expectation value E(x).

integrating by parts, we obtain:

E(x) =

∫

∞

0
x
1

λ
e−x/λdx = −xe−x/λ

∣

∣

∣

∣

∞

0

+

∫

∞

0
e−x/λdx = λ . (49)

(c) Compute the variance Var(x).

Using Var(x) = E(x2)− [E(x)]2, we again integrate by parts to obtain.

Var(x) =

∫

∞

0
x2

1

λ
e−x/λdx− λ2 = −λ2 − x2e−x/λ

∣

∣

∣

∣

∞

0

+ 2

∫

xe−x/λdx = −λ2 + 2λ2 = λ2 . (50)

The standard deviation is then given by

σ =
√

Var(x) = λ . (51)

(d) What is the probability that x falls within three standard deviations of the mean?

Since the mean of the distribution is equal to λ and the variable x is defined only for non-negative
values, we see that x falls within three standard deviations of the mean if |x− λ| ≤ 3λ. Given that
x ≥ 0, it follows that 0 ≤ x ≤ 4λ. Hence,

P =

∫ 4λ

0
p(x)dx = 1− e−4 = 0.9817 . (52)

(e) Evaluate the cumulative distribution function F (x).

F (x) =

∫ x

0
p(t)dt =

∫ x

0

1

λ
e−t/λdt = 1− e−x/λ . (53)

Note that F (0) = 0 and F (∞) = 1 as required for the cumulative distribution function when the
random variable x can only take on non-negative values.
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