
Physics 116C Solutions to Homework Set #4 Fall 2011

1 Boas, p. 606, problem 12.21-13

Verify that the differential equation of problem 11.13 (Homework set # 2, problem 7) is not Fuchsian.
Solve it by separation of variables to find the obvious solution y =const. and a second solution in the
form of an integral. Show that the second solution is not expandable in a Frobenius series.

The differential equation is

y′′ +
y′

x2
= 0. (1)

A differential equation is said Fuchsian when, given in the form y′′ + f(x)y′ + g′′(x)y = 0, xf(x) and
x2g(x) are not singular in the origin. This is clearly not the case in (1) because xf(x) = 1

x is singular for
x → 0. By separation of variables we have

dy′

y′
= −

dx

x2
=⇒ y′ = Ce−

∫
dx/x2

= −Ce−1/x =⇒ y = −C

∫

dxe−1/x + const. (2)

We have found two solutions of the equation: one is the constant function, the other one is given by
∫

dx exp (−1/x). The latter cannot be expanded as a Frobenius series: if it could, the second solution
would be

y2 = xs
∑

n

anx
n =

∫

∑

n

an(n+ s)xn+s−1 ,

so that we could expand the integrand in the previous equation as a power series with a finite number of
negative powers of x. This is not the case for e−1/x =

∑

n
(−1)n

n! x−n, so the solution cannot be written as
a Frobenius series.

2 Boas, p. 612, problem 12.22-5

Solve the Hermite differential equation by power series

y′′ − 2xy′ + 2py = 0 (3)

We insert the power series y =
∑

n anx
n in to the equation

∑

n

n(n− 1)anx
n−2 − 2

∑

n

nanx
n + 2p

∑

n

anx
n = 0 (4)

∑

n

(n+ 2)(n + 1)an+2x
n − 2

∑

n

nanx
n + 2p

∑

n

anx
n = 0 (5)

(n+ 2)(n + 1)an+2 + (−2n+ 2p)an = 0 (6)

which gives the recursion relation an+2 =
2n−2p

(n+2)(n+1)an. We can write the solution as a sum of two series,
one dependent on a0 and one dependent on a1:

y(x) = a0

(

1 +
−2p

2
x2 +

−2p(4− 2p)

4 · 3 · 2
x4 +

−2p(4− 2p)(8− 2p)

6!
x6 + . . .

)

+ (7)

+a1

(

x+
(2− 2p)

3 · 2
x3 +

(2− 2p)(6 − 2p)

5!
x5 +

(2− 2p)(6 − 2p)(10 − 2p)

7!
x7 + . . .

)

. (8)
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When p is a non-negative even integer, p = 2N , the a0 series terminates after N + 1 terms and we have
a polynomial of order 2N ; when p is a positive odd integer, p = 2N + 1, the odd series terminates after
N + 1 terms and we have a polynomial of order 2N + 1.

These are the Hermite polynomials. It is conventional to fix a0 and a1 by the normalization condition
in which the highest power of x of Hn(x) is given by (2x)n. In this convention, the first three Hermite
polynomials are given by:

H0(x) = 1 , H1(x) = 2x , H2(x) = 4x2 − 2 . (9)

3 Boas, p. 612, problem 12.22-8

In the generating function for the Hermite polynomials Φ(x, h) = e2xh−h2
, expand the exponential and

obtain the firs few Hermite polynomials. Verify the identity

∂2

∂x2
Φ− 2x

∂

∂x
Φ+ 2h

∂

∂h
Φ = 0 (10)

and that this proves the polynomials Hn satisfy Hermite equation; then verify that the highest term in
Hn is (2x)n.

We have

Φ(x, h) = e2xh−h2
=
∑

n

Hn(x)
hn

n!
=
∑

k

(2xh − h2)k

k!
=
∑

k

k
∑

j=0

1

k!

k!

j!(k − j)!
(2xh)j(−h2)k−j (11)

The first powers in h are:

Φ(x, h) = 1 + 2xh+ (4x2 − 2)
h2

2
+ . . . (12)

which we recognize as yielding the first three Hermite polynomials [cf. (9)].
Now we verify (10):

∂

∂x
Φ = 2hΦ ,

∂

∂h
Φ = (2x− 2h)Φ ; (13)

∂2

∂x2
Φ− 2x

∂

∂x
Φ+ 2h

∂

∂h
Φ = 4h2Φ− 2x · 2hΦ+ 2h(2x − 2h)Φ = 0. (14)

