1 Boas, problem p.564, 12.1-1

Solve the following differential equations by series and by another elementary method and check that the results agree:

$$
\begin{equation*}
x y^{\prime}=x y+y \tag{1}
\end{equation*}
$$

- by series: substituting the power series $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ in (1) we have

$$
\begin{equation*}
x y^{\prime}-x y-y=0 \Longleftrightarrow x\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)-x\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)-\sum_{n=0}^{\infty} a_{n} x^{n}=0 \tag{2}
\end{equation*}
$$

calling $n=m+1$ and substituting, $\quad \sum_{m=0}^{\infty}(m+1) a_{m+1} x^{m+1}-\sum_{n=0}^{\infty} a_{n} x^{n+1}-\sum_{n=0}^{\infty} a_{n} x^{n}=0$

$$
\begin{equation*}
\sum_{m=0}^{\infty}\left[(m+1) a_{m+1}-a_{m}\right] x^{m+1}-a_{0}-\sum_{m=0}^{\infty} a_{m+1} x^{m+1}=0 \tag{3}
\end{equation*}
$$

The only term with a 0 -th power of x is a_{0}, which tells us $a_{0}=0$. Asking for the coefficient of the $(m+1)$-th power of x in (4) to be zero we get

$$
\begin{equation*}
a_{m+1}=\frac{1}{m} a_{m}=\frac{1}{m} \frac{1}{m-1} a_{m-1}=\ldots=\frac{1}{m!} a_{1} \tag{5}
\end{equation*}
$$

So the solution for (1) is

$$
\begin{equation*}
y(x)=\sum_{m=0}^{\infty} a_{m+1} x^{m+1}=a_{1} \sum_{m=0}^{\infty} \frac{1}{m!} x^{m+1} \tag{6}
\end{equation*}
$$

Factoring out one power of x, one recognizes the power series of the exponential e^{x} and writes the solution as

$$
\begin{equation*}
y(x)=a_{1} x e^{x} \tag{7}
\end{equation*}
$$

- by separation of variables:

$$
\begin{equation*}
\frac{d y}{y}=\left(1+\frac{1}{x}\right) d x \Longrightarrow \ln y=x+\ln x+\ln c \Longrightarrow y(x)=c x e^{x} \tag{8}
\end{equation*}
$$

which is the same as in (77).

2 Boas, problem p.564, 12.1-10

Solve the following differential equations by series and by another elementary method and check that the results agree:

$$
\begin{equation*}
y^{\prime \prime}-4 x y^{\prime}+\left(4 x^{2}-2\right) y=0 \tag{9}
\end{equation*}
$$

- by series: substituting the power series $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ in (9) we have

$$
\begin{align*}
& \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}-4 x \sum_{n=1}^{\infty} n a_{n} x^{n-1}+\left(4 x^{2}-2\right) \sum_{n=0}^{\infty} a_{n} x^{n}=0 \tag{10}\\
& 2 a_{2}+6 a_{3} x+\sum_{n=2}^{\infty}(n+2)(n+1) a_{n+2} x^{n}-4 a_{1} x-4 \sum_{n=2}^{\infty} n a_{n} x^{n}+4 \sum_{n=0}^{\infty} a_{n} x^{n+2}-2 a_{0}-2 a_{1} x-2 \sum_{n=2}^{\infty} a_{n} x^{n}=0 \\
& 2 a_{2}+6 a_{3} x-4 a_{1} x-2 a_{0}-2 a_{1} x+\sum_{n=2}^{\infty}\left[(n+2)(n+1) a_{n+2}-2(1+2 n) a_{n}+4 a_{n-2}\right] x^{n}=0
\end{align*}
$$

the first terms give

$$
\begin{equation*}
a_{2}=a_{0}, \quad a_{3}=a_{1} \tag{11}
\end{equation*}
$$

while the recursion formula is

$$
\begin{equation*}
(n+2)(n+1) a_{n+2}-2(1+2 n) a_{n}+4 a_{n-2}=0, \quad \text { for } n \geq 2 . \tag{12}
\end{equation*}
$$

