
Physics 116C Solutions to Homework Set #6 Fall 2011

1 Boas, p. 643, problem 13.5-3(b)

Find the steady-state temperature distribution in a solid cylinder of height H and radius a if the top and
curved surfaces are held at 0 and the base at 100.

We have to solve the equation
∇2u(r, θ, z) = 0 (1)

subject to the boundary conditions

u(r, θ,H) = u(a, θ, z) = 0 , u(r, θ, 0) = 100 (2)

After the usual separation of variables in cylindrical coordinates u(r, θ, z) = R(r)Θ(θ)Z(z) we are left
with

1

rR
(rR′)′ +

1

r2Θ
Θ′′ = −Z ′′

Z
= −K2 (3)

The R−Θ equation can also be separated and gives

r

R
(rR′)′ +K2r2 = −Θ′′

Θ
= n2 =⇒

{

Θ(θ) = e±inθ,
R(r) = Jn(Kr)

(4)

n has to be an integer so that Θ(θ + 2π) = Θ(θ). The Z equation gives Z(z) = A sinhKz +B coshKz =
A′ sinhK(H − z), were we have parametrized the solution so that Z(H)=0. The full solution is

u(r, θ, z) = Jn(Kr) sinhK(H − z)e±inθ (5)

We now have to impose the boundary conditions (2), but first we notice that they have a rotational
symmetry around the z axis (that is, there is no θ-dependence): then there will be no θ-dependence in
the answer, that is, we have n = 0. For the other boundary conditions,

u(a, θ, z) = 0 =⇒ J0(Ka) = 0 =⇒ Ka = xm is a zero of the Bessel function J0(x) (6)

u =
∑

m

cmJ0(xmr/a) sinh[xm(H − z)/a] (7)

u(r, θ, 0) = 100 =
∑

m

cmJ0(xmr/a) sinh(xmH/a) (8)

Because the set {J0(xmr/a) ,m = 1, 2, . . .} is an orthogonal set in (0, a), we can find the coefficient cn by
multiplying expression (8) by J0(xnr/a) and integrating between 0 and a. Then we get (following Boas,
p.641)

sinh(xnH/a)cn =
200

xnJ1(xn)
(9)

or

u(r, θ, z) =

∞
∑

m=1

200

xmJ1(xm) sinh(xmH/a)
J0(xmr/a) sinh[xm(H − z)/a]. (10)
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2 Boas, p. 643, problem 13.5-5

A flat circular plate of radius a has a temperature distribution u(r, θ) = 100r sin θ. At t = 0, the
circumference of the plate is held at 0. Find the time dependent temperature distribution.

We have to solve the problem

∇2u =
1

α2

∂

∂t
u ,

{

u(r, θ, 0) = 100r sin θ,
u(a, θ, t) = 0, t > 0

(11)

We solve the differential equation in the usual way:

u = F (x, y)T (t) =⇒ 1

F
∇2F =

1

α2

T ′′

T
= −k2 (12)

The solution for T is T (t) = e−k2α2t, while for F we have

F (x, y) = R(r)Θ(θ) =⇒ r

R
(rR′)′ + k2r2 = −Θ′′

Θ
= n2 =⇒

{

Θ(θ) = e±inθ,
R(r) = Jn(kr)

(13)

The boundary condition R(a) = 0 tells us that ka is a zero of the n-th Bessel function; if we let xmn

be the m-th zero of the Bessel function Jn, then ka = xmn. Unlike in the last problem, we now have a
θ-dependence in the initial condition:

u(r, θ, 0) = 100r sin θ =
∑

m,n

Jn(xmnr/a)(Amn cosnθ +Bmn sinnθ) (14)

By inspection, we already see there will be no cosnθ dependence on the right hand side (Amn = 0). If we
multiply the previous equation by sin lθ and integrate over θ ∈ (0, 2π), we have

100r

∫ 2π

0
sin lθ sin θ dθ = 100J1(r)δl1π =

∑

n,m

Jn(xmnr/a)Bmlπδln , (15)

=⇒ Bml = 0 for l 6= 1, 100r =
∑

m

J1(xm1r/a)Bm1 . (16)