From this and remembering that Φ =
∑

nHnh
n/n! we can obtain a differential equation for Hn(x):

∂2

∂x2
Φ− 2x

∂

∂x
Φ+ 2h

∂

∂h
Φ =

∑

n

H ′′

n(x)
hn

n!
− 2x

∑

n

H ′

n(x)
hn

n!
+ 2

∑

n

Hn(x)
hn

(n − 1)!
= 0 (15)

=⇒ H ′′

n(x)− 2xH ′

n(x) + 2nHn(x) = 0 , (16)

which is precisely Hermite’s equation (3) for integer p.
Next we look at the highest power of x in Hn(x) in the expression (11) of Φ:

Φ(x, h) =
∑

n

Hn(x)
hn

n!
=
∑

k

k
∑

j=0

1

k!

k!

j!(k − j)!
(2x)j(−1)k−jh2k−j (17)

for fixed n = 2k− j, that is for j = 2k−n, we have terms proportional to (2x)2k−n. Because the sum over
j was between 0 and k, the terms in the sum over k which contribute are those with n

2 < k < n. Thus,
the highest power of x is 2n − n = n and the highest power of Hn(x) is (2x)n; one also checks that the
combinatorial factor in the front of Hn is 1

j!(k−j)! =
1

(2k−n)!(n−k)! =
1
n! so that we have factorized hn

n! .
Finally, we have proved that Φ generates the Hermite polynomials as this is the only polynomial

solution to Hermite’s equation (see previous problem 2).
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4 Boas, p. 612, problem 12.22-15

Solve the Laguerre differential equation by power series:

xy′′ + (1− x)y′ + py = 0 (18)

Inserting the series y =
∑

n anx
n, we have

∑

n

n(n− 1)anx
n−1 + (1− x)

∑

n

nanx
n−1 + p

∑

n

anx
n = 0 (19)

∑

n

[

(n+ 1)nan+1 + (n+ 1)an+1 − nan + pan

]

xn = 0 (20)

(n+ 1)2an+1 = (n − p)an =⇒ an+1 =
(n− p)

(n+ 1)2
an (21)

if p is an integer, the coefficient ap+1 is zero and the series terminate, that is, the solution is a polynomial.
Setting the normalization to a0 = 1, these are called Laguerre polynomials Ln(x):

Ln(x) = 1− nx+
−n(1− n)

(2!)2
x2 +

−n(1− n)(2− n)

(3!)2
x3 + . . .+

−n(1− n)(2− n) · · · (−1)

(n!)2
xn (22)

From this we can read the first few Laguerre polynomials:

L0(x) = 1 , L1(x) = 1− x , L2(x) = 1− 2x+
x2

2
, L3(x) = 1− 3x+

3

2
x2 −

1

6
x3 . (23)

5 Boas, p. 614, problem 12.22-26

Given the differential equation

y′′ +

(

λ

x
−

1

4
−

l(l + 1)

x2

)

y = 0 (24)

where l > 0 is an integer, find values of λ such that y → 0 for x → ∞ and find the corresponding
eigenfunctions.

We write
y(x) = xl+1e−x/2v(x) , (25)

and find a related differential equation for v:

y′ = (l + 1)xle−x/2v −
1

2
xl+1e−x/2v + xl+1e−x/2v′; (26)

y′′ = l(l + 1)xl−1e−x/2v −
l + 1

2
xle−x/2v + (l + 1)xle−x/2v′ − (27)

−
l + 1

2
xle−x/2v +

1

4
xl+1e−x/2v −

1

2
xl+1e−x/2v′ + (28)

+(l + 1)xle−x/2v′ −
1

2
xl+1e−x/2v′ + xl+1e−x/2v′′; (29)

=⇒ −(l + 1)xlv + [2(l + 1)xl − xl+1]v′ + xl+1v′′ + λxlv = 0, (30)

=⇒ xv′′ + (2l + 2− x)v′ + (λ− l − 1)v = 0 (31)
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This has the same form of the equation solved by the associated Laguerre polynomials:

xy′′ + (k + 1− x)y′ + ny = 0 , y = Lk
n(x) (32)

Then, for an integer λ > l, we there is a polynomial solution of the form v(x) = L2l+1
λ−l−1(x). The solution

to the original equation (24) is
y(x) = xl+1e−x/2L2l+1

λ−l−1(x) (33)

We can note that we just solved an eigenvalue problem: we found that for specific values of λ, the equation
(24) admit solutions related to the associated Laguerre polynomials.