Consider first the case of $n=2 p$ even. Using (11), we can use the recursion formula to obtain a_{4}. By repeated use of the recursion formula, we can obtain a_{6}, a_{8}, \ldots. After computing a few values, it appears that the general form is

$$
\begin{equation*}
a_{2 p}=\frac{a_{0}}{p!} . \tag{13}
\end{equation*}
$$

Note that (13) is also valid for $p=0$ and $p=1$. To test the validity of (13), we insert this equation into (12):

$$
\begin{equation*}
\frac{2(p+1)(2 p+1)}{(p+1)!}-\frac{2(1+4 p)}{p!}+\frac{4}{(p-1)!} \stackrel{?}{=} 0 . \tag{14}
\end{equation*}
$$

Simple algebra verifies the validity of the equation above. Next, consider the case of $n=2 p+1$ odd. Using (11), we can use the recursion formula to obtain a_{5}. By repeated use of the recursion formula, we can obtain a_{7}, a_{9}, \ldots. After computing a few values, it appears that the general form is

$$
\begin{equation*}
a_{2 p+1}=\frac{a_{1}}{p!} . \tag{15}
\end{equation*}
$$

Note that (13) is also valid for $p=0$ and $p=1$. To test the validity of (15), we insert this equation into (12):

$$
\begin{equation*}
\frac{2(p+1)(2 p+3)}{(p+1)!}-\frac{2(3+4 p)}{p!}+\frac{4}{(p-1)!} \stackrel{?}{=} 0 . \tag{16}
\end{equation*}
$$

Simple algebra verifies the validity of the equation above. Hence, we conclude that

$$
\begin{align*}
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n} & =\sum_{p=0}^{\infty} a_{2 p} x^{2 p}+\sum_{p=0}^{\infty} a_{2 p+1} x^{2 p+1} \\
& =a_{0} \sum_{p=0}^{\infty} \frac{x^{2 p}}{p!}+a_{1} \sum_{p=0}^{\infty} \frac{x^{2 p+1}}{p!} \\
& =a_{0} \sum_{p=0}^{\infty} \frac{\left[x^{2}\right]^{p}}{p!}+a_{1} x \sum_{p=0}^{\infty} \frac{\left[x^{2}\right]^{p}}{p!} \\
& =\left(a_{0}+a_{1} x\right) e^{x^{2}} \tag{17}
\end{align*}
$$

- reduction of the order: one checks that the equation is solved by $y_{0}(x)=e^{x^{2}}$; then we look for another solution of the form $y(x)=u(x) y_{0}(x)$:

$$
\begin{align*}
& y^{\prime}=u^{\prime} y_{0}+u y_{0}^{\prime}, \quad y^{\prime \prime}=u^{\prime \prime} y_{0}+2 u^{\prime} y_{0}^{\prime}+u y_{0}^{\prime \prime} \tag{18}\\
& y^{\prime \prime}-4 x y^{\prime}+\left(4 x^{2}-2\right) y=u\left[y_{0}^{\prime \prime}-4 x y_{0}^{\prime}+\left(4 x^{2}-2\right) y_{0}\right]+2 u^{\prime} y_{0}^{\prime}+u^{\prime \prime} y_{0}-4 x u^{\prime} y_{0}=0 \tag{19}\\
& e^{x^{2}}\left[u^{\prime \prime}-4 x u^{\prime}+4 x u^{\prime}\right]=0 \Longrightarrow u^{\prime \prime}=0 \Longrightarrow u=A+B x \tag{20}\\
& y=(A+B x) e^{x^{2}} \tag{21}
\end{align*}
$$

3 Boas, problem p.586, 12.11-5

Solve the following differential equations by the method of Frobenius:

$$
\begin{equation*}
2 x y^{\prime \prime}+y^{\prime}+2 y=0 \tag{22}
\end{equation*}
$$