If we now multiply by rJ1(xk1r/a) and integrate over r ∈ (0, a), we get

100

∫ a

0
r2J1(xk1r/a)dr = 100

∫ a

0

ar

xk1

d

dr
rJ2(xk1r/a)dr = 100

a3

xk1
J2(xk1) = (17)

=
∑

m

Bm1

∫ a

0
rJ1(xm1r/a)J1(xk1r/a)dr = Bk1

a2

2
J2
2 (xk1) (18)

Hence,

Bk1 =
200a

xk1J2(xk1)
. (19)

So that the final solution is

u =

∞
∑

k=1

200a

xk1J2(xk1)
J1(xk1r/a)e

−x2
k1

α2/a2t with xk1=zeros of J1(x). (20)
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3 Boas, p. 643, problem 13.5-7

Find the steady state temperature distribution in a solid cylinder of height 20 and radius 3 if the flat ends
are held at 0 and the curved surface is at 100.

We have to solve the problem

∇2u(r, θ, z) = 0 ,

{

u(r, θ, 0) = u(r, θ, 20) = 0,
u(a, θ, z) = 100.

(21)

Following the derivation on pp. 639–640 of Boas, we write

u(r, θ, z) = R(r)Θ(θ)Z(z) , (22)

and obtain
1

R

1

r

d

dr

(

r
dR

dr

)

+
1

Θ

1

r2
d2Θ

dθ2
+

1

Z

d2Z

dz2
= 0 . (23)

Choosing the opposite sign for the separation constant as compared to eq. (5.4) on p. 639 of Boas, we
have

1

Z

d2Z

dz2
= −k2 , Z =

{

sin kz ,

cos kz .
(24)

Inserting this result back into (23),

1

R

1

r

d

dr

(

r
dR

dr

)

+
1

Θ

1

r2
d2Θ

dθ2
− k2 = 0 . (25)

We can separate the variables by multiplying through by r2,

r

R

d

dr

(

r
dR

dr

)

+
1

Θ

d2Θ

dθ2
− k2r2 = 0 . (26)

Thus we have,

1

Θ

d2Θ

dθ2
= −n2 , Θ =

{

sinnθ ,

cosnθ .
(27)

Inserting this back into (26), we obtain the radial equation,

r

R

d

dr

(

r
dR

dr

)

− n2 − k2r2 = 0 , (28)

or

r2
d2R

dr2
+ r

dR

dr
− (k2r2 + n2)R = 0 . (29)

Comparing this differential equation with eq. (17.2) on p. 595 of Boas, we identify the possible solutions
as:

R(r) =

{

In(kr) ,

Kn(kr) .
(30)

However, since the present problem includes the origin, we demand that the radial solution should be
finite as r → 0. In light of the small r behavior of In(kr) and Kn(kr) as specified on p. 604 of Boas, we
must exclude Kn(kr) as a possible solution. Hence,

R(r) = In(kR) . (31)
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If we now impose the requirement that the temperature is held at 0◦ at z = 0 and 100◦ on the surface of
the solid cylinder, then it follows that n = 0 since the boundary value temperature has no θ-dependence.
Hence, the allowed solutions for the temperature are given by:

u(r, θ, z) = I0(kr) sin kz . (32)

Next, we impose the boundary condition that the temperature is held at 0◦ at z = 20. This implies
that 20k = nπ or k = mπ/20, for m = 1, 2, 3, . . .. Hence, the solution must be of the form,

u(r, θ, z) =
∞
∑

m=1

cmI0(πmr/20) sin(πmz/20) . (33)

Finally, we impose the boundary condition that u(3, θ, z) = 100. This yields

100 =

∞
∑

m=1

cmI0(3πm/20) sin(πmz/20) , (34)

which we recognize as a Fourier sine series. Thus, we can solve for the Fourier coefficients, cmI0(3πm/20),

cmI0(3πm/20) =
1

10

∫ 20

0
100 sin(πmz/20)dz = −200

mπ
cos(πmz/20)

∣

∣

∣

∣

∣

20

0

=
200

mπ
[1− (−1)m] =











0 , for even m,

400

mπ
, for odd m.

