
Physics 116C Solutions to the Practice Midterm Exam Fall 2011

Problem 1

Solve the differential equation:

xy′′ + (12 − x)y′ − 1
2y = 0, (1)

by expanding the solution in a generalized power series:

(a) Determine the generalized power series for the two linearly independent solutions of eq. (1).
Show that one of the two series solutions, denoted by y1(x), is an elementary function by explicitly
summing the series.

We insert the power series y(x) =
∑

∞

n=0 anx
n+s:

∞
∑

n=0

(n+ s)(n+ s− 1)anx
n+s−1 + 1

2

∞
∑

n=0

(n+ s)anx
n+s−1 −

∞
∑

n=0

an(n+ s)xn+s − 1
2

∞
∑

n=0

anx
n+s = 0 . (2)

We can rewrite (2) as:

[

s(s− 1) + 1
2s
]

a0x
s−1 +

∞
∑

n=1

(n + s)(n + s− 1)anx
n+s−1 + 1

2

∞
∑

n=1

(n+ s)anx
n+s−1

−
∞
∑

n=0

an(n+ s)xn+s − 1
2

∞
∑

n=0

anx
n+s = 0 . (3)

The sums can be combined by defining m = n − 1 in the first two summations and m = n in the
last two summations. In this case, all the sums will run from m = 0 to m = ∞. Hence, (2) can be
rewritten as:

[

s(s− 1) + 1
2s
]

a0x
s−1

+

∞
∑

m=0

[

(m+ s+ 1)(m + s)am+1 +
1
2 (m+ s+ 1)am+1 − (m+ s)am − 1

2am
]

xm+s = 0 . (4)

The indicial equation is obtained from the coefficient of the smallest power of x—in this case
the coefficient of xs−1. Setting this coefficient to zero yields

s(s− 1) + 1
2s = 0 =⇒ s = 0 , 12 . (5)

Setting the coefficient of xm+s to zero for m = 0, 1, 2, 3, . . . yields the recursion relation for the
coefficients am.

(m+ s+ 1)(m+ s)am+1 +
1
2(m+ s+ 1)am+1 − (m+ s)am − 1

2am = 0 , (6)

which yields

am+1 =
am

m+ s+ 1
, for m = 0, 1, 2, 3, . . . (7)

We now consider the two possible indicial roots, s = 0 and s = 1
2 .
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• s = 0: the recursion relation becomes

am+1 =
am

m+ 1
(8)

which implies that

am+1 =
1

(m+ 1)m
am−1 =

1

(m+ 1)m(m− 1)
am−2 = · · · =

1

(m+ 1)!
a0 . (9)

The first solution then is

y1(x) =

∞
∑

n=0

anx
n = a0

∞
∑

n=0

xn

n!
= a0e

x . (10)

• s = 1
2 : the recursion relation becomes

am+1 =
am

m+ 3
2

, (11)

which implies that

am+1 =
1

m+ 3
2

an =
2

2m+ 3
am =

4

(2m+ 3)(2m+ 1)
am−1 = · · · =

2m+1

(2m+ 3)!!
a0 . (12)

The second solution is then

y2(x) =
∑

n

anx
n+ 1

2 = a0x
1

2

∑

n

(2x)n

(2n+ 1)!!
(13)

(b) Inserting y = y1(x)v(x) with v(x) =
∫

dxw(x), into eq. (1) [and using the fact that y1(x)
satisfies eq. (1)], find the equation that w(x) satisfies, and solve it.

y2 = y1(x)v(x) : (14)

x(y′′1v + 2y′1v
′ + y1v

′′) + (12 − x)(y′1v + y1v
′)− 1

2y1v = 0, (15)

xy1v
′′ + (2xy′1 + (12 − x)y1)v

′ = 0 =⇒ xy1w
′ + (2xy′1 + (12 − x)y1)w = 0; (16)

The known solution is y1 = ex, so that y′1 = y1 and the equation for w becomes

xw′ + (12 + x)w = 0 =⇒
w′

w
= −1−

1

2x
=⇒ w(x) = c

1
√
x
e−x (17)

(c) EXTRA CREDIT: Evaluate the indefinite integral of w(x) in terms of one of the special
functions that we studied in Physics 116A.

The integral is

v(x) = c

∫

x−1/2e−xdx = 2c

∫

e−z2dz , (18)

after a change of variables x = z2 (so that dx = 2zdz = 2x1/2dz or dz = 1
2x

−1/2dx). Recall the
definition of the error function,

erf(x) =
2
√
π

∫ x

0
e−t2dt . (19)

2



Hence, v(x) = c
√
π erf(

√
x) + c ′, where c ′ is a constant of integration. Finally, y2(x) = y1(x)v(x),

where y1(x) = ex was obtained above (the overall constant can be absorbed into the definition of c).
Clearly, we can ignore the constant of integration c ′, as it just gives a multiple of the first solution.
Thus, the second solution is:

y2(x) =
1
2

√
πc0e

xerf(
√
x) , (20)

where we have set c = 1
2c0 such that the above solution matches precisely with the series solution

given in (13). (You can easily verify this claim by plugging in the series solutions for ex and erf(
√
x)

and multiplying them together.)