Substituting the generalized power series $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n+s}$ in (22) we have

$$
\begin{equation*}
2 x \sum_{n=0}^{\infty}(n+s)(n+s-1) a_{n} x^{n+s-2}+\sum_{n=0}^{\infty}(n+s) a_{n} x^{n+s-1}+2 \sum_{n=0}^{\infty} a_{n} x^{n+s}=0 \tag{23}
\end{equation*}
$$

$$
\begin{equation*}
\text { the } n=0 \text { term gives }\left[2 s(s-1) a_{0}+s a_{0}\right] x^{n+s-1}=0 \Longrightarrow 2 s^{2}-s=0 \Longrightarrow s=0, \frac{1}{2} \tag{24}
\end{equation*}
$$

while the other terms are $\sum_{n=1}^{\infty}\left[2(n+s)(n+s-1) a_{n}+(n+s) a_{n}+2 a_{n-1}\right] x^{n+s-1}=0$

For $s=0$ we have

$$
\begin{align*}
& \sum_{n=1}^{\infty}\left[n(2 n-1) a_{n}+2 a_{n-1}\right] x^{n-1}=0 \tag{27}\\
& a_{n}=\frac{-2}{n(2 n-1)} a_{n-1}=\ldots=\frac{(-2)^{n}}{n!(2 n-1)!!} a_{0} \tag{28}
\end{align*}
$$

Where the double factorial is $m!!=m(m-2)(m-4) \ldots$. Also, we note that $(2 n)!=2 n(2 n-1)(2 n-$ $2)(2 n-3) \ldots=2^{n}(2 n-1)!!n!$. Inserting these coefficients back in the series gives

$$
\begin{equation*}
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=0}^{\infty} \frac{(-2 x)^{n}}{n!(2 n-1)!!} a_{0}=\sum_{n=0}^{\infty} \frac{(-4 x)^{n}}{(2 n)!} a_{0}=a_{0} \sum_{n=0} \frac{(-1)^{n}(2 \sqrt{x})^{2 n}}{(2 n)!}=a_{0} \cos \left(2 x^{1 / 2}\right) . \tag{29}
\end{equation*}
$$

For $s=\frac{1}{2}$ we have instead

$$
\begin{align*}
\sum_{n=1}^{\infty}\left[n(2 n+1) a_{n}+2 a_{n-1}\right] x^{n-\frac{1}{2}}=0 & \Longrightarrow a_{n}=\frac{-2}{n(2 n+1)} a_{n-1}=\ldots=\frac{(-2)^{n}}{n!(2 n+1)!!} a_{0} \tag{30}\\
& \Longrightarrow y(x)=a_{0} \sum \frac{(-1)^{n}(2 \sqrt{x})^{2 n+1}}{(2 n+1)!}=a_{0} \sin \left(2 x^{1 / 2}\right) \tag{31}
\end{align*}
$$

The general solution is then given by the linear combination of (29), (31):

$$
\begin{equation*}
y=A \cos \left(2 x^{1 / 2}\right)+B \sin \left(2 x^{1 / 2}\right) \tag{32}
\end{equation*}
$$

4 Boas, problem p.587, 12.11-14

Solve $y^{\prime \prime}=-y$ by the Frobenius method.
We take the generalized power series $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n+s}$ so that

$$
\begin{equation*}
y^{\prime \prime}+y=\sum_{n=0}^{\infty}\left[(n+s)(n+s-1) a_{n} x^{n+s-2}+a_{n} x^{n+s}\right]=0 \tag{33}
\end{equation*}
$$

Taking the $n=0$ term gives $s(s-1) a_{0}=0$, that is, $s=0,1$. For $s=0$ we have

$$
n(n-1) a_{n}+a_{n-2}=0 \Longrightarrow a_{n}=\frac{-a_{n-2}}{n(n-1)} \Longrightarrow\left\{\begin{array}{l}
a_{2 n+1}=\frac{(-1)^{n}}{(2 n+1)!} a_{1} \tag{34}\\
a_{2 n}=\frac{(-1)^{n}}{(2 n)!} a_{0}
\end{array}\right.
$$

These two series are those defining the sine and the cosine, so that we have found the well known result $y=a_{0} \cos x+a_{1} \sin x$.