Motivation for the change of variables

To understand the motivation for (25), let us deduce the behavior of the solution y(x) to the differential
equation (24) in the limit where x → 0 and x → ∞ respectively. First, as x → 0, the term l(l + 1)/x2 is
much larger than λ/x and 1

4 . Hence, the latter two terms can be neglected, and we examine

y′′ −
l(l + 1)y

x2
= 0 .

Multiplying by x2, we see that this differential equation has the form of an Euler differential equation [cf.
Case (d) on p. 434 of Boas]. The solution to this equation is a power law, y = xp. Plugging this into the
above equation yields p(p− 1) = l(l+1), which has two solutions p = l+1 and p = −l. We reject p = −l
which is negative for positive integer l, as this would correspond to a solution y(x) that is singular (i.e.,
unbounded) at x = 0. Hence, the non-singular behavior of y(x) as x → 0 is y(x) ∼ xl+1.

As x → ∞, we can neglect the λ/x and l(l + 1)/x2 as compared to 1
4 in (24). Hence, we examine

y′′ − 1
4y = 0 .

The solution to this equation is a linear combination of e−x/2 and ex/2. We reject the latter as it corresponds
to a solution y(x) that is singular (i.e., unbounded) as x → ∞. Hence, the non-singular behavior of y(x)
as x → ∞ is y(x) ∼ e−x/2. Combining these two results, it is especially useful to define

y(x) = xl+1e−x/2v(x) ,

which embodies both the small x and large x behavior of y(x), assuming that v(x) is well-behaved in these
limits. This is precisely the change of variables proposed in (25).

6 Boas, p. 614, problem 12.22-27

In the theory of the hydrogen atom the functions of interest are

fn(x) = xl+1e−x/2nL2l+1
n−l−1

(x

n

)

(34)

where n is an integer and so is l, 0 ≤ l ≤ n− 1. For l = 1, show that

f2(x) = x2e−x/4 , f3(x) = x2e−x/6
(

4−
x

3

)

, f4(x) = x2e−x/8

(

10−
5x

4
+

x2

32

)

. (35)

We will find the associated Laguerre polynomials starting from the Laguerre polynomials and using

Lk
n(x) = (−1)k

dk

dxk
Ln+k(x). (36)
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We need to find L3
0, L3

1, L3
2; in addition to the first polynomials in (23), we need the other Ln’s up to

n = 5. We make use of the definition (22):

L4(x) = 1− 4x+ 3x2 −
2

3
x3 +

1

24
x4 , L5(x) = 1 = 5x+ 5x2 −

5

3
x3 +

5

24
x4 −

1

120
x5 (37)

L3
0 = −

d3

dx3
L3(x) = 1 , L3

1 = −
d3

dx3
L4(x) = 4− x , L3

2 = −
d3

dx3
L5(x) = 10− 5x+

x2

2
(38)

Replacing x → x
n we have

f2(x) = x2e−x/4L3
0

(x

2

)

= x2e−x/4 , (39)

f3(x) = x2e−x/6L3
1

(x

3

)

= x2e−x/6
(

4−
x

3

)

, (40)

f4(x) = x2e−x/8L3
2

(x

4

)

= x2e−x/8

(

10−
5x

4
+

x2

32

)

. (41)

which is precisely (35).
For fixed l, the functions fn(x) are an orthogonal set on (0,∞) (as a consequence of Sturm-Liouville

theory). We can verify this with these three functions:

∫

∞

0
dxf2(x)f3(x) =

∫

∞

0
dxx4e−5x/12

(

4−
x

3

)

= 4

∫

∞

0
dxx4e−5x/12 −

1

3

∫

∞

0
dxx5e−5x/12 = (42)

= 4

(

12

5

)5 ∫ ∞

0
dyy4e−y −

1

3

(

12

5

)6 ∫ ∞

0
dyy5e−y =

(

12

5

)5 [

4Γ(5) −
1

3

12

5
Γ(6)

]

= 0

∫

∞

0
dxf2(x)f4(x) =

∫

∞

0
dxx4e−3x/8

(

10−
5x

4
+

x2

32

)

= 10

(

8

3

)5

Γ(5)−
5

4

(

8

3

)6

Γ(6) +
1

32

(

8

3

)7

Γ(7) =

=

(

8

3

)5

Γ(5)