(35)

This equation determines the cm, which we can insert back into (33) to obtain the final solution,

u(r, θ, z) =
400

π

∑

odd m

1

mI0(3mπ/20)
I0

(mπr

20

)

sin
(mπz

20

)

. (36)

4 Boas, p. 644, problem 13.5-12

Solve the Laplace’s equation in 2 dimensions in polar coordinates and solve the r and θ equation. Solve
the problem of the steady-state temperature in a circular plate if the upper semicircular boundary is held
at 100 and the lower at 0.

The Laplacian in polar coordinates is

∇2 =
1

r

d

dr

(

r
d

dr

)

+
1

r2
d2

dθ2
(37)

so that Laplace’s equation ∇2u = 0 becomes (with u = R(r)Θ(θ))

r

R
(rR′)′ = −Θ′′

Θ
= n2 (38)

The angular dependence is Θ = e±inθ and n must be an integer for the function to be single-valued,
Θ(θ + 2π) = Θ(θ). The radial equation is

r2R′′ + rR′ − n2R = 0 (39)
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To solve this we try a solution R = rα and substituting we find α = ±n. The solution to Laplace’s
equation is then

u =
∑

n=0

[

rn(An sinnθ +Bn cosnθ) + r−n(A′

n sinnθ +B′

n cosnθ)
]

(40)

To solve the requested problem, first we put A′ = B′ = 0 because the temperature would diverge in
the center of the plate. Then we apply the boundary condition u(a, θ) = 100H(−θ + π) where H is the
Heaviside step function:

u(a, θ) = 100H(−θ + π) =
∑

n=0

an(An sinnθ +Bn cosnθ) (41)

Now we must multiply this equation by sinmθ or cosmθ and integrate between (0, 2π) in order to find
respectively An and Bn. Because

∫ π
0 cosmθ dθ = πδm0, only the constant term in the cosine series is

non-zero. It is given by

100

∫ π

0
dθ = B0

∫ 2π

0
dθ = 2π =⇒ B0 = 50 (42)

anAn =
1

π

∫ π

0
100 sin nθ dθ =

200

nπ
for odd n, and 0 otherwise (43)

We can rewrite the solution as

u = 50 +
200

π

∑

odd n

( r

a

)n sinnθ

n
(44)

5 Boas, p. 650, problem 13.7-7

Find the steady state temperature distribution inside a sphere of radius 1 with the following surface
temperature distribution:

u(1, θ, φ) =

{

cos θ, 0 < θ < π/2,
0, π/2 < θ < π.

(45)

In spherical coordinates, the Laplacian is

∇2 =
1

r2
d

dr

(

r2
d

dr

)

+
1

r2 sin θ

d

dθ

(

sin θ
d

dθ

)

+
1

r2 sin2 θ

d2

dφ2
(46)

After separating the variables, u(r, θ, φ) = R(r)Θ(θ)Φ(φ), we have

(r2R′)′ = kR ,
1

sin θ

d

dθ

(

sin θ
d

dθ

)

Θ+ kΘ− m2

sin2 θ
Θ = 0 , Φ′′ = −m2Φ (47)

The R equation is solved by setting k = l(l + 1) and the solutions are rl, r−l−1. The second solution
diverges at the origin so we do not consider it. The Θ equation gives the associated Legendre polynomials
in cos θ, while the Φ equation is solved by the sine and the cosine. The full solution to Laplace’s equation
is

u(r, θ, φ) = rlPm
l (cos θ)e±imφ (48)

m must be integer for Φ to be single valued, while l must be integer for Pm
l to not diverge at θ = 0, π. As

the initial condition (45) has no φ-dependence, the only allowed value will be m = 0, which gives us the
Legendre polynomials Pl(cos θ). We can write our solution as

u(r, θ, φ) =

∞
∑

l=0

clr
lPl(cos θ) . (49)
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We now impose the boundary condition at r = 1. Defining x ≡ cos θ,

u(r = 1) =

{

x, 0 < x < q,
0, −1 < x < 0

}

=

∞
∑

l=1

clPl(x) . (50)

We can now use the orthogonality of the Legendre polynomials,
∫ 1
−1 dxPlPm = 2δlm

2l+1 and find

cl =
2l + 1

2

∫ 1

−1
u(r = 1)Pl(x)dx =

2l + 1

2

∫ 1

0
xPl(x)dx . (51)

To evaluate this integral, we first employ the recursion relation given in eq (5.8) on p. 570 of Boas,

lPl(x) = (2l − 1)xPl−1(x)− (l − 1)Pl−2(x) . (52)

Shifting l → l + 1, we obtain

xPl(x) =
1

2l + 1
[(l + 1)Pl+1(x) + lPl−1(x)] . (53)

Hence,
∫ 1

0
xPl(x)dx =

1

2l + 1

[

(l + 1)

∫ 1

0
Pl+1(x)dx+ l

∫ 1

0
Pl−1(x)dx

]

. (54)

We first consider the cases of l = 0 and l = 1.