If we now take $s=1$ we have

$$
\begin{equation*}
(n+1) n b_{n}+b_{n-2}=0 \Longrightarrow b_{n}=-\frac{b_{n-2}}{n(n+1)} \tag{35}
\end{equation*}
$$

The solution for $b_{0} \neq 0$ is then

$$
\begin{equation*}
y(x)=\sum_{n=0} b_{n} x^{n+1}=b_{1} \sin x+b_{0} \sum_{n=1} \frac{(-1)^{n}}{(2 n)!} x^{2 n} \tag{36}
\end{equation*}
$$

In this expression we are missing the x^{0} term that would give the expansion of the cosine, and one easily check that this is not a solution of the differential equation. That happens because in (33)) for $s=1$ the first term coefficient reads $(n+1)(n+0) b_{n}$; then, b_{0} coefficient has a 0 in front, which cancels it out from the rest of the problem, so we are calculating the solution modulo the constant b_{0}.

5 Boas, problem p.567, 12.2-2

Show that $P_{l}(-1)=(-1)^{l}$.
Using eq. (2.6) on p. 565 of Boas, the general solution to the Legendre differential equation is:

$$
\begin{align*}
y(x)= & a_{0}\left[1-\frac{l(l+1)}{2!} x^{2}+\frac{l(l+1)(l-2)(l+3)}{4!} x^{4}-\ldots\right] \\
& +a_{1}\left[x-\frac{(l-1)(l+2)}{3!} x^{3}+\frac{(l-1)(l+2)(l-3)(l+4)}{5!} x^{5}-\ldots\right] . \tag{37}
\end{align*}
$$

If ℓ is even, then the Legendre polynomial is defined to be the polynomial proportional to a_{0} (up to an overall normalization determined by convention). If ℓ is odd, then the Legendre polynomial is defined to be the polynomial proportional to a_{1} (up to an overall normalization determined by convention). It immediately follows that if ℓ is even, then $P_{\ell}(x)$ is an even function of x, whereas if ℓ is odd, then $P_{l}(x)$ is an odd function of x. This means that

$$
\begin{equation*}
P_{\ell}(-x)=(-1)^{l} P_{\ell}(x) . \tag{38}
\end{equation*}
$$

The normalization convention for the Legendre polynomials defines $P_{l}(1)=1$. Hence, inserting $x=1$ into (38) yields

$$
\begin{equation*}
P_{l}(-1)=(-1)^{l} \tag{39}
\end{equation*}
$$

Note that eq. (38) is also an immediate consequence of the Rodrigues' formula,

$$
\begin{equation*}
P_{l}(x)=\frac{1}{2^{l} l!} \frac{d^{l}}{d x^{l}}\left(x^{2}-1\right)^{l}, \tag{40}
\end{equation*}
$$

and provides another way of deriving (39).

6 Boas, problem p.567, 12.2-4

We will solve Legendre equation

$$
\begin{equation*}
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+l(l+1) y=0 \tag{41}
\end{equation*}
$$

using the method of reduction of order: given the known solution $P_{l}(x)$, we look for an independent solution of the form $y(x)=P_{l}(x) v(x)$ and then solve for $v(x)$ in (41):

$$
\begin{align*}
& \left(1-x^{2}\right)\left(v^{\prime \prime} P_{l}+2 v^{\prime} P_{l}^{\prime}+v P_{l}^{\prime \prime}\right)-2 x\left(v^{\prime} P_{l}+v P_{l}^{\prime}\right)+l(l+1) P_{l}=0 \tag{42}\\
& \left(1-x^{2}\right)\left(v^{\prime \prime} P_{l}(x)+2 v^{\prime} P_{l}^{\prime}(x)\right)-2 x P_{l}(x) v^{\prime}=0 \Longrightarrow\left(1-x^{2}\right) P_{l}(x) v^{\prime \prime}+2\left(\left(1-x^{2}\right) P_{l}^{\prime}(x)-x P_{l}(x)\right) v^{\prime}=0 \\
& \Longrightarrow \frac{v^{\prime \prime}}{v^{\prime}}=2 \frac{x P_{l}(x)-\left(1-x^{2}\right) P_{l}^{\prime}}{\left(1-x^{2}\right) P_{l}(x)}=2 \frac{x}{1-x^{2}}-2 \frac{P_{l}^{\prime}}{P_{l}}=\frac{1}{1-x}-\frac{1}{1+x}-2 \frac{P_{l}^{\prime}}{P_{l}} \tag{43}
\end{align*}
$$