[

10−
5

4

8

3
5 +

2

9
6 · 5

]

= 0 (43)

∫

∞

0
dxf3(x)f4(x) =

∫

∞

0
dxx4e−7x/24

(

40 −
25

3
x+

13

24
x2 −

1

96
x3
)

= (44)

=

(

24

7

)5

Γ(5)

[

40−
25

3

(

24

7

)

5 +
13

24

(

24

7

)2

6 · 5−
1

96

(

24

7

)3

7 · 6 · 5

]

= 0 (45)

where the Γ function is defined as Γ(z) =
∫

∞

0 dt e−ttz−1 and Γ(z + 1) = zΓ(z).

7 Boas, p. 618, problem 12.23-27

Show that R = lx− (1− x2)D and L = lx+ (1− x2)D where D = d
dx are raising and lowering operators

for the Legendre polynomials. More precisely, show that RPl−1 = lPl and LPl = lPl−1:

This is immediate once we recall the recursion relations of the Legendre polynomials:

RPl−1 =

[

lx− (1− x2)
d

dx

]

Pl−1 = lxPl−1 − (1− x2)P ′

l−1 = lxPl−1 − lxPl−1 + lPl = lPl (46)

LPl =

[

lx+ (1− x2)
d

dx

]

Pl = lxPl + (1− x2)P ′

l = lxPllPl−1 − lxPl = lPl−1 (47)
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Assuming Pl(1) = 1, we can find P0 as the polynomial annihilated by L and then find the other
Legendre polynomials using the raising operators:

LP0(x) = 0 ⇐⇒ (1− x2)P ′

0 = 0 =⇒ P0 = const = 1, (48)

P1(x) = RP0 = x− (1− x2)
d

dx
1 = x , P2(x) =

1

2
RP1 =

1

2
(2x2 − (1− x2)) =

1

2
(3x2 − 1). (49)

Note that the choice of constant such that P0(x) = 1 is a convention. Once this convention has been
chosen, the normalization of the other Legendre polynomials is fixed and determined by applying the
raising operators.

8 Boas, p. 620-621, problem 13.1-2

(a) Show that the expression u(x, t) = sin(x − vt) satisfies the wave equation. Show that, in general,
u = f(x− vt) and u = f(x+ vt) satisfy the wave equation.

The wave equation is

∇2u−
1

v2
∂2

∂t2
u = 0 (50)

For a one-dimensional problem, ∇ = ∂
∂x and this admits the solution u(x, t) = sin(x− vt):

∂

∂x
u = cos(x− vt) ,

∂2

∂x2
u = −u ,

∂2

∂t2
= −v2u =⇒ ∇2u−

1

v2
∂2

∂t2
u = 0 (51)

More generally, one can see that any function (that has a second derivative) u(x, t) = f(x± vt) satisfies
(50):

ξ± = x± vt ,
∂

∂x
=

∂ξ±
∂x

∂

∂ξ±
=

∂

∂ξ±
,

∂

∂t
=

∂ξ±
∂t

∂

∂ξ±
= ±v

∂

∂ξ±
(52)

∇2u−
1

v2
∂2

∂t2
u = f ′′(ξ±)−

1

v2
(±v)2f ′′(ξ±) = 0 (53)

where the equation holds separately for ξ+ and ξ−. f(x − vt) represents an excitation moving in the
positive x direction and f(x+ vt) an excitation moving in the opposite direction.

(b) Show that u(r, t) = 1
rf(r − vt) and u(r, t) = 1

rf(r + vt) satisfy the wave equation in spherical
coordinates.

The Laplacian operator in spherical coordinates is

∇2 =
1

r2
∂

∂r

(

r2
∂

∂r

)

+
1

r2 sinϕ

∂

∂ϕ

(

sinϕ
∂

∂ϕ

)

+
1

r2 sin2 ϕ

∂2

∂θ2
. (54)

If we are looking for solutions independent of φ, θ, only the first term contributes; the wave equation
becomes

1

r2
∂

∂r

(

r2
∂

∂r

)

u(r, t)−
1

v2
∂2

∂t2
u(r, t) = 0 (55)

As before, if we insert the coordinates ξ± = r ± vt we see that u(r, t) = 1
rf(ξ±) is a solution for any f :

1

r2
∂

∂r

(

r2
∂

∂r

)

1

r
f =

1

r2
∂

∂r

(

−f + rf ′
)