∫ 1

0
xP0(x)dx =

∫ 1

0
xdx = 1

2 ,

∫ 1

0
xP1(x)dx =

∫ 1

0
x2dx = 1

3 . (55)

For l ≥ 2, we make use of the result of problem 12–23.3 on p. 615 of Boas,

∫ 1

0
P2n(x)dx = 0 , for n > 0 , and

∫ 1

0
P2n+1(x)dx =

(−1)n(2n − 1)!!

2n+1(n+ 1)!
. (56)

Thus (54) and (56) yield

∫ 1

0
xP2n+1(x)dx = 0 , for n = 1, 2, 3, . . . , (57)

∫ 1

0
xP2n(x)dx =

1

4n+ 1

[

(−1)n(2n + 1)!!

2n+1(n+ 1)!
− (−1)n(2n− 3)!!

2n−1(n − 1)!

]

=
(−1)n(2n − 3)!!

(4n+ 1)2n+1(n + 1)!
[(2n+ 1)(2n − 1)− 4n(n+ 1)]

=
(−1)n+1(2n− 3)!!

2n+1(n+ 1)!
, for n = 1, 2, 3, . . . (58)

Hence, (51) yields

c0 =
1
4 , c1 =

1
2 , c2n =

(−1)n+1(4n + 1(2n− 3)!!

2n+2(n+ 1)!
, c2n+1 = 0 , for n = 1, 2, 3, . . . (59)
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We can read the first few terms as

c0 =
1

4
, c1 =

1

2
, c2 =

5

16
, c3 = 0 , c4 = − 3

32
. . . (60)

Inserting these results into (49), we obtain

u(r, θ, φ) = 1
4 + 1

2r cos θ +

∞
∑

n=1

(−1)n+1(4n + 1(2n− 3)!!

2n+2(n+ 1)!
r2nP2n(cos θ) . (61)

The first few terms of the series are:

u(r, θ, φ) = 1
4 + 1

2r cos θ +
5
16r

2P2(cos θ)− 3
32r

4P4(cos θ) + · · · . (62)

6 Boas, p. 650, problem 13.7-11

Find the steady state temperature distribution inside a hemisphere if the spherical surface is held at 100
and the equatorial plane at 0.

We already have the solution for a full sphere with the upper half held at 100 and the lower half at 0
(Boas, p.649, eq. (7.15)):

u0 =
∑

l

100clr
lPl(cos θ), cl =

2l + 1

2

∫ 1

−1
dx f(x)Pl(x) , f(x) =

{

0, −1 < x < 0
1, 0 < x < 1

(63)

cl =
1
2

∫ 1

−1
dx f(x)[P ′

l+1 − P ′

l−1] =
1
2 [Pl+1 − Pl−1]

∣

∣

∣

∣

1

0

= 1
2 (Pl−1(0) − Pl+1(0)) = (64)

=

{

c2l+1 =
1
2
(−1)l(2l−1)!!

2ll!
− 1

2
(−1)l+1(2l+1)!!

2l+1(l+1)!
= 1

2
(−1)l(2l−1)!!