which is solved by

$$
\begin{align*}
& \ln v^{\prime}=-\ln (1-x)-\ln (1+x)-2 \ln P_{l}=\ln \frac{1}{(1-x)(1+x) P_{l}^{2}}, \text { that is, } \tag{44}\\
& v(x)=\int \frac{d x}{(1-x)(1+x) P_{l}^{2}} \tag{45}
\end{align*}
$$

The second solution of the Legendre equation is then

$$
\begin{equation*}
Q_{l}(x)=P_{l}(x) v(x) \tag{46}
\end{equation*}
$$

We evaluate this expression for the two cases $l=0,1$:

- $l=0: P_{0}(x)=1$, so the other solution is

$$
\begin{equation*}
Q_{0}(x)=\int d x \frac{1}{(1-x)(1+x)}=\frac{1}{2} \int d x\left(\frac{1}{1-x}+\frac{1}{1+x}\right)=\frac{1}{2} \ln \frac{1+x}{1-x} \tag{47}
\end{equation*}
$$

- $l=1: P_{1}(x)=x$, so the other solution is

$$
\begin{align*}
Q_{1}(x) & =x \int d x \frac{1}{(1-x)(1+x) x^{2}}=x \int d x\left(\frac{1}{2} \frac{1}{1-x}+\frac{1}{2} \frac{1}{1+x}+\frac{1}{x^{2}}\right)= \tag{48}\\
& =\frac{x}{2} \ln \frac{1+x}{1-x}-1 \tag{49}
\end{align*}
$$

7 Boas, problem p.568, 12.3-1

We will use the hint in problem 12.3-6: if we write

$$
\begin{equation*}
\frac{d}{d x} u v=D(u v)=\left(D_{u}+D_{v}\right) u v \tag{50}
\end{equation*}
$$

where D_{u}, D_{v} are operators that act only separately on u, v, we have

$$
\begin{equation*}
\frac{d^{n}}{d x^{n}} u v=\left(D_{u}+D_{v}\right)^{n} u v=\sum_{k=0}^{n}\binom{n}{k} D_{u}^{k} D_{v} n-k u v=\sum_{k=0}^{n}\binom{n}{k} D_{u}^{k} u D_{v}^{n-k} v=\sum_{k=0}^{n}\binom{n}{k} \frac{d^{k}}{d x^{k}} u \frac{d^{n-k}}{d x^{n-k}} v \tag{51}
\end{equation*}
$$

where we have used the expansion of the n-th power of a binomial formed by the two operators D_{u}, D_{v} (which commute with each other). $\binom{n}{k}=\frac{n(n-1) \ldots(n-k+1)}{k!}$ is the binomial coefficient.

8 Boas, problem p.569, 12.4-2

By Rodrigues' formula

$$
\begin{equation*}
P_{l}(x)=\frac{1}{2^{l} l!} \frac{d^{l}}{d x^{l}}\left(x^{2}-1\right)^{l} \tag{52}
\end{equation*}
$$

we have, after applying Leibniz' rule (51)

$$
\begin{equation*}
P_{l}(x)=\frac{1}{2^{l} l!} \sum_{k=0}^{l}\binom{l}{k} \frac{d^{k}}{d x^{k}}(x+1)^{l} \frac{d^{l-k}}{d x^{l-k}}(x-1)^{l} \tag{53}
\end{equation*}
$$

Now, every time we differentiate $(x-1)^{l}$ we lower the exponent by one; in particular, when we differentiate l times, we are left with a constant; when we calculate $P_{l}(1)$ any factor of $(x-1)$ will become zero, so that the only non zero contribution comes from the 0 -th term in the sum: this gives

$$
\begin{equation*}
P_{l}(1)=\frac{2^{l}}{l!} \cdot 2^{l} \cdot l!=1 \tag{54}
\end{equation*}
$$

where the term 2^{l} comes from $(x+1)^{l}$ for $x=1$ and $\frac{d^{l}}{d x^{l}}(x-1)^{l}=l \frac{d^{l-1}}{d x^{l-1}}(x-1)^{l-1}=l(l-1) \frac{d^{l-2}}{d x^{l-2}}(x-1)^{l-2}=$ $\ldots=l!$.