= −
1

r2
f ′ +

1

r2
f ′ +

1

r
f ′′, (56)

1

r2
∂

∂r

(

r2
∂

∂r

)

u(r, t) −
1

v2
∂2

∂t2
u(r, t) =

1

r
f ′′(ξ±)−

1

v2
(±v)2

1

r
f ′′ = 0. (57)

These functions represent spherical waves radially coming out of (or into) the origin.
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9 Boas, p. 626, problem 13.2-4

Solve the semi-infinite plate problem if the bottom edge of width 30 is held at

T =

{

x, 0 < x < 15,
30− x, 15 < x < 30,

(58)

and the other sides are at 0oC.

The temperature T inside the plate satisfies Laplace’s equation with the boundary conditions given by
(58). Solving by separation of variables, we have

∇2T (x, y) = 0 , T (x, y) = X(x)Y (y) =

{

eky

e−ky

}{

sin kx
cos kx

}

(59)

Note that the boundary heat distribution (58) does not influence the form of the solution inside the plate;
it will only select a different solution of that form.

We now apply the boundary condition:

• since T → 0 as y → ∞, no solution of the form eky is acceptable;

• similarly, as T (0, y) = 0, no solution with cos kx can exist;

• T (30, y) = 0 so that sin 30k = 0, or k = nπ
30 ; The solution must have the form

T (x, y) =
∑

n

cne
−nπy/30 sin

nπx

30
; (60)

• Finally, we must reproduce the temperature distribution (58) for y = 0:

T (x, 0) =
∑

n

cn sin
nπx

30
=

{

x, 0 < x < 15,
30− x, 15 < x < 30

; (61)

we can find the coefficient cn’s because this is a Fourier series:

cn =
2

30

∫ 30

0
T (x, 0) sin

nπx

30
=

2

30

∫ 15

0
x sin

nπx

30
dx+

2

30

∫ 30

15
(30 − x) sin

nπx

30
dx = (62)

= 60

∫ 1/2

0
ydy sinnπy + 60

∫ 1

1/2
(1− y)dy sinnπy = (63)

= 60

[

−
1

nπ
y cosnπy

∣

∣

∣

∣

1/2

0

+
1

nπ

∫ 1/2

0
cosnπydy −

1

nπ
(1− y) cosnπy

∣

∣

∣

∣

1

1/2

−
1

nπ

∫ 1

1/2
cosnπydy

]

(64)

=
60

n2π2
2 sin

nπ

2
(65)

For even n = 2k that tells us c2k = 0, while for odd n = 2k + 1 we have cn = 120
n2π2 (−1)k.

We can now write the solution to Laplace’s equation with the boundary condition (58):

T (x, y) =
∑

k

120(−1)k

(2k + 1)2π2
e−

(2k+1)πy

30 sin
(2k + 1)πx

30
(66)

The plots for the temperature distribution are in figure 1.
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Figure 1: Temperature distribution (66), with the sum truncated at k = 2
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10 Boas, p. 627, problem 13.2-6

Show that the series

T =
400

π

∑

k

1

2k + 1
e−

(2k+1)πy

10 sin
(2k + 1)πx

10
(67)

can be summed to get

T =
200

π
arctan

(

sin(πx/10)

sinh(πy/10)

)

. (68)

We have sinx = 1
2i(e

ix − e−ix) = Im eix, then

T =
400

π

∑

n odd

1

n
e−nπy/10Im einπx/10 =

400

π
Im

∑

n odd

1

n
einπ(x+iy)/10 =

400

π
Im

∑

n odd

zn

n
, (69)

where z ≡ eiπ(x+iy)/10 and “n odd” means that we sum over n = 1, 3, 5, . . .. To evaluate this sum, recall
that

Ln(1 + z) =

∞
∑

n=1

(−1)n+1

n
zn , for |z| ≤ 1, z 6= −1 , (70)

where z is a complex number and Ln is the principal value of the complex logarithm.1 We would like to
write:

Ln

(

1 + z

1− z

)

= Ln(1 + z)− Ln(1− z) =

∞
∑

n=1

(−1)n+1

n
zn −

∞
∑

n=1

(−1)n+1

n
(−z)n

= 2
∑

n odd

zn

n
, for |z| ≤ 1, z 6= ±1 . (71)