2ll!
(1 + 2l+1

2(l+1) ),

c2l = 0 , c0 =
1
2

(65)

u0 = 100
[

1
2P0(cos θ) +

3
4rP1(cos θ)− 7

16r
3P3(cos θ) +

11
32r

5P5(cos θ) + . . .
]

(66)

Let u1 be a solution corresponding to the upper half held at 0 and the lower half at −100:

u1 =
∑

l

100 dlr
lPl(cos θ), dl =

2l + 1

2

∫ 1

−1
dx g(x)Pl(x) , g(x) =

{

−1, −1 < x < 0
0, 0 < x < 1

dl =
2l + 1

2

∫ 1

−1
dx g(x)Pl(x) = −2l + 1

2

∫ 0

−1
dxPl(x) = −2l + 1

2

∫ 1

0
dxPl(−x) = −(−1)lcl (67)

This tells us that d0 = −1
2 , d2l = 0, d2l+1 = c2l+1: then u1 is

u1 = 100
[

− 1
2P0(cos θ) +

3
4rP1(cos θ)− 7

16r
3P3(cos θ) +

11
32r

5P5(cos θ) + . . .
]

(68)

Finally, u0+u1 will still be a solution of Laplace’s equation, and satisfy the boundary conditions with the
two hemispheres held at 100o and −100◦. This also corresponds to have the central plane at 0o, so that
the if we consider u = u0 + u1

∣

∣

θ<π/2
we got the solution to our original problem:

u = 200
[

3
4rP1(cos θ)− 7

16r
3P3(cos θ) +

11
32r

5P5(cos θ) + . . .
]

(69)
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7 Boas, p. 651, problem 13.7-16

Separate the wave equation in spherical coordinates and find that the θ, φ solutions are the spherical
harmonics Y m

l (θ, φ) = Pm
l (cos θ)e±imφ and the r solutions are the spherical Bessel functions jl(kr) and

yl(kr)

The wave equation is

∇2u =
1

v2
∂2u

∂t2
, (70)

where v is the speed of the wave. In spherical coordinates, the Laplacian is

∇2 =
1

r2
d

dr

(

r2
d

dr

)

+
1

r2 sin θ

d

dθ

(

sin θ
d

dθ

)

+
1

r2 sin2 θ

d2

dφ2
(71)

After separating the variables, u(r, θ, φ, t) = F (r, θ, φ)T (t) = R(r)Θ(θ)Φ(φ)T (t), we have

∇2F

F
=

1

c2
T ′′

T
= −k2 =⇒ T (t) = e±ikvt , ∇2F + k2F = 0, (72)

1

R
(r2R′)′ + k2r2 = − 1

Θ sin θ

d

dθ

(

sin θ
dΘ

dθ

)

+
1

Φ sin2 θ

d2Φ

dφ2
= l(l + 1) (73)

which implies that

sin θ

Θ

d

dθ

(

sin θ
dΘ

dθ

)

= − 1

Φ

d2Φ

dφ2
= m2 , (r2R′)′ + (k2r2 − l(l + 1))R ,

1

sin θ

d

dθ

(

sin θ
d

dθ

)

Θ+ l(l + 1)Θ− m2

sin2 θ
Θ = 0 , Φ′′ = −m2Φ (74)

The R equation is precisely the spherical Bessel equation in the variable kr, x2y′′+2xy′+[x2−l(l+1)]y = 0
so that its solutions are jl(kr) and yl(kr). The Θ equation gives the associated Legendre polynomials in
cos θ, Pm

l (cos θ), while the Φ equation is solved by e±imφ.

8 Boas, p. 658, problem 13.8-1

Show that the gravitational potential V = −Gm
r satisfy Laplace’s equation.

We have to show that ∇2V ∝ ∇2 1
r = 0. For that we express the Laplacian in spherical coordinates and

note that the only contribution comes from the radial part:

∇2 1

r
=

1

r2
d

dr

(

r2
d

dr

)

1

r
=

1

r2
d

dr
(−1) = 0 , for r 6= 0 . (75)

With this we have proven that the gravitational potential satisfies Laplace’s equation at all points in space
away from the origin.
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9 Boas, p. 658, problem 13.8-3

Solve Poisson’s equation for a charge q inside a grounded sphere to obtain the potential V inside the
sphere. Sum the series solution and state the image method of solving the problem.