Problem 2

The spherical modified Bessel functions are defined by:

in(x) =

√

π

2x
In+ 1

2

(x), (21)

kn(x) =

√

2

πx
Kn+ 1

2

(x), (22)

where n is an integer. In+ 1

2

(x) and Kn+ 1

2

(x) are modified Bessel functions of order n+ 1
2 .

(a) Express i0(x) and k0(x) explicitly in terms of elementary functions. Cite any pertinent formulae
that you take from Boas.

From Boas, p 595, we take the definitions of the modified Bessel functions:

Ip(x) = i−pJp(ix) , Kp(x) =
π

2
ip+1H(1)

p (ix), H(1)
p (x) = Jp(x) + iYp(x). (23)

Also from Boas p. 596 we take the expressions of the spherical Bessel functions in terms of elementary
functions

jn(x) =

√

π

2x
Jn+ 1

2

(x) = xn
(

−
1

x

d

dx

)n(sinx

x

)

, (24)

yn(x) =

√

π

2x
Yn+ 1

2

(x) = −xn
(

−
1

x

d

dx

)n
(cos x

x

)

; (25)

To find i0, k0 we simply substitute the expressions:

i0(x) =

√

π

2x
I 1

2

(x) =

√

π

2x
i−

1

2J 1

2

(ix) =

√

π

2ix
J 1

2

(ix) = j0(ix) =
sin ix

ix
=

sinhx

x
(26)

k0(x) =

√

2

πx
K 1

2

=

√

2

πx

π

2
i
3

2H
(1)
1
2

(ix) = −

√

π

2ix
H

(1)
1
2

(ix)

= −

√

π

2ix

(

J 1

2

(ix) + iY 1

2

(ix)
)

= −(j0(ix) + iy0(ix)) = −

(

sin ix

ix
− i

cos ix

ix

)

=
cos ix+ i sin ix

x
=
ei(ix)

x
=
e−x

x
. (27)
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(b) Compute the Wronskian of k0(x) and i0(x). Are these two functions linearly independent?

The Wronskian is

W (i0, k0) = det

(

i0 k0

i′0 k′0

)

= i0k
′

0 − k0i
′

0 = −
sinhx

x

(

e−x

x
+
e−x

x2

)

−
e−x

x

(

coshx

x
−

sinhx

x2

)

= −
e−x

x2

[

sinhx+ cosh x

]

+
e−x

x3

[

− sinhx+ sinhx

]

= −
1

x2
. (28)

The Wronskian is non-zero and the functions are linearly independent.

Problem 3

In quantum mechanics, the Schrodinger equation for a free particle in one dimension is

∂2ψ(x, t)

∂x2
= −i

∂ψ(x, t)

∂t
, (29)

where the (complex) wave function ψ(x, t) provides information on the probability that the particle
is located in the vicinity of x at time t.

Using the separation of variables technique, solve eq. (29) subject to the boundary conditions
ψ(0, t) = ψ(1, t) = 0 and the initial condition ψ(x, 0) = 1 (0 < x < 1). These conditions correspond
to the physical situation of a particle trapped in a ”box” (more precisely, an interval) of length 1,
whose location at time t = 0 is equally probable anywhere in the interval 0 < x < 1.

HINT: Your final solution for ψ(x, t) should take the form of an infinite sum over solutions to eq. (29)
that satisfy the boundary conditions. Make sure that you impose the initial condition to determine
all remaining unknown coefficients.

For our solution we assume the form ψ(x, t) = X(x)T (t). Schrödinger equation becomes

X ′′(x)T (t) = −iX(x)T ′(t) ,
X ′′

X
(x) = −i

T ′

T
(t) = −k2 ; (30)

T (t) = e−ik2t , X(x) = A cos kx+B sin kx. (31)

From the boundary condition ψ(0, t) = 0 we have A = 0, while ψ(1, t) = 0 implies sin k = 0, that is,
k = kn = nπ. Then

ψ(x, t) =
∑

n

bne
−in2π2t sin(nπx) (32)

We now impose the initial condition ψ(x, 0) = 1:

ψ(x, 0) =
∑

n

bn sin(nπx) (33)

bn = 2

∫ 1

0
sinnπxdx =

2

nπ

[

− cos(nπ) + 1

]

=
2[1 − (−1)n]

nπ
=







4

nπ
, for odd n ,

0 , for even n .
(34)

Hence, the solution is:

ψ(x, t) =
4

π

∑

n odd

sin(nπx)

n
e−in2π2t . (35)
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