However, recall that Ln(z1/z2) = Ln z1 − Ln z1 is valid only when −π < Arg z1 − Arg z2 ≤ π, where
Arg z is the principal value of the argument of the complex number z (as discussed at great length in the
Physics 116A handout entitled, The complex logarithm, exponential and power functions). Nevertheless,
it is straightforward to check that for z1 = 1 + z and z2 = 1 − z, this condition is satisfied when |z| ≤ 1
and z 6= ±1. Hence, it follows that:

T =
200

π
ImLn

(

1 + eiπ(x+iy)/10

1− eiπ(x+iy)/10

)

=
200

π
Arg

(

1 + eiπ(x+iy)/10

1− eiπ(x+iy)/10

)

,

where we have used Ln z = Ln |z|+ iArg z for the principal value of the complex logarithm.
To evaluate the argument of the expression above, it is convenient to rewrite the complex number in

a+ ib form,

1 + eiπ(x+iy)/10

1− eiπ(x+iy)/10
=

(1 + eiπ(x+iy)/10)(1 − e−iπ(x−iy)/10)

(1− eiπ(x+iy)/10)(1− e−iπ(x−iy)/10)
=

1− e−πy/5 + 2ie−πy/10 sin(πx/10)

1 + e−πy/5 − 2e−πy/10 cos(πx/10)
.

In the Physics 116A handout entitled, The argument of a complex number, I show that if a > 0 then
Arg(a+ ib) = Arctan(b/a), where Arctan is the principal value of the arctangent function. In the present
application, we have:

a =
1− e−πy/5

1 + e−πy/5 − 2e−πy/10 cos(πx/10)
, b =

2e−πy/10 sin(πx/10)

1 + e−πy/5 − 2e−πy/10 cos(πx/10)
. (72)

1Note that since the right hand side of (70) is a single-valued function, the left hand side must be single-valued as well.
Choosing z = 0 yields Ln 1 = 0 as expected for the principal value.
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Since y ≥ 0, we shall treat y = 0 and y > 0 separately. When y > 0, it follows that a > 0, since the
numerator of a is positive and the denominator of a is

1 + e−πy/5 − 2e−πy/10 cos(πx/10) ≥ (1− e−πy/10)2 ≥ 0 ,

after noting that | cos(πx/10)| ≤ 1. Hence,

Arg

(

1 + eiπ(x+iy)/10

1− eiπ(x+iy)/10

)

= Arctan

(

b

a

)

= Arctan

(

2e−πy/10 sin(πx/10)

1− e−πy/5

)

= Arctan

(

sin(πx/10)

sinh(πy/10)

)

,

where in the last step, we used the fact that:

2e−πy/10

1− e−πy/5
=

2

eπy/10(1− e−πy/5)
=

2

eπy/10 − e−πy/10
=

1

sinh(πy/10)
.

Hence, we conclude that:

T =
200

π
Arctan

(

sin(πx/10)

sinh(πy/10)

)

. (73)

In the case of y = 0 and 0 < x < 10, we have2

a = 0 , b =
sin(πx/10)

1− cos(πx/10)
= cot(πx/20) > 0 .

If a = 0 and b > 0, then it follows that Arg(a + bi) = 1
2π. Hence, in (73), if y = 0 and 0 < x < 10, the

arctangent is equal to 1
2π and we find T = 100, which is the boundary condition for the bottom of the

rectangular plate. Finally, we can use (73) to calculate T (5, 5) = 26.096oC.

11 Boas, p. 627, problem 13.2-13

Find the steady state temperature distribution in a rectangular plate covering the area 0 < x < 10,
0 < y < 20 if the two adjacent sides along the axes are held at temperatures T = x and T = y and the
other two sides at 0oC.

The solution to Laplace’s equation is always the same, but this time we have different boundary conditions.

∇2T (x, y) = 0 , T (x, y) = X(x)Y (y) =

{

sinh ky
cosh ky

}{

sin kx
cos kx

}

, (74)

T (x, 0) = x , T (0, y) = y , T (x, 20) = T (10, y) = 0. (75)

Here we have substituted the exponentials in y with the hyperbolic sine and cosine. We can do it because
these are linear combinations of the exponentials and still solutions to Laplace’s equation.

Now, because Laplace’s equation is a linear differential equation, the sum of two solutions is still a
solution; then we will find a solution T1 satisfying the boundary condition T1(x, 0) = x, T1(0, y) = 0
and one T2 satisfying T2(10, y) = 0, T2(0, y) = y and add them together; the sum will satisfy Laplace’s
equation and the boundary conditions (75).