9 Boas, problem p.569, 12.4-4

We want to prove that

$$
\begin{equation*}
\int_{-1}^{1} x^{m} P_{l}(x) d x=0, \text { for } m<l \tag{55}
\end{equation*}
$$

Substituting Rodrigues' formula (52) we have

$$
\begin{align*}
\int_{-1}^{1} x^{m} P_{l}(x) d x & =\int_{-1}^{1} \frac{x^{m}}{2^{l} l!} \frac{d^{l}}{d x^{l}}\left(x^{2}-1\right)^{l} d x \propto \tag{56}\\
& \left.\propto x^{m} \frac{d^{l-1}}{d x^{l-1}}\left(x^{2}-1\right)^{l}\right|_{-1} ^{1}-\int_{-1}^{1} m x^{m-1} \frac{d^{l-1}}{d x^{l-1}}\left(x^{2}-1\right)^{l} d x= \tag{57}\\
& =0-\left.m x^{m-1} \frac{d^{l-2}}{d x^{l-2}}\left(x^{2}-1\right)^{l}\right|_{-1} ^{1}+\int_{-1}^{1} m(m-1) x^{m-2} \frac{d^{l-2}}{d x^{l-2}}\left(x^{2}-1\right)^{l} d x=\ldots \tag{58}
\end{align*}
$$

in the first passage we have neglected the constant $\frac{1}{2^{l} l!}$ and integrated by parts; in the second passage, we see that the first term is null because after we have differentiated $(l-1)$ times we will still have at least one factor of $(x-1)$ and one of $(x+1)$ (as you can quickly check by using Leibniz' rule), which are zero when evaluated at ± 1. The same happens for all the other terms evaluated at ± 1, so that, after we have integrated by parts m times (assuming $m<l$), we are left with

$$
\begin{equation*}
m!\int_{-1}^{1} \frac{d^{l-m}}{d x^{l-m}}\left(x^{2}-1\right)^{l} d x=\left.m!\frac{d^{l-m-1}}{d x^{l-m-1}}\left(x^{2}-1\right)^{l}\right|_{-1} ^{1}=0 \tag{59}
\end{equation*}
$$

for the same argument we used above. Note that this does not hold for $m>l$, because in that case between (58) and (59) we reach a step in which $l-k=0$ and we have $\int x^{m-k}\left(x^{2}-1\right)^{l} \neq 0$

10 Boas, problem p.574, 12.5-10

Express the following polynomial as a linear combination of the Legendre polynomials:

$$
\begin{equation*}
f(x)=x^{4} \tag{60}
\end{equation*}
$$

The first five Legendre polynomials are:

$$
\begin{equation*}
P_{0}=1, \quad P_{1}=x, \quad P_{2}=\frac{1}{2}\left(3 x^{2}-1\right), \quad P_{3}=\frac{1}{2}\left(5 x^{3}-3 x\right), \quad P_{4}=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right) \tag{61}
\end{equation*}
$$

We are going to expand x^{4} as a linear combination of the Legendre polynomials, with unknown coefficients; these will be found imposing that the factors for the different powers of x coincide. Because we have x^{4}, $f(x)=\sum_{0}^{4} c_{n} P_{n}$ must contain P_{4}; in particular, $c_{4}=\frac{8}{35}$, so that the coefficient of x^{4} is 1 . Then we must put to zero the coefficient of $x^{3}: x^{3}$ only appears in P_{3} so we can put $c_{3}=0$. Right now, our function is written as

$$
\begin{equation*}
f(x)=\sum_{0}^{2} c_{n} P_{n}+\frac{8}{35} P_{4}(x) \tag{62}
\end{equation*}
$$