Let the charge q be at (0, 0, a) inside the sphere, a < R. Poisson’s equation is

∇2V = −πρ , ρ = qδ(x)δ(y)δ(z − a) (76)

This is solved by

u(x, y, z) =
1

4π

∫

ρ(x′, y′, z′)dx′dy′dz′
√

(x− x′)2 + (y − y′)2 + (z − z′)2
=

q
√

x2 + y2 + (z − a)2
(77)

We still have to satisfy the boundary condition V (r = R) = 0. For this, we search for another solution
satisfying it and add it to our particular solution (77); the solutions to Laplace’s equation in spherical
coordinates is (as we found earlier solving eq. (47))

(Almrl +Blmr−l−1)Pm
l (cos θ)e±imφ (78)

As we are searching for a solution in the inside of the sphere, we take B = 0 so that our result does not
diverge at r = 0. Because the problem is symmetric around the z axis, there will be no φ dependence,
that is m = 0. The sum of our two solutions is

V =
q√

r2 − 2ar cos θ + a2
+

∑

l

Alr
lPl(cos θ) (79)

where we have expressed the particular solution (77) in spherical coordinates.
The coefficients are chosen in order to satisfy boundary condition

V (r = R) = 0 =
q√

R2 − 2aR cos θ + a2
+

∑

l

AlR
lPl(cos θ) = q

∑

l

al

Rl+1
Pl(cos θ) +

∑

l

AlR
lPl(cos θ),

=⇒ Al = − qal

R2l+1
(80)

where in the first line we have expanded the potential in terms of Legendre polynomials. The solution
satisfying the boundary condition is

V =
q√

r2 − 2ar cos θ + a2
− q

∑

l

alrl

R2l+1
Pl(cos θ) (81)

We can sum the second term (using
∑

l h
lPl(x) = 1/

√
1− 2xh+ h2):

−q
∑

l

alrl

R2l+1
Pl(cos θ) = − q

R

∑

l

( ar

R2

)l
Pl(cos θ) =

−q

R
√

1− 2(ar/R2) cos θ + a2r2/R4
=

−qR/a
√

r2 − 2(rR2/a) cos θ +R4/a

This has the same form of (77), but for a charge −qR
a situated at (0, 0, R

2

a ). Then the problem of the
grounded sphere with a charge inside it is equivalent to the electrostatic problem of having two charges
of different magnitude located at (0, 0, a) and (0, 0, R

2

a ). The second charge is called image charge.
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10 Boas, p. 664, problem 13.10-19

A long conducting cylinder is placed parallel to the z axis in an originally uniform electric field in the
negative x direction. The cylinder is held at zero potential. Find the potential in the region outside the
cylinder.

First, we recall the solution to Laplace’s equation in cylindrical coordinates that we found in Problem 4,
eq. (40)

V =
∑

n=0

[

rn(An sinnθ +Bn cosnθ) + r−n(A′

n sinnθ +B′

n cosnθ)
]

=
∑

n

r−n(A′

n sinnθ +B′

n cosnθ) (82)

As we will be looking for the potential outside the cylinder, the coefficients multiplying rn must be zero.
The electric field E is in the x direction, that is, E = −E0i = ∇V so that V = E0x = E0r cos θ. We

want a solution to Laplace’s equation (not Poisson’s, as there are no charges) such that V (r = a) = 0 and
V = E0r cos θ for large r (far away from the cylinder). Then, we pick

V = E0r cos θ +
∑

n

r−n(An cosnθ +Bn sinnθ), satisfying V (r = a) = 0 (83)

The coefficients are quickly picked by inspection: Bn = 0, An = 0 except for A1, which satisfies

0 = E0a cos θ +A1
1

a
cos θ =⇒ A1 = −E0a

2 (84)

and finally our solution is

V = E0

(

r − a2

r

)

cos θ (85)

11 Boas, p. 664, problem 13.10-20

Use Problem 7 to find the characteristic vibration frequencies of a sound in a spherical cavity.

The vibration modes of a sound in a spherical cavity are solutions to the wave equation (70) subject to
the boundary condition u(r = a) = 0. The general solution was given by

u(r, θ, φ, t) =

{

jl(kr)
yl(kr)

}

Pm
l (cos θ)e±imφ

{

cos kvt
sin kvt

}

(86)

where v is the speed of sound. Because we are looking at the solution inside the sphere, the yl does not
contribute. The boundary condition will be satisfied if

jl(ka) = 0, that is, if ka = λl is a zero of the spherical Bessel function (87)

The time dependence of the solution is given by sines and cosines, that is, oscillatory modes with an
angular frequency ω = kv so that the frequencies of the normal modes are

ν =
ω

2π
=

λlv

2πa
(88)

where λl is a zero of the spherical Bessel jl.
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