We first look at the boundary condition T1(x, 20) = 0, T1(0, y) = 0, T1(10, y) = 0:

T (0, y) = T (10, y) = 0 =⇒ X = sin
nπx

10
, T (x, 20) = 0 =⇒ Y = sinh k(20 − y) (76)

2We do not consider the points x = y = 0 or x = 10, y = 0 since the temperature is not well defined at these two points
on the boundary of the rectangular plate.
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so that the solution takes the form

T1 =
∑

n

An sinh
nπ

10
(20− y) sin

nπx

10
. (77)

By applying the last condition T1(x, 0) = x we find the coefficients An:

An sinh 2nπ =
2

10

∫ 10

0
dxx sin

nπx

10
=

2

10

[

−
10

nπ
x cos

nπx

10

∣

∣

∣

∣

10

0

+
10

nπ

∫ 10

0
cos

nπx

10
dx

]

= (78)

=
2

10

[

−
10

nπ
10(−1)n

]

=
20

nπ
(−1)n+1 (79)

To find the other solution we solve the same equation with boundary conditions T2(10, y) = 0, T2(0, y) =
y, T2(x, 20) = T2(x, 0) = 0; this goes in the same way we just did so we can give the answer exchanging
the roles of x and y (and being careful about the different sides’ lengths):

T2 =
∑

n

Bn sinh
nπ

20
(10− x) sin

nπy

20
. (80)

Bn sinh
nπ

2
=

2

20

[

−
20

nπ
20(−1)n

]

=
40

nπ
(−1)n+1 (81)

The solution satisfying the original boundary conditions (75) is then

T (x, y) =
20

π

∑

n

(−1)n+1

n sinh 2nπ
sinh

nπ

10
(20− y) sin

nπx

10
+ (82)

+
40

π

∑

n

(−1)n+1

n sinhnπ/2
sinh

nπ

20
(10− x) sin

nπy

20
(83)

12 Boas, p. 627-628, problem 13.2-14

The heat flow across an edge is proportional to the derivative along the direction normal to that edge,
∂T/∂n. For a plate with an insulated edge, the boundary condition is that the heat flow along that edge
is zero. Find the steady-state temperature of a semi-infinite plate of width 10cm where the two long edges
are insulated, the far end is at 0oC and the bottom edge is at T (x, 0) = x− 5.

We solve Laplace’s equation with this boundary condition:

∇2T (x, y) = 0 , T (x, y) = X(x)Y (y) =

{

eky

e−ky

}{

sin kx
cos kx

}

, (84)

T (x, 0) = x− 5 , lim
y→∞

T (x, y) = 0 ,
∂T

∂x
(0, y) =

∂T

∂x
(10, y) = 0 ; (85)

Because of the second condition, we eliminate the solution eky. The others give:

∂T

∂x
(0, y) ∝

{

cos kx
sin kx

}

= 0 =⇒ no sin kx terms in T (86)

∂T

∂x
(10, y) = 0 =⇒ sin k10 = 0 =⇒ k =

nπ

10
(87)

So the solution takes the form
T (x, y) =

∑

n=1

bne
−nπy/10 cos

nπx

10
(88)
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The coefficients are given by

bn =
2

10

∫ 10

0
dx (x− 5) cos

nπx

10
=

2

10

102

π2

∫ π

0
(x−

π

2
) cosnxdx =

20

π2

[

1

n
(x−

π

2
) sinnx

∣

∣

∣

∣

π

0

−
1

n

∫ π

0
sinnx

]

=
20

n2π2
((−1)n − 1) = −

40

n2π2
for n odd (89)

Finally, the solution is

T = −
40

π2

∑

odd n

1

n2
e−nπy/10 cos

nπx

10
. (90)

We eliminated the solution eky because we wanted T → 0 for y → ∞. If we require T to stay finite (not
necessarily zero) for y → ∞ we can admit the solution eky|k=0, or equivalently admit n = 0 in the sum
(88).

We can solve the same equation with this new boundary condition and the source f(x) = x. With
respect to the previous boundary condition, we have f(x) = fold(x) + 5; then we can use the solution
to the previous case and add a solution that respects the boundary condition T (x, 0) = 5. A constant
respects all the required boundary condition, then the solution to this new problem is

T = 5−
40

π2

∑

odd n

1

n2
e−nπy/10 cos

nπx

10
. (91)
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