Now we fix to zero the coefficient of x^{2} : it appears in P_{4} and P_{2} and it is

$$
\frac{3}{2} c_{2}+\frac{-30}{35}=0 \Longrightarrow c_{2}=\frac{4}{7}
$$

A term linear in x appears only in P_{1}, so we can set $c_{1}=0$. Finally, the constant term is given by

$$
\begin{equation*}
c_{0}-\frac{1}{2} c_{2}+\frac{3}{8} c_{4}=0 \Longrightarrow c_{0}=\frac{1}{5} \tag{63}
\end{equation*}
$$

Then we have found

$$
\begin{equation*}
x^{4}=\frac{1}{5} P_{0}(x)+\frac{4}{7} P_{2}(x)+\frac{8}{35} P_{4}(x) \tag{64}
\end{equation*}
$$

11 Boas, problem p.577, 12.6-6

We want to show that P_{l} and P_{l}^{\prime} are orthogonal on $[-1,1]$ in two ways:

- we can use the fact that the Legendre polynomials are either even or odd functions of x (depending on whether ℓ is even or odd, respectively), as shown in problem 5. Then, if P_{l} is odd, its derivative P_{l}^{\prime} is even, and vice versa. In general, if $f(x)$ is an even function of x and $g(x)$ is an odd function of x, then

$$
\begin{equation*}
\int_{-a}^{a} f(x) g(x)=0 \tag{65}
\end{equation*}
$$

This is easily proven by changing the integration variable to $y=-x$, in which case

$$
\begin{equation*}
\int_{-a}^{a} f(x) g(x)=-\int_{+a}^{-a} f(-y) g(-y) d y=\int_{-a}^{a} f(-y) g(-y) d y=-\int_{-a}^{a} f(y) g(y) d y \tag{66}
\end{equation*}
$$

As the integral is equal to minus itself, it must be equal to zero. Hence, we conclude that

$$
\begin{equation*}
\int_{-1}^{1} P_{l}(x) P_{l}^{\prime}(x)=0 \tag{67}
\end{equation*}
$$

- we can also use the result of problem 9; remember that P_{l} is a polynomial of order l and P_{l}^{\prime} is a polynomial of order $(l-1)$. Then

$$
\begin{equation*}
\int_{-1}^{1} P_{l}(x) P_{l}^{\prime}(x) \tag{68}
\end{equation*}
$$

is given by a sum of terms which have the form $c_{n} \int_{-1}^{1} x^{m} P_{l}(x) d x$, where $m=0,1, \ldots, l-1$, that is, $m<l$, so they are all zero and the two functions are orthogonal.

12 Boas, problem p.615, 12.23-2

The generating functional of the Legendre polynomials is

$$
\begin{equation*}
\Phi(x, h)=\frac{1}{\sqrt{1-2 x h+h^{2}}}=\sum_{l=0}^{\infty} h^{l} P_{l}(x) ; \tag{69}
\end{equation*}
$$

for $x=0$ this gives

$$
\begin{equation*}
\Phi(0, h)=\sum_{l=0}^{\infty} h^{l} P_{l}(0)=\frac{1}{\sqrt{1+h^{2}}}=\sum c_{l} h^{l} \tag{70}
\end{equation*}
$$

But the function $\Phi(0, h)$ looks exactly like the power of a binomial:

$$
\begin{equation*}
\Phi(0, h)=\left(1+h^{2}\right)^{-1 / 2}=\sum_{n=0}^{\infty}\binom{-1 / 2}{n} h^{2 n} \tag{71}
\end{equation*}
$$

Here we can read the Legendre polynomials in zero as

$$
\begin{align*}
P_{2 n+1}(0) & =0 ; \tag{72}\\
P_{2 n}(0) & =\binom{-1 / 2}{n}=\frac{-\frac{1}{2}\left(-\frac{1}{2}-1\right) \ldots\left(-\frac{1}{2}-n+1\right)}{(n)!}=\frac{\left(-1^{n}\right)(2 n-1)!!}{2^{n} n!} . \tag{73}
\end{align*}
$$

